Knowledge in Learning. Sequential covering algorithms FOIL Induction as inverse of deduction Inductive Logic Programming

Size: px
Start display at page:

Download "Knowledge in Learning. Sequential covering algorithms FOIL Induction as inverse of deduction Inductive Logic Programming"

Transcription

1 Knowledge in Learning Sequential covering algorithms FOIL Induction as inverse of deduction Inductive Logic Programming 1

2 Learning Disjunctive Sets of Rules Method 1: Learn decision tree, convert to rules Method 2: Sequential covering algorithm: 1. Learn one rule with high accuracy, any coverage 2. Remove positive examples covered by this rule 3. Repeat 2

3 Sequential Covering Algorithm Sequential-covering(Target attribute, Attributes, Examples, T hreshold) Learned rules {} Rule learn-onerule(target attribute, Attributes, Examples) while performance(rule, Examples) > T hreshold, do Learned rules Learned rules + Rule Examples Examples {examples correctly classified by Rule} Rule learn-onerule(target attribute, Attributes, Examples) Learned rules sort Learned rules according to performance over Examples return Learned rules 3

4 Learn-One-Rule IF THEN PlayTennis=yes IF Wind=weak THEN PlayTennis=yes IF Wind=strong THEN PlayTennis=no IF Humidity=normal THEN PlayTennis=yes IF Humidity=high THEN PlayTennis=no... IF Humidity=normal Wind=weak THEN PlayTennis=yes IF Humidity=normal Wind=strong THEN PlayTennis=yes IF Humidity=normal Outlook=sunny THEN PlayTennis=yes IF Humidity=normal Outlook=rain THEN PlayTennis=yes... 4

5 Learn-One-Rule Pos positive Examples Neg negative Examples while Pos,do Learn a NewRule NewRule most general rule possible NewRuleNeg Neg while N ewrulen eg, do Add a new literal to specialize NewRule 1. Candidate literals generate candidates 2. Best literal argmax L Candidate literals Performance(SpecializeRule(NewRule,L)) 3. add Best literal to NewRule preconditions 4. NewRuleNeg subset of NewRuleNeg that satisfies NewRule preconditions Learned rules Learned rules + NewRule Pos Pos {members of Pos covered by NewRule} Return Learned rules 5

6 Learning First Order Rules Whydothat? Can learn sets of rules such as Ancestor(x, y) P arent(x, y) Ancestor(x, y) P arent(x, z) Ancestor(z,y) General purpose programming language Prolog: programs are sets of such rules 6

7 First Order Rule for Classifying Web Pages [Slattery, 1997] course(a) has-word(a, instructor), Not has-word(a, good), link-from(a, B), has-word(b, assign), Not link-from(b, C) Train: 31/31, Test: 31/34 7

8 FOIL First-Order Induction of Logic (FOIL) Learns Horn clauses without functions Allows negated literals in rule body Sequential covering algorithm Greedy, hill-climbing approach Seeks only rules for predicting True Each new rule generalizes overall concept (S G) Each added conjunct specializes rule (G S) 8

9 FOIL(T arget predicate, P redicates, Examples) Pos positive Examples Neg negative Examples while Pos,do Learn a NewRule NewRule most general rule possible NewRuleNeg Neg while N ewrulen eg, do Add a new literal to specialize NewRule 1. Candidate literals generate candidates 2. Best literal argmax L Candidate literals Foil Gain(L, NewRule) 3. add Best literal to NewRule preconditions 4. NewRuleNeg subset of NewRuleNeg that satisfies NewRule preconditions Learned rules Learned rules + NewRule Pos Pos {members of Pos covered by NewRule} Return Learned rules 9

10 Specializing Rules in FOIL Learning rule: P (x 1,x 2,...,x k ) L 1...L n Candidate specializations add new literal of form: Q(v 1,...,v r ), where at least one of the v i in the created literal must already exist as a variable in the rule. Equal(x j,x k ), where x j and x k are variables already present in the rule The negation of either of the above forms of literals 10

11 Information Gain in FOIL Foil Gain(L, R) t Where p 1 p 0 log 2 log p 1 + n 2 1 L is the candidate literal to add to rule R p 0 = number of positive bindings of R n 0 = number of negative bindings of R p 1 = number of positive bindings of R + L n 1 = number of negative bindings of R + L p 0 + n 0 t is the number of positive bindings of R also covered by R + L Note log 2 p 0 p 0 +n 0 is optimal number of bits to indicate the class of a positive binding covered by R 11

12 FOIL Example x y represents LinkedTo(x,y) Instances: Pairs of nodes, e.g 1, 5, with graph described by literals LinkedTo(0,1), LinkedTo(0,8) etc. Target function: CanReach(x,y) true iff directed path from x to y Hypothesis space: Each h H is a set of horn clauses using predicates LinkedT o (and CanReach) Learned rules: CanReach(x,y) LinkedTo(x,y) CanReach(x,y) LinkedTo(x,z) & CanReach(z,y) 12

13 Induction as Inverted Deduction Induction is finding h such that ( x i,f(x i ) D) B h x i f(x i ) where x i is ith training instance f(x i ) is the target function value for x i B is other background knowledge Idea: Design inductive algorithm by inverting operators for automated deduction. 13

14 Deduction: Resolution Rule P L L R P R 1. Given initial clauses C 1 and C 2, find a literal L from clause C 1 such that L occurs in clause C 2 2. Form the resolvent C by including all literals from C 1 and C 2, except for L and L. More precisely, the set of literals occurring in the conclusion C is C =(C 1 {L}) (C 2 { L}) where denotes set union, and denotes set difference. 14

15 Inverting Resolution C : 2 KnowMaterial V Study C : 2 KnowMaterial V Study C : 1 PassExam V KnowMaterial C : PassExam V KnowMaterial 1 C: PassExam V Study C: PassExam V Study 15

16 Progol Progol: Reduce comb. explosion by generating the most specific acceptable h 1. User specifies H by stating predicates, functions, and forms of arguments allowed for each 2. Progol uses sequential covering algorithm. For each x i,f(x i ) Find most specific hypothesis h i s.t. B h i x i f(x i ) actually, considers only k-step entailment 3. Conduct general-to-specific search bounded by specific hypothesis h i, choosing hypothesis with minimum description length 16

17 Summary Sequential (set) covering Inductive Logic Programming (ILP) FOIL Inverse resolution 17

Lecture 6: Inductive Logic Programming

Lecture 6: Inductive Logic Programming Lecture 6: Inductive Logic Programming Cognitive Systems - Machine Learning Part II: Special Aspects of Concept Learning FOIL, Inverted Resolution, Sequential Covering last change November 15, 2010 Ute

More information

Lecture 6: Inductive Logic Programming

Lecture 6: Inductive Logic Programming Lecture 6: Inductive Logic Programming Cognitive Systems - Machine Learning Part II: Special Aspects of Concept Learning Sequential Covering, FOIL, Inverted Resolution, EBL last change November 26, 2014

More information

SC7: Inductive Programming and Knowledge-level Learning Lecture 2

SC7: Inductive Programming and Knowledge-level Learning Lecture 2 SC7: Inductive Programming and Knowledge-level Learning Lecture 2 Ute Schmid Cognitive Systems Fakultät Wirtschaftsinformatik und Angewandte Informatik Otto-Friedrich Universität Bamberg IK 13 U. Schmid

More information

Learning Rules. Learning Rules from Decision Trees

Learning Rules. Learning Rules from Decision Trees Learning Rules In learning rules, we are interested in learning rules of the form: if A 1 A 2... then C where A 1, A 2,... are the preconditions/constraints/body/ antecedents of the rule and C is the postcondition/head/

More information

Learning Rules. How to use rules? Known methods to learn rules: Comments: 2.1 Learning association rules: General idea

Learning Rules. How to use rules? Known methods to learn rules: Comments: 2.1 Learning association rules: General idea 2. Learning Rules Rule: cond è concl where } cond is a conjunction of predicates (that themselves can be either simple or complex) and } concl is an action (or action sequence) like adding particular knowledge

More information

Learning Rules. CS 391L: Machine Learning: Rule Learning. Raymond J. Mooney. Rule Learning Approaches. Decision-Trees to Rules. Sequential Covering

Learning Rules. CS 391L: Machine Learning: Rule Learning. Raymond J. Mooney. Rule Learning Approaches. Decision-Trees to Rules. Sequential Covering Learning Rules CS 9L: Machine Learning: Rule Learning Raymond J. Mooney University of Texas at Austin If-then rules in logic are a standard representation of knowledge that have proven useful in expert-systems

More information

Constraint Solving. Systems and Internet Infrastructure Security

Constraint Solving. Systems and Internet Infrastructure Security Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Constraint Solving Systems

More information

Symbolic AI. Andre Freitas. Photo by Vasilyev Alexandr

Symbolic AI. Andre Freitas. Photo by Vasilyev Alexandr Symbolic AI Andre Freitas Photo by Vasilyev Alexandr Acknowledgements These slides were based on the slides of: Peter A. Flach, Rule induction tutorial, IDA Spring School 2001. Anoop & Hector, Inductive

More information

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions The AI War How machines should learn: inductive or deductive? Deductive: Expert => rules =>

More information

Decision Trees Oct

Decision Trees Oct Decision Trees Oct - 7-2009 Previously We learned two different classifiers Perceptron: LTU KNN: complex decision boundary If you are a novice in this field, given a classification application, are these

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) 6.1 Instructional Objective Students should understand the advantages of first order logic as a knowledge representation language Students

More information

CS 395T Computational Learning Theory. Scribe: Wei Tang

CS 395T Computational Learning Theory. Scribe: Wei Tang CS 395T Computational Learning Theory Lecture 1: September 5th, 2007 Lecturer: Adam Klivans Scribe: Wei Tang 1.1 Introduction Many tasks from real application domain can be described as a process of learning.

More information

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi is another way of showing that an argument is correct. Definitions: Literal: A variable or a negation of a variable is called a literal. Sum and Product: A disjunction of literals is called a sum and a

More information

Schema Independent Relational Learning

Schema Independent Relational Learning Schema Independent Relational Learning Jose Picado Arash Termehchy Alan Fern School of EECS, Oregon State University Corvallis, OR 97331 {picadolj,termehca,afern}@eecs.oregonstate.edu Abstract Relational

More information

Gen := 0. Create Initial Random Population. Termination Criterion Satisfied? Yes. Evaluate fitness of each individual in population.

Gen := 0. Create Initial Random Population. Termination Criterion Satisfied? Yes. Evaluate fitness of each individual in population. An Experimental Comparison of Genetic Programming and Inductive Logic Programming on Learning Recursive List Functions Lappoon R. Tang Mary Elaine Cali Raymond J. Mooney Department of Computer Sciences

More information

Boolean Functions (Formulas) and Propositional Logic

Boolean Functions (Formulas) and Propositional Logic EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Part I: Basics Sanjit A. Seshia EECS, UC Berkeley Boolean Functions (Formulas) and Propositional Logic Variables: x 1, x 2, x 3,, x

More information

Using the bottom clause and mode declarations in FOL theory revision from examples

Using the bottom clause and mode declarations in FOL theory revision from examples Mach Learn (2009) 76: 73 107 DOI 10.1007/s10994-009-5116-8 Using the bottom clause and mode declarations in FOL theory revision from examples Ana Luísa Duboc Aline Paes Gerson Zaverucha Received: 15 November

More information

Range Restriction for General Formulas

Range Restriction for General Formulas Range Restriction for General Formulas 1 Range Restriction for General Formulas Stefan Brass Martin-Luther-Universität Halle-Wittenberg Germany Range Restriction for General Formulas 2 Motivation Deductive

More information

LOGIC AND DISCRETE MATHEMATICS

LOGIC AND DISCRETE MATHEMATICS LOGIC AND DISCRETE MATHEMATICS A Computer Science Perspective WINFRIED KARL GRASSMANN Department of Computer Science University of Saskatchewan JEAN-PAUL TREMBLAY Department of Computer Science University

More information

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy Topics Chapter 16 Logic Programming Summary (resolution, unification, Prolog search strategy ) Disjoint goals The cut operator Negative goals Predicate fail Debugger / tracer Lists 2 Resolution Resolution

More information

Data Mining. 3.3 Rule-Based Classification. Fall Instructor: Dr. Masoud Yaghini. Rule-Based Classification

Data Mining. 3.3 Rule-Based Classification. Fall Instructor: Dr. Masoud Yaghini. Rule-Based Classification Data Mining 3.3 Fall 2008 Instructor: Dr. Masoud Yaghini Outline Using IF-THEN Rules for Classification Rules With Exceptions Rule Extraction from a Decision Tree 1R Algorithm Sequential Covering Algorithms

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.4. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Using IF-THEN Rules for Classification Rule Extraction from a Decision Tree 1R Algorithm Sequential Covering Algorithms

More information

PROPOSITIONAL LOGIC (2)

PROPOSITIONAL LOGIC (2) PROPOSITIONAL LOGIC (2) based on Huth & Ruan Logic in Computer Science: Modelling and Reasoning about Systems Cambridge University Press, 2004 Russell & Norvig Artificial Intelligence: A Modern Approach

More information

Mixed Integer Linear Programming

Mixed Integer Linear Programming Mixed Integer Linear Programming Part I Prof. Davide M. Raimondo A linear program.. A linear program.. A linear program.. Does not take into account possible fixed costs related to the acquisition of new

More information

8.1 Polynomial-Time Reductions

8.1 Polynomial-Time Reductions 8.1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. Those with polynomial-time algorithms.

More information

The Utility of Knowledge in Inductive Learning

The Utility of Knowledge in Inductive Learning Machine Learning, 9, 57-94 (1992) 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. The Utility of Knowledge in Inductive Learning MICHAEL PAZZANI pazzani@ics.uci.edu DENNIS KIBLER

More information

CONSIDERATIONS CONCERNING PARALLEL AND DISTRIBUTED ARCHITECTURE FOR INTELLIGENT SYSTEMS

CONSIDERATIONS CONCERNING PARALLEL AND DISTRIBUTED ARCHITECTURE FOR INTELLIGENT SYSTEMS CONSIDERATIONS CONCERNING PARALLEL AND DISTRIBUTED ARCHITECTURE FOR INTELLIGENT SYSTEMS 1 Delia Ungureanu, 2 Dominic Mircea Kristaly, 3 Adrian Virgil Craciun 1, 2 Automatics Department, Transilvania University

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter 2.1-2.7 p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Propositional Resolution Part 3. Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence

Propositional Resolution Part 3. Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence Propositional Resolution Part 3 Short Review Professor Anita Wasilewska CSE 352 Artificial Intelligence Resolution Strategies We present here some Deletion Strategies and discuss their Completeness. Deletion

More information

Propositional logic (Ch. 7)

Propositional logic (Ch. 7) Propositional logic (Ch. 7) Announcements Writing 3 due Sunday - ideally use for project - if you haven't decided project by then, you will have to redo this work Logic: definitions We say that two sentences

More information

Inductive Logic Programming Using a MaxSAT Solver

Inductive Logic Programming Using a MaxSAT Solver Inductive Logic Programming Using a MaxSAT Solver Noriaki Chikara 1, Miyuki Koshimura 2, Hiroshi Fujita 2, and Ryuzo Hasegawa 2 1 National Institute of Technology, Tokuyama College, Gakuendai, Shunan,

More information

SERGEI OBIEDKOV LEARNING HORN FORMULAS WITH QUERIES

SERGEI OBIEDKOV LEARNING HORN FORMULAS WITH QUERIES SERGEI OBIEDKOV LEARNING HORN FORMULAS WITH QUERIES SUPERVISED LEARNING Input: a training set divided into (for example) two classes w.r.t. a certain target property. positive examples negative examples

More information

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 8. NP and Computational Intractability. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 8 NP and Computational Intractability Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns.

More information

Confidence-based Concept Discovery in Multi-Relational Data Mining

Confidence-based Concept Discovery in Multi-Relational Data Mining Confidence-based Concept Discovery in Multi-Relational Data Mining Yusuf Kavurucu Pinar Senkul Ismail Hakki Toroslu Abstract Multi-relational data mining has become popular due to the limitations of propositional

More information

COMP4418 Knowledge Representation and Reasoning

COMP4418 Knowledge Representation and Reasoning COMP4418 Knowledge Representation and Reasoning Week 3 Practical Reasoning David Rajaratnam Click to edit Present s Name Practical Reasoning - My Interests Cognitive Robotics. Connect high level cognition

More information

Data Analytics and Boolean Algebras

Data Analytics and Boolean Algebras Data Analytics and Boolean Algebras Hans van Thiel November 28, 2012 c Muitovar 2012 KvK Amsterdam 34350608 Passeerdersstraat 76 1016 XZ Amsterdam The Netherlands T: + 31 20 6247137 E: hthiel@muitovar.com

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Fundamentals of Prolog

Fundamentals of Prolog Fundamentals of Prolog Prof. Geraint A. Wiggins Centre for Cognition, Computation and Culture Goldsmiths College, University of London Contents Summary of Lecture 1 What makes a good Prolog program? What

More information

Conjunctive queries. Many computational problems are much easier for conjunctive queries than for general first-order queries.

Conjunctive queries. Many computational problems are much easier for conjunctive queries than for general first-order queries. Conjunctive queries Relational calculus queries without negation and disjunction. Conjunctive queries have a normal form: ( y 1 ) ( y n )(p 1 (x 1,..., x m, y 1,..., y n ) p k (x 1,..., x m, y 1,..., y

More information

Operators (2A) Young Won Lim 10/5/13

Operators (2A) Young Won Lim 10/5/13 Operators (2A) Copyright (c) 2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 37 Resolution Rules

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 37 Resolution Rules Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 37 Resolution Rules If some literals can be unified, the same algorithm should be able

More information

Customising Parallelism and Caching for Machine Learning

Customising Parallelism and Caching for Machine Learning Customising Parallelism and Caching for Machine Learning Andreas Fidjeland and Wayne Luk Department of Computing Imperial College London akf99,wl @doc.ic.ac.uk Abstract Inductive logic programming is an

More information

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation CSE560 Class 10: 1 c P. Heeman, 2010 Integrity Constraints Overview Disjunctive & Negative Knowledge Resolution Rule Bottom-Up Proof by Refutation Top-Down CSE560 Class 10: 2 c P. Heeman, 2010 Integrity

More information

Inductive Programming

Inductive Programming Inductive Programming A Unifying Framework for Analysis and Evaluation of Inductive Programming Systems Hofmann, Kitzelmann, Schmid Cognitive Systems Group University of Bamberg AGI 2009 CogSys Group (Univ.

More information

NP and computational intractability. Kleinberg and Tardos, chapter 8

NP and computational intractability. Kleinberg and Tardos, chapter 8 NP and computational intractability Kleinberg and Tardos, chapter 8 1 Major Transition So far we have studied certain algorithmic patterns Greedy, Divide and conquer, Dynamic programming to develop efficient

More information

HANDBOOK OF LOGIC IN ARTIFICIAL INTELLIGENCE AND LOGIC PROGRAMMING

HANDBOOK OF LOGIC IN ARTIFICIAL INTELLIGENCE AND LOGIC PROGRAMMING HANDBOOK OF LOGIC IN ARTIFICIAL INTELLIGENCE AND LOGIC PROGRAMMING Volume 5 Logic Programming Edited by DOV M. GABBAY and C. J. HOGGER Imperial College of Science, Technology and Medicine London and J.

More information

Chapter 9: Constraint Logic Programming

Chapter 9: Constraint Logic Programming 9. Constraint Logic Programming 9-1 Deductive Databases and Logic Programming (Winter 2007/2008) Chapter 9: Constraint Logic Programming Introduction, Examples Basic Query Evaluation Finite Domain Constraint

More information

Prolog Programming. Lecture Module 8

Prolog Programming. Lecture Module 8 Prolog Programming Lecture Module 8 Prolog Language Prolog is unique in its ability to infer facts from the given facts and rules. In Prolog, an order of clauses in the program and goals in the body of

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2014 Set 9: Planning Classical Planning Systems ICS 271 Fall 2014 Planning environments Classical Planning: Outline: Planning Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning

More information

2SAT Andreas Klappenecker

2SAT Andreas Klappenecker 2SAT Andreas Klappenecker The Problem Can we make the following boolean formula true? ( x y) ( y z) (z y)! Terminology A boolean variable is a variable that can be assigned the values true (T) or false

More information

Automated Reasoning PROLOG and Automated Reasoning 13.4 Further Issues in Automated Reasoning 13.5 Epilogue and References 13.

Automated Reasoning PROLOG and Automated Reasoning 13.4 Further Issues in Automated Reasoning 13.5 Epilogue and References 13. 13 Automated Reasoning 13.0 Introduction to Weak Methods in Theorem Proving 13.1 The General Problem Solver and Difference Tables 13.2 Resolution Theorem Proving 13.3 PROLOG and Automated Reasoning 13.4

More information

Linear Time Unit Propagation, Horn-SAT and 2-SAT

Linear Time Unit Propagation, Horn-SAT and 2-SAT Notes on Satisfiability-Based Problem Solving Linear Time Unit Propagation, Horn-SAT and 2-SAT David Mitchell mitchell@cs.sfu.ca September 25, 2013 This is a preliminary draft of these notes. Please do

More information

Graph-Based Concept Learning

Graph-Based Concept Learning Graph-Based Concept Learning Jesus A. Gonzalez, Lawrence B. Holder, and Diane J. Cook Department of Computer Science and Engineering University of Texas at Arlington Box 19015, Arlington, TX 76019-0015

More information

Logic and its Applications

Logic and its Applications Logic and its Applications Edmund Burke and Eric Foxley PRENTICE HALL London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich Contents Preface xiii Propositional logic 1 1.1 Informal introduction

More information

Mode Directed Path Finding

Mode Directed Path Finding Mode Directed Path Finding Irene M. Ong 1, Inês de Castro Dutra 2, David Page 1, Vítor Santos Costa 2 1 Department of Biostatistics and Medical Informatics, University of Wisconsin Madison, WI 53706 USA

More information

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur

Module 6. Knowledge Representation and Logic (First Order Logic) Version 2 CSE IIT, Kharagpur Module 6 Knowledge Representation and Logic (First Order Logic) Lesson 15 Inference in FOL - I 6.2.8 Resolution We have introduced the inference rule Modus Ponens. Now we introduce another inference rule

More information

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture Homework 1 Due Date: Wednesday 11/26/07 - at the beginning of the lecture Problems marked with a [*] are a littlebit harder and count as extra credit. Note 1. For any of the given problems make sure that

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns Chapter 8 NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic

More information

Logic Programming and Resolution Lecture notes for INF3170/4171

Logic Programming and Resolution Lecture notes for INF3170/4171 Logic Programming and Resolution Lecture notes for INF3170/4171 Leif Harald Karlsen Autumn 2015 1 Introduction This note will explain the connection between logic and computer programming using Horn Clauses

More information

Summary of Course Coverage

Summary of Course Coverage CS-227, Discrete Structures I Spring 2006 Semester Summary of Course Coverage 1) Propositional Calculus a) Negation (logical NOT) b) Conjunction (logical AND) c) Disjunction (logical inclusive-or) d) Inequalities

More information

Markov Logic: Representation

Markov Logic: Representation Markov Logic: Representation Overview Statistical relational learning Markov logic Basic inference Basic learning Statistical Relational Learning Goals: Combine (subsets of) logic and probability into

More information

A GUI FOR DEFINING INDUCTIVE LOGIC PROGRAMMING TASKS FOR NOVICE USERS A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY PRIYANKANA BASAK

A GUI FOR DEFINING INDUCTIVE LOGIC PROGRAMMING TASKS FOR NOVICE USERS A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY PRIYANKANA BASAK A GUI FOR DEFINING INDUCTIVE LOGIC PROGRAMMING TASKS FOR NOVICE USERS A THESIS SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY PRIYANKANA BASAK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

More information

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013

Set 9: Planning Classical Planning Systems. ICS 271 Fall 2013 Set 9: Planning Classical Planning Systems ICS 271 Fall 2013 Outline: Planning Classical Planning: Situation calculus PDDL: Planning domain definition language STRIPS Planning Planning graphs Readings:

More information

Resolution (14A) Young W. Lim 6/14/14

Resolution (14A) Young W. Lim 6/14/14 Copyright (c) 2013-2014. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free

More information

arxiv: v2 [cs.db] 6 Nov 2017

arxiv: v2 [cs.db] 6 Nov 2017 Schema Independent Relational Learning arxiv:1508.03846v2 [cs.db] 6 Nov 2017 ABSTRACT Jose Picado Oregon State University picadolj@oregonstate.edu Alan Fern Oregon State University alan.fern@oregonstate.edu

More information

Local Two-Level And-Inverter Graph Minimization without Blowup

Local Two-Level And-Inverter Graph Minimization without Blowup Local Two-Level And-Inverter Graph Minimization without Blowup Robert Brummayer and Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria {robert.brummayer,

More information

Inductive Logic Programming (ILP)

Inductive Logic Programming (ILP) Inductive Logic Programming (ILP) Brad Morgan CS579 4-20-05 What is it? Inductive Logic programming is a machine learning technique which classifies data through the use of logic programs. ILP algorithms

More information

Concept Learning (2) Aims. Introduction. t Previously we looked at concept learning in an arbitrary conjunctive representation

Concept Learning (2) Aims. Introduction. t Previously we looked at concept learning in an arbitrary conjunctive representation Acknowledgements Concept Learning (2) 14s1: COMP9417 Machine Learning and Data Mining School of Computer Science and Engineering, University of New South Wales Material derived from slides for the book

More information

An Improvement on Sub-Herbrand Universe Computation

An Improvement on Sub-Herbrand Universe Computation 12 The Open Artificial Intelligence Journal 2007 1 12-18 An Improvement on Sub-Herbrand Universe Computation Lifeng He *1 Yuyan Chao 2 Kenji Suzuki 3 Zhenghao Shi 3 and Hidenori Itoh 4 1 Graduate School

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance.

! Greed. O(n log n) interval scheduling. ! Divide-and-conquer. O(n log n) FFT. ! Dynamic programming. O(n 2 ) edit distance. Algorithm Design Patterns and Anti-Patterns 8. NP and Computational Intractability Algorithm design patterns. Ex.! Greed. O(n log n) interval scheduling.! Divide-and-conquer. O(n log n) FFT.! Dynamic programming.

More information

Prolog. Logic Programming vs Prolog

Prolog. Logic Programming vs Prolog Language constructs Prolog Facts, rules, queries through examples Horn clauses Goal-oriented semantics Procedural semantics How computation is performed? Comparison to logic programming 1 Logic Programming

More information

BET: An ILP Workbench with a Generic ILP Engine

BET: An ILP Workbench with a Generic ILP Engine January 16, 2009 BET: An ILP Workbench with a Generic ILP Engine BET: An ILP Workbench with a Generic ILP Engine Kalgi Srinivasa Srihari Roll Number: 06329901 Under the Guidence of Prof. Ganesh Ramakrishnan

More information

Efficient Multi-relational Classification by Tuple ID Propagation

Efficient Multi-relational Classification by Tuple ID Propagation Efficient Multi-relational Classification by Tuple ID Propagation Xiaoxin Yin, Jiawei Han and Jiong Yang Department of Computer Science University of Illinois at Urbana-Champaign {xyin1, hanj, jioyang}@uiuc.edu

More information

Representing structural patterns: Reading Material: Chapter 3 of the textbook by Witten

Representing structural patterns: Reading Material: Chapter 3 of the textbook by Witten Representing structural patterns: Plain Classification rules Decision Tree Rules with exceptions Relational solution Tree for Numerical Prediction Instance-based presentation Reading Material: Chapter

More information

Functional Logic Programming. Kristjan Vedel

Functional Logic Programming. Kristjan Vedel Functional Logic Programming Kristjan Vedel Imperative vs Declarative Algorithm = Logic + Control Imperative How? Explicit Control Sequences of commands for the computer to execute Declarative What? Implicit

More information

GPU-Accelerated Hypothesis Cover Set Testing for Learning in Logic

GPU-Accelerated Hypothesis Cover Set Testing for Learning in Logic GPU-Accelerated Hypothesis Cover Set Testing for Learning in Logic Eyad Algahtani and Dimitar Kazakov University of York, Heslington, York YO10 5GH, UK, ea922@york.ac.uk, kazakov@cs.york.ac.uk, WWW home

More information

Chapter 10 Part 1: Reduction

Chapter 10 Part 1: Reduction //06 Polynomial-Time Reduction Suppose we could solve Y in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Chapter 0 Part : Reduction Reduction. Problem X

More information

The role of feature construction in inductive rule learning

The role of feature construction in inductive rule learning The role of feature construction in inductive rule learning Peter A. Flach 1 and Nada Lavrač 2 1 Department of Computer Science University of Bristol, United Kingdom 2 Department of Intelligent Systems

More information

Decision Procedures. An Algorithmic Point of View. Decision Procedures for Propositional Logic. D. Kroening O. Strichman.

Decision Procedures. An Algorithmic Point of View. Decision Procedures for Propositional Logic. D. Kroening O. Strichman. Decision Procedures An Algorithmic Point of View Decision Procedures for Propositional Logic D. Kroening O. Strichman ETH/Technion Version 1.0, 2007 Part I Decision Procedures for Propositional Logic Outline

More information

Artificial Intelligence 2005/06

Artificial Intelligence 2005/06 Planning: STRIPS 74.419 rtificial Intelligence 2005/06 Planning: STRIPS STRIPS (Nils J. Nilsson) actions are specified by preconditions and effects stated as restricted FOPL formulae planning is search

More information

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems

DATABASE THEORY. Lecture 11: Introduction to Datalog. TU Dresden, 12th June Markus Krötzsch Knowledge-Based Systems DATABASE THEORY Lecture 11: Introduction to Datalog Markus Krötzsch Knowledge-Based Systems TU Dresden, 12th June 2018 Announcement All lectures and the exercise on 19 June 2018 will be in room APB 1004

More information

Logically Scalable and Efficient Relational Learning

Logically Scalable and Efficient Relational Learning Noname manuscript No. (will be inserted by the editor) Logically Scalable and Efficient Relational Learning Jose Picado Arash Termehchy Alan Fern Parisa Ataei Received: date / Accepted: date Abstract Relational

More information

Background Knowledge. Examples. Structural Decomposition. Construct Simple Clauses. Construct Clauses. Induce Final Hypothesis.

Background Knowledge. Examples. Structural Decomposition. Construct Simple Clauses. Construct Clauses. Induce Final Hypothesis. Lime: A System for Learning Relations Eric McCreath ;? and Arun Sharma ;?? Department of Articial Intelligence, School of Computer Science and Engineering, The University of New South Wales, Sydney NSW

More information

Relational Knowledge Discovery in Databases Heverlee. fhendrik.blockeel,

Relational Knowledge Discovery in Databases Heverlee.   fhendrik.blockeel, Relational Knowledge Discovery in Databases Hendrik Blockeel and Luc De Raedt Katholieke Universiteit Leuven Department of Computer Science Celestijnenlaan 200A 3001 Heverlee e-mail: fhendrik.blockeel,

More information

Topic 1: Introduction to Knowledge- Based Systems (KBSs)

Topic 1: Introduction to Knowledge- Based Systems (KBSs) Topic 1: Introduction to Knowledge- Based Systems (KBSs) 1.5 Introduction to Logic Programming (Prolog) 32 Simple example: Algorithm for checking sorted list? We all know how to check if a list is sorted:

More information

On Generating Templates for Hypothesis in Inductive Logic Programming

On Generating Templates for Hypothesis in Inductive Logic Programming On Generating Templates for Hypothesis in Inductive Logic Programming Andrej Chovanec and Roman Barták Charles University in Prague, Faculty of Mathematics and Physics Malostranské nám. 25, 118 00 Praha

More information

Association Rule Learning

Association Rule Learning Association Rule Learning 16s1: COMP9417 Machine Learning and Data Mining School of Computer Science and Engineering, University of New South Wales March 15, 2016 COMP9417 ML & DM (CSE, UNSW) Association

More information

Learning a SAT Solver from Single-

Learning a SAT Solver from Single- Learning a SAT Solver from Single- Bit Supervision Daniel Selsman, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura and David L. Dill Presented By Aditya Sanghi Overview NeuroSAT Background:

More information

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

STABILITY AND PARADOX IN ALGORITHMIC LOGIC STABILITY AND PARADOX IN ALGORITHMIC LOGIC WAYNE AITKEN, JEFFREY A. BARRETT Abstract. Algorithmic logic is the logic of basic statements concerning algorithms and the algorithmic rules of deduction between

More information

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w CS446: Machine Learning Fall 2013 Problem Set 4 Handed Out: October 17, 2013 Due: October 31 th, 2013 Feel free to talk to other members of the class in doing the homework. I am more concerned that you

More information

Macro-operators in Multirelational Learning: a Search-Space Reduction Technique

Macro-operators in Multirelational Learning: a Search-Space Reduction Technique In Proceedings of ECML 02. LNAI. c Springer-Verlag. Macro-operators in Multirelational Learning: a Search-Space Reduction Technique Lourdes Peña Castillo 1 and Stefan Wrobel 23 1 Otto-von-Guericke-University

More information

Logic (or Declarative) Programming Foundations: Prolog. Overview [1]

Logic (or Declarative) Programming Foundations: Prolog. Overview [1] Logic (or Declarative) Programming Foundations: Prolog In Text: Chapter 12 Formal logic Logic programming Prolog Overview [1] N. Meng, S. Arthur 2 1 Logic Programming To express programs in a form of symbolic

More information

ILP for Mathematical Discovery

ILP for Mathematical Discovery ILP for Mathematical Discovery Simon Colton and Stephen Muggleton Department of Computing, Imperial College, London, UK sgc@doc.ic.ac.uk shm@doc.ic.ac.uk Abstract. We believe that AI programs written for

More information

Leaning to Parse Database Queries Using Inductive Logic Programming

Leaning to Parse Database Queries Using Inductive Logic Programming Leaning to Parse Database Queries Using Inductive Logic Programming John M. Zelle and Raymond J. Mooney Presented by Lena Dankin Plan Task definition General background: Prolog Shift Reduce Parsing CHILL

More information

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry.

Notes. Notes. Introduction. Notes. Propositional Functions. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry. Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Spring 2006 1 / 1 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.3 1.4 of Rosen cse235@cse.unl.edu Introduction

More information

for applying Inductive Logic Programming (ILP) to Rule Relaxation for the Generation of Metadata

for applying Inductive Logic Programming (ILP) to Rule Relaxation for the Generation of Metadata Applying Inductive Logic Programming and Rule Relaxation for the Generation of Metadata Andreas D. Lattner and Jan D. Gehrke TZI Center for Computing Technologies Universität Bremen, PO Box 330 0, 2833

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence CSC348 Unit 4: Reasoning, change and planning Syedur Rahman Lecturer, CSE Department North South University syedur.rahman@wolfson.oxon.org Artificial Intelligence: Lecture Notes

More information

Seminar decision procedures: Certification of SAT and unsat proofs

Seminar decision procedures: Certification of SAT and unsat proofs Seminar decision procedures: Certification of SAT and unsat proofs Wolfgang Nicka Technische Universität München June 14, 2016 Boolean satisfiability problem Term The boolean satisfiability problem (SAT)

More information