Explaining Inconsistent Code. Muhammad Numair Mansur

Size: px
Start display at page:

Download "Explaining Inconsistent Code. Muhammad Numair Mansur"

Transcription

1 Explaining Inconsistent Code Muhammad Numair Mansur

2 Introduction 50% of the time in debugging Fault localization. Becomes more tedious as the program size increase. Automatically explaining and localizing inconsistent code. 2

3 Code Inconsistency A code fragment is inconsistent if it is not a part of any normally terminating execution. Not necessarily always a bug! But sometimes inconsistent code results in an error. 3

4 Examples (Unreachability) Generated using Bixie 4

5 Examples (Unreachability) Generated using Bixie 5

6 Examples (conflicting assumptions) Generated using Bixie 6

7 Examples (conflicting assumptions) Generated using Bixie 7

8 Our Goal Automatically explain inconsistent code. 8

9 Our Goal Automatically explain inconsistent code. Pre Inconsistent program Automata Algorithm Error Invariant Automaton Post 9

10 Our Goal Automatically explain inconsistent code. Pre Inconsistent program Automata Algorithm Error Invariant Automaton Post 10

11 Finite automata A F.A is a 5 tuple: (Q, Σ, δ, q o,f) Q: A finite set of states. Σ: A finite set of input symbols called an alphabet. δ: A transition function ( δ: Q x Σ Q ). q : initial state. o F: A finite set of final states. 11

12 Finite automata Example: S 1 S 2 S 3 S 4 12

13 Finite automata Example: S 1 States S 2 S 3 S 4 13

14 Finite automata Example: S 1 States Transitions S 2 S 3 S 4 14

15 Finite automata input (A sequence from the input alphabet) F.A Output (accept or reject) Transitions through the states based on the input True, if ends in an accepting state 15

16 Finite automata Example: S 1 Σ = {a,b,c} Input: abca S 2 S 3 S 4 16

17 Finite automata Example: Σ = {a,b,c} Input: abca S 1 a S 2 S 3 S 4 17

18 Finite automata Example: Σ = {a,b,c} Input: abca S 1 a S 2 S 3 b S 4 18

19 Finite automata Example: Σ = {a,b,c} Input: abca S 1 a S 2 S c 3 b S 4 19

20 Finite automata Example: Σ = {a,b,c} Input: abca S 1 a S 2 S c 3 a b S 4 accept! 20

21 Program automata A simple and an abstract model of a program. 21

22 Program automata A simple and an abstract model of a program. Defined in terms of a finite automata. State (Q) = Program Location (Loc) Transition (δ) = Program Statement (δ p ) Alphabet(Σ) = A set of program statements Initial State (q 0 ) = Initial program Location ( ) Final State ( F ) = Final program Location ( ) 22

23 Program automata 23

24 Program automata assume( b ) means that the branch of if () is taken where b is true assume(!b ) means that the branch of if () is taken where b is not true 24

25 Program automata An assertion on the program state that x!= null 25

26 Program automata A run ρ is a finite sequence of locations and statements. l o st o l 1..st n-1 l n A path(ρ) st o st 1.. st n-1 is the path associated with a run. A run ρ is accepting if its final state is l e A word π * is a path if π = path(ρ) for some accepting run ρ. 26

27 Our Goal To automatically explain inconsistent code. Pre Inconsistent program Automata Algorithm Error Invariant Automaton Post 27

28 Algorithm Input: : precondition state formula : program automata : Postcondition state formula output: : error invariant automata. requires: is inconsistent subject to ensures: explains and.. 28

29 Algorithm Step 1: Translate the program automata into a single path of statements π. 29

30 Algorithm Step 1: Translate the program automata into a single path of statements π. 30

31 Algorithm Step 1: Translate the program automata into a single path of statements π. It can be composed of many atomic statements. 31

32 Algorithm Example: , This was the first step in getting the final result, an error invariant automata. 32

33 Error Invariant Automaton An abstraction of the program, that only mentions the statements and facts that are relevant for understanding the cause of the inconsistency. The irrelevant statements are first summarized as first order logical formulas and then eliminated. These formulas are called error invariants. An error invariant captures the reason of abnormal program termination. So, at a high level, an Error Invariant Automaton replaces code which does not contribute to the inconsistency with a suitably chosen invariant. Lets see this in practice on a fragment of code. 33

34 Error Invariant Automaton 1: public TaskDialog(Tast task) ~: : txtdescription.settask(task.getdescription()); ~: : if (notification) {..... } ~: : chbregular.setenabled(task == null); ~:.... } 34

35 Error Invariant Automaton 1: public TaskDialog(Tast task) ~: : txtdescription.settask(task.getdescription()); ~: : if (notification) {..... } ~: : chbregular.setenabled(task == null); ~:.... line 1-5 line 7-26 line 6 line 27 No Effect on inconsistency assert ( task!= null ) Arbitrary code No effect on task == null An assertion that task might be null } line 28 - end No Effect on inconsistency 35

36 Error Invariant Automaton 1: public TaskDialog(Tast task) ~: : txtdescription.settask(task.getdescription()); ~: : if (notification) {..... } ~: : chbregular.setenabled(task == null); ~:.... line 1-5 line 7-26 line 6 line 27 No Effect on inconsistency assert ( task!= null ) Arbitrary code No effect on task == null An assertion that task might be null } line 28 - end No Effect on inconsistency 36

37 Error Invariant Automaton 1: public TaskDialog(Tast task) ~: : txtdescription.settask(task.getdescription()); ~: : if (notification) {..... } ~: : chbregular.setenabled(task == null); ~:.... line 1-5 line 7-26 line 6 line 27 No Effect on inconsistency assert ( task!= null ) Arbitrary code No effect on task == null An assertion that task might be null } line 28 - end No Effect on inconsistency 37

38 Error Trace An error trace is a sequence of statements π = st0st1... stn, together with. describes the initial state and and is an assertion that is violated. That means, in an error trace Λ PF( π ) Λ is unsatisfiable. 38

39 Error Trace An error trace is a sequence of statements π = st0st1... stn, together with. describes the initial state and and is an assertion that is violated. That means, in an error trace Λ PF( π ) Λ is unsatisfiable. Example: Λ task null Λ task null Λ 39

40 Error Invariant An error invariant for a position [ logical formula such that. ] in an error trace is a first order The conjunction of the first order logical formulas for each statement implies I i. I i and the conjunction of the remaining formulas is unsatisfiable. 40

41 ErrInv( ) In the previous work, the authors introduced a function given an error trace, computes: which I0,sti1,I1,sti2... stik,ik Such that, sti1, sti2..stik is a subsequence of and Ij is an inductive invariant for the position ij and ij+1. 41

42 Inductive error invariant We say that an error invariant is inductive for position i < j if : 42

43 Inductive error invariant We say that an error invariant is inductive for position i < j if : 43

44 Inductive error invariant We say that an error invariant is inductive for position i < j if : is called an inductive error invariant. 44

45 Error Invariant Automaton An Error Invariant Automaton is an inconsistent program automaton with a mapping from locations of to state formulas, such that for all locations, is an error invariant for. 45

46 Algorithm Now, after applying step 1 we got a single path π A. Step 2: Apply ErrInv( π A ) ErrInv(π A ) = ErrInv( π ) = I 0 st(l i1 ) st(l ik )I k.

47 Algorithm Now, after applying step 1 we got a single path π A. I0 I1 I2 Step 2: Apply ErrInv( π A ) ErrInv(π A) = ErrInv( π ) I3 = I0st(li1) st(lik)ik. I4 I5 47

48 Algorithm Now, after applying step 1 we got a single path π A. I0 I1 I2 Step 2: Apply ErrInv( π A ) ErrInv(π A) = ErrInv( π ) I3 = I0st(li1) st(lik)ik. error invariants I4 I5 48

49 Algorithm Example: assume(task!=null) assume(task =null) 49

50 Algorithm Example: true assume(task!=null) assume(task!=null) ErrInv() task!= null assume(task =null) assume(task =null) false 50

51 Algorithm Step 3: The locations covered with an inductive error invariant can be collapsed into a single location. I 0 I 0 I 1 I 1 I 0 I 1 I 4 I 4 I 5 I 5 51

52 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 I 1 I 2 I 52

53 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 I 1 Apply the algo recursively to these nonatomic statements I 2 I 53

54 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 In case of this location I 1 I 2 Pre Post I 54

55 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 In case of the location with invariant I 2 I 1 I 2 Pre Post Inconsistent w.r.t pre and post I 55

56 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 In case of the location with invariant I 2 I 1 I2 I 56

57 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 pre In case of the location with invariant I 2 I 1 recursively I 2 post I 57

58 Algorithm Step 4: For each remaining non-atomic statement, apply the algorithm recursively to all these smaller automata. I 0 I 1 I I 2 I 58

59 Algorithm 1: public TaskDialog(Tast task) ~: : txtdescription.settask(task.getdescription()); ~: : if (notification) {..... } ~: : chbregular.setenabled(task == null); ~:.... } 59

60 Evaluations The approach was tested on 6 real world examples. For each of these examples, Error invariant automatas were generated using the technique introduced. All the generated error invariant automatas represented real world inconsistencies with no false alarms. Running time to prove inconsistency using unsat ranged from seconds in one of the experiments to seconds. 60

61 Evaluations Usability testing was also conducted on 11 programmers. Half of the test subjects were shown the full programs, while the other half were just shown the error invariant automata. All candidates took 1 hour and 6 minutes to identify the bug. For the full programs without error invariant automata : 51 minutes With error invariant automata : 17 minutes 61

62 Conclusion The experiments indicate that EIA provide useful visual assistance to spot inconsistencies. EIA can also be used for fault localization on a single trace and thus provide a general tool to assist programmers in debugging. 62

63 References Martin Schaf, Daniel Schawrtz, Thomas Wies Book Title: Joint meeting of the European Software Engineering conference and the Symposium on the Foundations of Software Engineering, ESEC/FSE 13, Saint Petersburg, Russian Federation, August18-26,2013 url: Title: Explaining Inconsistent Code, pages: Bixie - FInd inconsistencies in Java code. Jurgen Christ, Evren Ermis, Martin Schaf, Thomas Weis Book Title: Verification, Model Checking, and Abstract Interpretation,14th International Conference, VMCAI 2013, Rome, Italy, January 20-22, Proceedings url: Title: Flow-Sensitive Fault Localization, pages :

Automated Debugging with Error Invariants

Automated Debugging with Error Invariants Automated Debugging with Error Invariants Thomas Wies New York University joint work with Jürgen Christ, Evren Ermis (Freiburg University), Martin Schäf (SRI), Daniel Schwartz-Narbonne (NYU) Faulty Shell

More information

Explaining Inconsistent Code

Explaining Inconsistent Code Explaining Inconsistent Code Martin Schäf United Nations University, IIST P.O. Box 3058 Macau S.A.R schaef@iist.unu.edu Daniel Schwartz-Narbonne New York University 251 Mercer Street New York, NY 10012,

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ws-1617/spa/ Schedule of Lectures Jan 17/19: Interprocedural DFA

More information

Theory Bridge Exam Example Questions Version of June 6, 2008

Theory Bridge Exam Example Questions Version of June 6, 2008 Theory Bridge Exam Example Questions Version of June 6, 2008 This is a collection of sample theory bridge exam questions. This is just to get some idea of the format of the bridge exam and the level of

More information

Last lecture CMSC330. This lecture. Finite Automata: States. Finite Automata. Implementing Regular Expressions. Languages. Regular expressions

Last lecture CMSC330. This lecture. Finite Automata: States. Finite Automata. Implementing Regular Expressions. Languages. Regular expressions Last lecture CMSC330 Finite Automata Languages Sets of strings Operations on languages Regular expressions Constants Operators Precedence 1 2 Finite automata States Transitions Examples Types This lecture

More information

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Appears as Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999 A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Miguel Castro and Barbara Liskov

More information

CSC Advanced Object Oriented Programming, Spring Specification

CSC Advanced Object Oriented Programming, Spring Specification CSC 520 - Advanced Object Oriented Programming, Spring 2018 Specification Specification A specification is an unambiguous description of the way the components of the software system should be used and

More information

Monitoring Interfaces for Faults

Monitoring Interfaces for Faults Monitoring Interfaces for Faults Aleksandr Zaks RV 05 - Fifth Workshop on Runtime Verification Joint work with: Amir Pnueli, Lenore Zuck Motivation Motivation Consider two components interacting with each

More information

Verification Overview Testing Theory and Principles Testing in Practice. Verification. Miaoqing Huang University of Arkansas 1 / 80

Verification Overview Testing Theory and Principles Testing in Practice. Verification. Miaoqing Huang University of Arkansas 1 / 80 1 / 80 Verification Miaoqing Huang University of Arkansas Outline 1 Verification Overview 2 Testing Theory and Principles Theoretical Foundations of Testing Empirical Testing Principles 3 Testing in Practice

More information

4/6/2011. Model Checking. Encoding test specifications. Model Checking. Encoding test specifications. Model Checking CS 4271

4/6/2011. Model Checking. Encoding test specifications. Model Checking. Encoding test specifications. Model Checking CS 4271 Mel Checking LTL Property System Mel Mel Checking CS 4271 Mel Checking OR Abhik Roychoudhury http://www.comp.nus.edu.sg/~abhik Yes No, with Counter-example trace 2 Recap: Mel Checking for mel-based testing

More information

Chapter Seven: Regular Expressions. Formal Language, chapter 7, slide 1

Chapter Seven: Regular Expressions. Formal Language, chapter 7, slide 1 Chapter Seven: Regular Expressions Formal Language, chapter 7, slide The first time a young student sees the mathematical constant π, it looks like just one more school artifact: one more arbitrary symbol

More information

Chapter 2 & 3: Representations & Reasoning Systems (2.2)

Chapter 2 & 3: Representations & Reasoning Systems (2.2) Chapter 2 & 3: A Representation & Reasoning System & Using Definite Knowledge Representations & Reasoning Systems (RRS) (2.2) Simplifying Assumptions of the Initial RRS (2.3) Datalog (2.4) Semantics (2.5)

More information

Model Checking and Its Applications

Model Checking and Its Applications Model Checking and Its Applications Orna Grumberg Technion, Israel Verification and Deduction Mentoring Workshop July 13, 2018 1 Personal data Ph.d. in (non-automated) verification Postdoc in Model Checking

More information

[module 2.2] MODELING CONCURRENT PROGRAM EXECUTION

[module 2.2] MODELING CONCURRENT PROGRAM EXECUTION v1.0 20130407 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module 2.2] MODELING CONCURRENT PROGRAM EXECUTION 1 SUMMARY Making

More information

Spark verification features

Spark verification features Spark verification features Paul Jackson School of Informatics University of Edinburgh Formal Verification Spring 2018 Adding specification information to programs Verification concerns checking whether

More information

Proof Pearl: The Termination Analysis of Terminator

Proof Pearl: The Termination Analysis of Terminator Proof Pearl: The Termination Analysis of Terminator Joe Hurd Computing Laboratory Oxford University joe.hurd@comlab.ox.ac.uk Abstract. Terminator is a static analysis tool developed by Microsoft Research

More information

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1}

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1} CSE 5 Homework 2 Due: Monday October 6, 27 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in

More information

Formal Definition of Computation. Formal Definition of Computation p.1/28

Formal Definition of Computation. Formal Definition of Computation p.1/28 Formal Definition of Computation Formal Definition of Computation p.1/28 Computation model The model of computation considered so far is the work performed by a finite automaton Formal Definition of Computation

More information

R10 SET a) Construct a DFA that accepts an identifier of a C programming language. b) Differentiate between NFA and DFA?

R10 SET a) Construct a DFA that accepts an identifier of a C programming language. b) Differentiate between NFA and DFA? R1 SET - 1 1. a) Construct a DFA that accepts an identifier of a C programming language. b) Differentiate between NFA and DFA? 2. a) Design a DFA that accepts the language over = {, 1} of all strings that

More information

Formal Methods for Software Development

Formal Methods for Software Development Formal Methods for Software Development Model Checking with Temporal Logic Wolfgang Ahrendt 21st September 2018 FMSD: Model Checking with Temporal Logic /GU 180921 1 / 37 Model Checking Check whether a

More information

Leveraging DTrace for runtime verification

Leveraging DTrace for runtime verification Leveraging DTrace for runtime verification Carl Martin Rosenberg June 7th, 2016 Department of Informatics, University of Oslo Context: Runtime verification Desired properties System Every request gets

More information

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

I have read and understand all of the instructions below, and I will obey the Academic Honor Code. Midterm Exam CS 341-451: Foundations of Computer Science II Fall 2014, elearning section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand all

More information

Extended Finite-State Machine Induction using SAT-Solver

Extended Finite-State Machine Induction using SAT-Solver Extended Finite-State Machine Induction using SAT-Solver Vladimir Ulyantsev, Fedor Tsarev ulyantsev@rain.ifmo.ru, tsarev@rain.ifmo.ru St. Petersburg National Research University of IT, Mechanics and Optics

More information

Verifying Liveness Properties of ML Programs

Verifying Liveness Properties of ML Programs Verifying Liveness Properties of ML Programs M M Lester R P Neatherway C-H L Ong S J Ramsay Department of Computer Science, University of Oxford ACM SIGPLAN Workshop on ML, 2011 09 18 Gokigeny all! Motivation

More information

Verifying Temporal Properties via Dynamic Program Execution. Zhenhua Duan Xidian University, China

Verifying Temporal Properties via Dynamic Program Execution. Zhenhua Duan Xidian University, China Verifying Temporal Properties via Dynamic Program Execution Zhenhua Duan Xidian University, China Main Points Background & Motivation MSVL and Compiler PPTL Unified Program Verification Tool Demo Conclusion

More information

CT32 COMPUTER NETWORKS DEC 2015

CT32 COMPUTER NETWORKS DEC 2015 Q.2 a. Using the principle of mathematical induction, prove that (10 (2n-1) +1) is divisible by 11 for all n N (8) Let P(n): (10 (2n-1) +1) is divisible by 11 For n = 1, the given expression becomes (10

More information

Outline. Introduction. 2 Proof of Correctness. 3 Final Notes. Precondition P 1 : Inputs include

Outline. Introduction. 2 Proof of Correctness. 3 Final Notes. Precondition P 1 : Inputs include Outline Computer Science 331 Correctness of Algorithms Mike Jacobson Department of Computer Science University of Calgary Lectures #2-4 1 What is a? Applications 2 Recursive Algorithms 3 Final Notes Additional

More information

Basic Verification Strategy

Basic Verification Strategy ormal Verification Basic Verification Strategy compare behavior to intent System Model of system behavior intent Verifier results Intent Usually, originates with requirements, refined through design and

More information

Property-Directed Shape Analysis

Property-Directed Shape Analysis Property-Directed Shape Analysis S. Itzhaky 1, N. Bjørner 2, T. Reps 3,4, M. Sagiv 1, and A. Thakur 3 1 Tel Aviv University, Tel Aviv, Israel 2 Microsoft Research, USA 3 University of Wisconsin Madison,

More information

CS Lecture 2. The Front End. Lecture 2 Lexical Analysis

CS Lecture 2. The Front End. Lecture 2 Lexical Analysis CS 1622 Lecture 2 Lexical Analysis CS 1622 Lecture 2 1 Lecture 2 Review of last lecture and finish up overview The first compiler phase: lexical analysis Reading: Chapter 2 in text (by 1/18) CS 1622 Lecture

More information

CMPSCI 250: Introduction to Computation. Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014

CMPSCI 250: Introduction to Computation. Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014 CMPSCI 250: Introduction to Computation Lecture #1: Things, Sets and Strings David Mix Barrington 22 January 2014 Things, Sets, and Strings The Mathematical Method Administrative Stuff The Objects of Mathematics

More information

Reading Assignment. Symbolic Evaluation/Execution. Move from Dynamic Analysis to Static Analysis. Move from Dynamic Analysis to Static Analysis

Reading Assignment. Symbolic Evaluation/Execution. Move from Dynamic Analysis to Static Analysis. Move from Dynamic Analysis to Static Analysis Reading Assignment Symbolic Evaluation/Execution *R.W. Floyd, "Assigning Meaning to Programs, Symposium on Applied Mathematics, 1967, pp. 19-32 (Appeared as volume 19 of Mathematical Aspects of Computer

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2018 http://cseweb.ucsd.edu/classes/sp18/cse105-ab/ Today's learning goals Sipser Section 2.2 Define push-down automata informally and formally Trace the computation

More information

Regular Expression Constrained Sequence Alignment

Regular Expression Constrained Sequence Alignment Regular Expression Constrained Sequence Alignment By Abdullah N. Arslan Department of Computer science University of Vermont Presented by Tomer Heber & Raz Nissim otivation When comparing two proteins,

More information

Symbolic Execution and Proof of Properties

Symbolic Execution and Proof of Properties Chapter 7 Symbolic Execution and Proof of Properties Symbolic execution builds predicates that characterize the conditions under which execution paths can be taken and the effect of the execution on program

More information

Concolic Fault Abstraction

Concolic Fault Abstraction Concolic Fault Abstraction Chanseok Oh New York University Email: chanseok@cs.nyu.edu Martin Schäf SRI International Email: martin.schaef@sri.com Daniel Schwartz-Narbonne New York University Email: dsn@cs.nyu.edu

More information

Symbolic Evaluation/Execution

Symbolic Evaluation/Execution Symbolic Evaluation/Execution Reading Assignment *R.W. Floyd, "Assigning Meaning to Programs, Symposium on Applied Mathematics, 1967, pp. 19-32 (Appeared as volume 19 of Mathematical Aspects of Computer

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/22891 holds various files of this Leiden University dissertation Author: Gouw, Stijn de Title: Combining monitoring with run-time assertion checking Issue

More information

Monitoring Assumptions in Assume-Guarantee Contracts

Monitoring Assumptions in Assume-Guarantee Contracts University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 6-2016 Monitoring Assumptions in Assume-Guarantee Contracts Oleg Sokolsky University of

More information

A CRASH COURSE IN SEMANTICS

A CRASH COURSE IN SEMANTICS LAST TIME Recdef More induction NICTA Advanced Course Well founded orders Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 Well founded recursion Calculations: also/finally {P}... {Q}

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Relational Model, Relational Algebra, and SQL

Relational Model, Relational Algebra, and SQL Relational Model, Relational Algebra, and SQL August 29, 2007 1 Relational Model Data model. constraints. Set of conceptual tools for describing of data, data semantics, data relationships, and data integrity

More information

A short manual for the tool Accumulator

A short manual for the tool Accumulator A short manual for the tool Accumulator ZHAO Jianhua State Key Laboratory of Novel Software Technology Dept. of Computer Sci. and Tech. Nanjing University Nanjing, Jiangsu, P.R.China 210093 zhaojh@nju.edu.cn

More information

Static Analysis! Prof. Leon J. Osterweil! CS 520/620! Fall 2012! Characteristics of! System to be! built must! match required! characteristics!

Static Analysis! Prof. Leon J. Osterweil! CS 520/620! Fall 2012! Characteristics of! System to be! built must! match required! characteristics! Static Analysis! Prof. Leon J. Osterweil! CS 520/620! Fall 2012! Requirements Spec.! Design! Test Results must! match required behavior! Characteristics of! System to be! built must! match required! characteristics!

More information

Lectures 20, 21: Axiomatic Semantics

Lectures 20, 21: Axiomatic Semantics Lectures 20, 21: Axiomatic Semantics Polyvios Pratikakis Computer Science Department, University of Crete Type Systems and Static Analysis Based on slides by George Necula Pratikakis (CSD) Axiomatic Semantics

More information

Auto-Generating Test Sequences for Web Applications *

Auto-Generating Test Sequences for Web Applications * Auto-Generating Test Sequences for Web Applications * Hongwei Zeng and Huaikou Miao School of Computer Engineering and Science, Shanghai University, 200072, China zenghongwei@shu.edu.cn, hkmiao@shu.edu.cn

More information

DPLL(Γ+T): a new style of reasoning for program checking

DPLL(Γ+T): a new style of reasoning for program checking DPLL(Γ+T ): a new style of reasoning for program checking Dipartimento di Informatica Università degli Studi di Verona Verona, Italy June, 2011 Motivation: reasoning for program checking Program checking

More information

Main Goal. Language-independent program verification framework. Derive program properties from operational semantics

Main Goal. Language-independent program verification framework. Derive program properties from operational semantics Main Goal Language-independent program verification framework Derive program properties from operational semantics Questions: Is it possible? Is it practical? Answers: Sound and complete proof system,

More information

Overview of Timed Automata and UPPAAL

Overview of Timed Automata and UPPAAL Overview of Timed Automata and UPPAAL Table of Contents Timed Automata Introduction Example The Query Language UPPAAL Introduction Example Editor Simulator Verifier Conclusions 2 Introduction to Timed

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Chapter 2.1-2.7 p. 1/27 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Software Model Checking. Xiangyu Zhang

Software Model Checking. Xiangyu Zhang Software Model Checking Xiangyu Zhang Symbolic Software Model Checking CS510 S o f t w a r e E n g i n e e r i n g Symbolic analysis explicitly explores individual paths, encodes and resolves path conditions

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Turing machines Professor Daniel Leeds dleeds@fordham.edu JMH 332 Alan Turing (1912-1954) Father of Theoretical Computer Science Key figure in Artificial Intelligence Codebreaker

More information

ECS 120 Lesson 7 Regular Expressions, Pt. 1

ECS 120 Lesson 7 Regular Expressions, Pt. 1 ECS 120 Lesson 7 Regular Expressions, Pt. 1 Oliver Kreylos Friday, April 13th, 2001 1 Outline Thus far, we have been discussing one way to specify a (regular) language: Giving a machine that reads a word

More information

Softwaretechnik. Program verification. Albert-Ludwigs-Universität Freiburg. June 28, Softwaretechnik June 28, / 24

Softwaretechnik. Program verification. Albert-Ludwigs-Universität Freiburg. June 28, Softwaretechnik June 28, / 24 Softwaretechnik Program verification Albert-Ludwigs-Universität Freiburg June 28, 2012 Softwaretechnik June 28, 2012 1 / 24 Road Map Program verification Automatic program verification Programs with loops

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

T Reactive Systems: Kripke Structures and Automata

T Reactive Systems: Kripke Structures and Automata Tik-79.186 Reactive Systems 1 T-79.186 Reactive Systems: Kripke Structures and Automata Spring 2005, Lecture 3 January 31, 2005 Tik-79.186 Reactive Systems 2 Properties of systems invariants: the system

More information

Synthesis using Variable Elimination

Synthesis using Variable Elimination Synthesis using Variable Elimination Viktor Kuncak EPF Lausanne http://lara.epfl.ch/w/impro Implicit Programming at All Levels Opportunities for implicit programming in Development within an IDE InSynth

More information

Program Verification using Templates over Predicate Abstraction. Saurabh Srivastava and Sumit Gulwani

Program Verification using Templates over Predicate Abstraction. Saurabh Srivastava and Sumit Gulwani Program Verification using Templates over Predicate Abstraction Saurabh Srivastava and Sumit Gulwani ArrayInit(Array A, int n) i := 0; while (i < n) A[i] := 0; i := i + 1; Assert( j: 0 j

More information

1 Introduction. 3 Syntax

1 Introduction. 3 Syntax CS 6110 S18 Lecture 19 Typed λ-calculus 1 Introduction Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving techniques based on axiomatic semantics,

More information

Softwaretechnik. Program verification. Software Engineering Albert-Ludwigs-University Freiburg. June 30, 2011

Softwaretechnik. Program verification. Software Engineering Albert-Ludwigs-University Freiburg. June 30, 2011 Softwaretechnik Program verification Software Engineering Albert-Ludwigs-University Freiburg June 30, 2011 (Software Engineering) Softwaretechnik June 30, 2011 1 / 28 Road Map Program verification Automatic

More information

Using Build-Integrated Static Checking to Preserve Correctness Invariants

Using Build-Integrated Static Checking to Preserve Correctness Invariants Using Build-Integrated Static Checking to Preserve Correctness Invariants Hao Chen University of California, Davis Jonathan Shapiro Johns Hopkins University Motivation A key problem in creating secure

More information

Classifying Bugs with Interpolants

Classifying Bugs with Interpolants Classifying Bugs with Interpolants Andreas Podelski 1, Martin Schäf 2, and Thomas Wies 3 1 University of Freiburg 2 SRI International 3 New York University Abstract. We present an approach to the classification

More information

Model checking pushdown systems

Model checking pushdown systems Model checking pushdown systems R. Ramanujam Institute of Mathematical Sciences, Chennai jam@imsc.res.in Update Meeting, IIT-Guwahati, 4 July 2006 p. 1 Sources of unboundedness Data manipulation: integers,

More information

CITS5501 Software Testing and Quality Assurance Formal methods

CITS5501 Software Testing and Quality Assurance Formal methods CITS5501 Software Testing and Quality Assurance Formal methods Unit coordinator: Arran Stewart May 1, 2018 1 / 49 Sources Pressman, R., Software Engineering: A Practitioner s Approach, McGraw-Hill, 2005

More information

Lecture 5 - Axiomatic semantics

Lecture 5 - Axiomatic semantics Program Verification March 2014 Lecture 5 - Axiomatic semantics Lecturer: Noam Rinetzky Scribes by: Nir Hemed 1.1 Axiomatic semantics The development of the theory is contributed to Robert Floyd, C.A.R

More information

Automating Construction of Lexers

Automating Construction of Lexers Automating Construction of Lexers Regular Expression to Programs Not all regular expressions are simple. How can we write a lexer for (a*b aaa)? Tokenizing aaaab Vs aaaaaa Regular Expression Finite state

More information

Simplifying Loop Invariant Generation Using Splitter Predicates. Rahul Sharma Işil Dillig, Thomas Dillig, and Alex Aiken Stanford University

Simplifying Loop Invariant Generation Using Splitter Predicates. Rahul Sharma Işil Dillig, Thomas Dillig, and Alex Aiken Stanford University Simplifying Loop Invariant Generation Using Splitter Predicates Rahul Sharma Işil Dillig, Thomas Dillig, and Alex Aiken Stanford University Loops and Loop Invariants Loop Head x = 0; while( x

More information

CS5371 Theory of Computation. Lecture 8: Automata Theory VI (PDA, PDA = CFG)

CS5371 Theory of Computation. Lecture 8: Automata Theory VI (PDA, PDA = CFG) CS5371 Theory of Computation Lecture 8: Automata Theory VI (PDA, PDA = CFG) Objectives Introduce Pushdown Automaton (PDA) Show that PDA = CFG In terms of descriptive power Pushdown Automaton (PDA) Roughly

More information

Automata Theory for Reasoning about Actions

Automata Theory for Reasoning about Actions Automata Theory for Reasoning about Actions Eugenia Ternovskaia Department of Computer Science, University of Toronto Toronto, ON, Canada, M5S 3G4 eugenia@cs.toronto.edu Abstract In this paper, we show

More information

MOPBox: A Library Approach to Runtime Verification

MOPBox: A Library Approach to Runtime Verification MOPBox: A Library Approach to Runtime Verification (Tool Demonstration) Eric Bodden eric.bodden@cased.de Center for Advanced Security Research Darmstadt Software Technology Group Technische Universität

More information

Under-Approximation Refinement for Timed Automata

Under-Approximation Refinement for Timed Automata Under-Approximation Refinement for Timed Automata Bachelor s thesis Natural Science Faculty of the University of Basel Department of Mathematics and Computer Science Artificial Intelligence http://ai.cs.unibas.ch/

More information

Lecture 1 Contracts : Principles of Imperative Computation (Fall 2018) Frank Pfenning

Lecture 1 Contracts : Principles of Imperative Computation (Fall 2018) Frank Pfenning Lecture 1 Contracts 15-122: Principles of Imperative Computation (Fall 2018) Frank Pfenning In these notes we review contracts, which we use to collectively denote function contracts, loop invariants,

More information

Checking Program Properties with ESC/Java

Checking Program Properties with ESC/Java Checking Program Properties with ESC/Java 17-654/17-765 Analysis of Software Artifacts Jonathan Aldrich 1 ESC/Java A checker for Java programs Finds null pointers, array dereferences Checks Hoare logic

More information

Automatic Partial Loop Summarization in Dynamic Test Generation

Automatic Partial Loop Summarization in Dynamic Test Generation Automatic Partial Loop Summarization in Dynamic Test Generation Patrice Godefroid Microsoft Research Redmond, WA, USA pg@microsoft.com Daniel Luchaup University of Wisconsin Madison Madison, WI, USA luchaup@cs.wisc.edu

More information

Automatic Synthesis of a Voting Machine Design

Automatic Synthesis of a Voting Machine Design Automatic Synthesis of a Voting Machine Design Lili Dworkin Haverford College Sanjit Seshia University of California, Berkeley Wenchao Li University of California, Berkeley Haverford College Computer Science

More information

6.852 Lecture 17. Atomic objects Reading: Chapter 13 Next lecture: Atomic snapshot, read/write register

6.852 Lecture 17. Atomic objects Reading: Chapter 13 Next lecture: Atomic snapshot, read/write register 6.852 Lecture 17 Atomic objects Reading: Chapter 13 Next lecture: Atomic snapshot, read/write register Shared-memory model Single I/O automaton with locality restrictions doesn't exploit I/O automaton

More information

THEORY OF COMPUTATION

THEORY OF COMPUTATION THEORY OF COMPUTATION UNIT-1 INTRODUCTION Overview This chapter begins with an overview of those areas in the theory of computation that are basic foundation of learning TOC. This unit covers the introduction

More information

More on Verification and Model Checking

More on Verification and Model Checking More on Verification and Model Checking Wednesday Oct 07, 2015 Philipp Rümmer Uppsala University Philipp.Ruemmer@it.uu.se 1/60 Course fair! 2/60 Exam st October 21, 8:00 13:00 If you want to participate,

More information

Variants of Turing Machines

Variants of Turing Machines November 4, 2013 Robustness Robustness Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes Robustness Robustness of

More information

Introduction to Axiomatic Semantics

Introduction to Axiomatic Semantics Introduction to Axiomatic Semantics Meeting 10, CSCI 5535, Spring 2009 Announcements Homework 3 due tonight Homework 2 is graded 13 (mean), 14 (median), out of 21 total, but Graduate class: final project

More information

CS 432 Fall Mike Lam, Professor. Finite Automata Conversions and Lexing

CS 432 Fall Mike Lam, Professor. Finite Automata Conversions and Lexing CS 432 Fall 2017 Mike Lam, Professor Finite Automata Conversions and Lexing Finite Automata Key result: all of the following have the same expressive power (i.e., they all describe regular languages):

More information

Reading assignment: Reviews and Inspections

Reading assignment: Reviews and Inspections Foundations for SE Analysis Reading assignment: Reviews and Inspections M. E. Fagan, "Design and code inspections to reduce error in program development, IBM Systems Journal, 38 (2&3), 1999, pp. 258-287.

More information

Model-checking with the TimeLine formalism

Model-checking with the TimeLine formalism Model-checking with the TimeLine formalism Andrea Zaccara University of Antwerp Andrea.Zaccara@student.uantwerpen.be Abstract A logical model checker can be an effective tool for verification of software

More information

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University

COMP 763. Eugene Syriani. Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science. McGill University Eugene Syriani Ph.D. Student in the Modelling, Simulation and Design Lab School of Computer Science McGill University 1 OVERVIEW In the context In Theory: Timed Automata The language: Definitions and Semantics

More information

Fundamentals of Software Engineering

Fundamentals of Software Engineering Fundamentals of Software Engineering Reasoning about Programs - Selected Features Ina Schaefer Institute for Software Systems Engineering TU Braunschweig, Germany Slides by Wolfgang Ahrendt, Richard Bubel,

More information

Verifiable Hierarchical Protocols with Network Invariants on Parametric Systems

Verifiable Hierarchical Protocols with Network Invariants on Parametric Systems Verifiable Hierarchical Protocols with Network Invariants on Parametric Systems Opeoluwa Matthews, Jesse Bingham, Daniel Sorin http://people.duke.edu/~om26/ FMCAD 2016 - Mountain View, CA Problem Statement

More information

Summaries for While Programs with Recursion

Summaries for While Programs with Recursion I N F O R M A T I K Summaries for While Programs with Recursion Andreas Podelski Ina Schaefer Silke Wagner MPI I 2004 1 007 December 2004 FORSCHUNGSBERICHT RESEARCH REPORT M A X - P L A N C K - I N S T

More information

Improving Test Suites via Operational Abstraction

Improving Test Suites via Operational Abstraction Improving Test Suites via Operational Abstraction Michael Ernst MIT Lab for Computer Science http://pag.lcs.mit.edu/~mernst/ Joint work with Michael Harder, Jeff Mellen, and Benjamin Morse Michael Ernst,

More information

PCP and Hardness of Approximation

PCP and Hardness of Approximation PCP and Hardness of Approximation January 30, 2009 Our goal herein is to define and prove basic concepts regarding hardness of approximation. We will state but obviously not prove a PCP theorem as a starting

More information

Conflict-driven ASP Solving with External Source Access

Conflict-driven ASP Solving with External Source Access Conflict-driven ASP Solving with External Source Access Thomas Eiter, Michael Fink, Thomas Krennwallner, Christoph Redl redl@krtuwienacat September 05, 2012 Redl C (TU Vienna) HEX-Programs September 05,

More information

Th(N, +) is decidable

Th(N, +) is decidable Theorem 6.12 Th(N, +) is decidable Presented by: Brian Lee Two Domains 1. We can give an algorithm to decide truth 2. A problem is undecidable First Order Logic Also known as First order predicate calculus

More information

Range Restriction for General Formulas

Range Restriction for General Formulas Range Restriction for General Formulas 1 Range Restriction for General Formulas Stefan Brass Martin-Luther-Universität Halle-Wittenberg Germany Range Restriction for General Formulas 2 Motivation Deductive

More information

Page 1. Reading assignment: Reviews and Inspections. Foundations for SE Analysis. Ideally want general models. Formal models

Page 1. Reading assignment: Reviews and Inspections. Foundations for SE Analysis. Ideally want general models. Formal models Reading assignment: Reviews and Inspections Foundations for SE Analysis M. E. Fagan, "Design and code inspections to reduce error in program development, IBM Systems Journal, 38 (2&3), 999, pp. 258-28.

More information

Timo Latvala. January 28, 2004

Timo Latvala. January 28, 2004 Reactive Systems: Kripke Structures and Automata Timo Latvala January 28, 2004 Reactive Systems: Kripke Structures and Automata 3-1 Properties of systems invariants: the system never reaches a bad state

More information

CS402 - Theory of Automata Glossary By

CS402 - Theory of Automata Glossary By CS402 - Theory of Automata Glossary By Acyclic Graph : A directed graph is said to be acyclic if it contains no cycles. Algorithm : A detailed and unambiguous sequence of instructions that describes how

More information

Program Correctness and Efficiency. Chapter 2

Program Correctness and Efficiency. Chapter 2 Program Correctness and Efficiency Chapter 2 Chapter Objectives To understand the differences between the three categories of program errors To understand the effect of an uncaught exception and why you

More information

Reasoning about programs

Reasoning about programs Reasoning about programs Last time Coming up This Thursday, Nov 30: 4 th in-class exercise sign up for group on moodle bring laptop to class Final projects: final project presentations: Tue Dec 12, in

More information

Handling Loops in Bounded Model Checking of C Programs via k-induction

Handling Loops in Bounded Model Checking of C Programs via k-induction Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Handling Loops in Bounded Model Checking of C Programs via k-induction Mikhail Y. R. Gadelha, Hussama I. Ismail, and

More information

lec3:nondeterministic finite state automata

lec3:nondeterministic finite state automata lec3:nondeterministic finite state automata 1 1.introduction Nondeterminism is a useful concept that has great impact on the theory of computation. When the machine is in a given state and reads the next

More information

Last time. Reasoning about programs. Coming up. Project Final Presentations. This Thursday, Nov 30: 4 th in-class exercise

Last time. Reasoning about programs. Coming up. Project Final Presentations. This Thursday, Nov 30: 4 th in-class exercise Last time Reasoning about programs Coming up This Thursday, Nov 30: 4 th in-class exercise sign up for group on moodle bring laptop to class Final projects: final project presentations: Tue Dec 12, in

More information