Data Compression Techniques

Size: px
Start display at page:

Download "Data Compression Techniques"

Transcription

1 Data Compression Techniques Part 3: Compressed Data Structures Lecture 11: Compressed Graphs and Trees Juha Kärkkäinen / 13

2 Compressed Graphs We will next describe a simple representation for graphs. Let G = (V, E) be a directed graph, where V = [0..n) is the set of vertices and and E V V, E = m, is the set of edges. We will use adjency lists to represent the graph. For each v V, let S v = (w V : (v, w) E) be the adjacency list for v. Let S[0..m) = S 0 S 1... S n 1 be the concatenation of the adjacency lists. Let L[0..n) be the sizes of the adjacency lists, i.e., L[v] = S v. Now each e [0..m) represents an edge (u, v): u = target(e) = access S (e) v = source(e) = search L (e) The edges incident to a node v can be listed as follows: out-edges(v) = [sum L (v), sum L (v + 1)) in-edges(v) = {select S (v, i) i [0..rank S (v, m))} 2 / 13

3 Thus the graph G is represented by: A string S[0..m) over the alphabet V = [0..n) with support for operations access, rank and select. An array L[0..n) of non-negative integers summing up to m with support for prefix sum operations sum and search. Example S = bcd c de d L = b a d c e Additional attributes such as weights can be associated to nodes using an array A[0..n) and to edges using an array B[0..m). 3 / 13

4 Let us analyze the graph representation. In uncompressed form, the string S needs m log n + o(m log n) + O(n log m) bits and the partial sum data structure needs m + n + o(m + n) bits. This is close to the size of standard adjacency lists implemented as arrays. Both S and L can be compressed, but the effectiveness of compression depends on the type of graph. For example, if node degrees vary a lot, compression may be possible. Using a wavelet tree, all graph traversal operations can be performed in O(log n) time (and some even faster). However, the time can be improved to O(log log n) using alternative data structures such as GMR and alphabet partitioning. A standard adjacency list representation supports forward traversal in constant time per step. However, backward traversal would require duplicating the data structure. The compact graph representation supports bidirectional traversal without duplication. This is a representation for general graphs. There are more efficient representations for special types of graphs such as planar graphs, and as we will see next, trees. 4 / 13

5 Balanced Parentheses Let B[0..2n) be a bitvector with n 1-bits and n 0-bits. Define excess B (i) = rank-1 B (i) rank-0 B (i) B is a balanced parentheses (BP) sequence if excess B (i) 0 for all i [0..2n]. Then each 1-bit can be interpreted as an opening parenthesis ( and each 0-bit as a closing parenthesis ). A rooted tree of n nodes can be represented as a BP sequence of 2n bits: A leaf u is represented by BP(u) = 10. An internal node v with children u 1, u 2,..., u k is represented by BP(v) = 1BP(u 1 )BP(u 2 )... BP(u k )0. Example ( ( ( ) ) ( ( ) ( ) ( ) ) ) excess ( ( () ) ( () () () ) ) 5 / 13

6 The interesting operations on BP sequences include finding the matching parenthesis and the nearest enclosing pair of parentheses. For any i, j [0..n) such that B[i] = 1 and B[j] = 0, find-close B (i) = min{j [i + 1..n) excess B (j + 1) = excess B (i)} find-open B (j) = max{i [0..j) excess B (i) = excess B (j + 1)} enclose B (i) = max{k [0..i) excess B (k) < excess B (i)} The operations can be supported in constant time using o(n) bits of space in addition to the bit vector. We omit the details but the basic techniques are similar to those used for rank and select. Rank, select and access on B are some times useful operations too. 6 / 13

7 Given a BP sequence representing a tree, a node v is represented by the position of the corresponding opening parenthesis, i.e., by the starting position of BP(v). Basic navigation operations can be implemented as follows. parent(v) = enclose B (v) first-child(v) = v + 1 next-sibling(v) = find-close B (v) + 1 (Assumes v is not a root.) In the last two operations, if the node does not exists, the return value is a position of a closing parenthesis rather than an opening parenthesis. Here are some other interesting tree operations. depth(v) = excess B (v) = 2 rank-1 B (v) v is-leaf(v) = true if access B (v + 1) = 0 is-ancestor(u, v) = true if u v < close B (u) preorder-rank(v) = rank-1 B (v) preorder-select(v) = select-1 B (v) 7 / 13

8 There are two other notable representations of rooted trees as bitvectors, DFUDS (Depth-First Unary Degree Sequence) and LOUDS (Level-Order Unary Degree Sequence). In both, a node is represented by the unary encoding of its degree. That is, a node with c children is represented by 1 c 0. Thus the length of the bitvector is 2n 1. The DFUDS representation is a concatenation of the node bitvectors in preorder (depth-first order). DFUDS supports certain operations more efficiently than BP. For example, counting the number of children of a node requires iterating trough all the children in BP but takes only constant time in DFUDS. The LOUDS representation is a concatenation of the node bitvectors in breadth-first order. It is simpler and faster than BP or DFUDS because it needs only rank and select on the bitvector. On the other hand, LOUDS does not support operations such as is-ancestor efficiently. The 2n + o(n) bits of these data structures is essentially optimal, since there are Θ(4 n /n 3/2 ) rooted trees of n nodes. 8 / 13

9 Range Minimum Queries Given an array A[0..n), a range minimum query (RMQ) asks for the smallest value in given range: For any 0 i < j n, rmq A (i, j) = min{k [i..j) A[k] A[h] for all h [i..j)} The query returns the position rather than the value. We can then obviously access the value too if needed. In case of multiple equal minima, the first one is returned. We can then find other minima with additional queries: k 1 = rmq A (i, j), k 2 = rmq A (k 1 + 1, j), k 3 = rmq A (k 2 + 1, j),... We will next describe a systematic data structure of 2n + o(n) bits that can answer RMQs in constant time. 9 / 13

10 The key to the compact RMQ data structure is that all necessary information can be encoded by a Cartesian tree. The Cartesian tree of an array A[0..n) is a rooted binary tree with n nodes representing the n positions in A. The root is represents k = rmq A (0, n). The left subtree of the root is the Cartesian tree of A[0..k) and the right subtree is the Cartesian tree of A[k + 1..n). There is no subtree for an empty range. Any Cartesian tree can be encoded with 2n bits using the balanced parentheses representation. Example Cartesian tree of A 1 and A i A 1 [i] A 2 [i] c b b a c c c a / 13

11 The first component of the data structure can answer any RMQ for a range that is completely inside a single block. Divide A into blocks of size b = (log n)/4, and encode the Cartesian tree of each block using 2b bits, requiring 2n bits in total. Build a lookup table to answer any RMQ for any such encoding. The lookup table fits in O( n log 2 n log log n) = o(n) bits. The second component can answer any RMQ for a range consisting of full blocks that is completely inside a single superblock. Let A be the sequence of length n/b consisting of the block minima. Divide A into superblocks of size b, and encode each superblock Cartesian tree using 2b bits as above. The superblock encodings need 2n/b = O(n/(log n)) = o(n) bits. The superblock encoding identifies the block with the minimum and then we can use the block encoding the find the position. The third component is a similar data structure for hyperblocks consisting of b superblocks. It fits in 2n/b 2 = O(n/(log n) 2 ) = o(n) bits. 11 / 13

12 The final component can answer any RMQ for a range consisting of full hyperblocks. Let A be the sequence of length n/b 3 consisting of the hyperblock minima. Store the answer to every RMQ on A such that the length of the range is a power of two. These minima need n/b 3 log n log n = O(n/(log n)) = o(n) bits. Any range of A can be covered by two (possibly overlapping) ranges of length power of two, and the query result is the minimum of the two covering range minima. Any range on the original array A can split into at most seven ranges whose minima can be computed by the above data structures. The final answer is the minimum of those minima. The data structure needs access to the array A for computing the minimum of the minima. Remarkably, there are a bit more complicated 2n + o(n) bit data structures that can answer RMQs in constant time without an access to A. 12 / 13

13 Summary of Compressed Data Structures We have seen how data structures with nontrivial functionality can be implemented in small additional space even when the primary data is in compressed form. We have seen how complex data structures can be built using a toolbox of basic components and techniques such as bitvectors with rank and select. This is not unlike traditional data structures but the toolbox is different. These data structures are practical: they are used in real world applications in bioinformatics and elsewhere. There are also software libraries such as SDSL (Succinct Data Structure Library). All the data structures we have seen are static: they do not support operations that modify the data. There are dynamic versions of many of the data structures, though dynamicity often comes at a cost in time and/or space. There is a new book: Gonzalo Navarro: Compact Data Structures A Practical Approach. Cambridge University Press, / 13

Advanced Data Structures - Lecture 10

Advanced Data Structures - Lecture 10 Advanced Data Structures - Lecture 10 Mihai Herda 1.01.01 1 Succinct Data Structures We now look at the problem of representing data structures very space efficiently. A data structure is called succinct

More information

Text Indexing: Lecture 8

Text Indexing: Lecture 8 Simon Gog gog@kit.edu - Simon Gog: KIT The Research University in the Helmholtz Association www.kit.edu The LCP-Interval Tree Definition of an LCP-interval []) An interval [i, j], where i n is called LCP-interval

More information

Suffix links are stored for compact trie nodes only, but we can define and compute them for any position represented by a pair (u, d):

Suffix links are stored for compact trie nodes only, but we can define and compute them for any position represented by a pair (u, d): Suffix links are the same as Aho Corasick failure links but Lemma 4.4 ensures that depth(slink(u)) = depth(u) 1. This is not the case for an arbitrary trie or a compact trie. Suffix links are stored for

More information

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Chapter 7 Trees 7.1 Introduction A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Tree Terminology Parent Ancestor Child Descendant Siblings

More information

Ultra-succinct Representation of Ordered Trees

Ultra-succinct Representation of Ordered Trees Ultra-succinct Representation of Ordered Trees Jesper Jansson Kunihiko Sadakane Wing-Kin Sung April 8, 2006 Abstract There exist two well-known succinct representations of ordered trees: BP (balanced parenthesis)

More information

Friday, March 30. Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there.

Friday, March 30. Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there. Friday, March 30 Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there. Postorder traversal (recursive definition) If T consists

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

Advanced Set Representation Methods

Advanced Set Representation Methods Advanced Set Representation Methods AVL trees. 2-3(-4) Trees. Union-Find Set ADT DSA - lecture 4 - T.U.Cluj-Napoca - M. Joldos 1 Advanced Set Representation. AVL Trees Problem with BSTs: worst case operation

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

Combined Data Structure for Previous- and Next-Smaller-Values

Combined Data Structure for Previous- and Next-Smaller-Values Combined Data Structure for Previous- and Next-Smaller-Values Johannes Fischer Karlsruhe Institute of Technology, Institut für Theoretische Informatik, 76131 Karlsruhe, Germany Abstract Let A be a static

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

58093 String Processing Algorithms. Lectures, Autumn 2013, period II

58093 String Processing Algorithms. Lectures, Autumn 2013, period II 58093 String Processing Algorithms Lectures, Autumn 2013, period II Juha Kärkkäinen 1 Contents 0. Introduction 1. Sets of strings Search trees, string sorting, binary search 2. Exact string matching Finding

More information

On Succinct Representations of Binary Trees

On Succinct Representations of Binary Trees Math. in comp. sc. 99 (9999), 1 11 DOI 10.1007/s11786-003-0000 c 2015 Birkhäuser Verlag Basel/Switzerland Mathematics in Computer Science On Succinct Representations of Binary Trees Pooya Davoodi, Rajeev

More information

Lowest Common Ancestor(LCA)

Lowest Common Ancestor(LCA) Lowest Common Ancestor(LCA) Fayssal El Moufatich Technische Universität München St. Petersburg JASS 2008 1 Introduction LCA problem is one of the most fundamental algorithmic problems on trees. It is concerned

More information

Data Structures and Algorithms for Engineers

Data Structures and Algorithms for Engineers 04-630 Data Structures and Algorithms for Engineers David Vernon Carnegie Mellon University Africa vernon@cmu.edu www.vernon.eu Data Structures and Algorithms for Engineers 1 Carnegie Mellon University

More information

Predecessor. Predecessor Problem van Emde Boas Tries. Philip Bille

Predecessor. Predecessor Problem van Emde Boas Tries. Philip Bille Predecessor Predecessor Problem van Emde Boas Tries Philip Bille Predecessor Predecessor Problem van Emde Boas Tries Predecessors Predecessor problem. Maintain a set S U = {,..., u-} supporting predecessor(x):

More information

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25 Multi-way Search Trees (Multi-way Search Trees) Data Structures and Programming Spring 2017 1 / 25 Multi-way Search Trees Each internal node of a multi-way search tree T: has at least two children contains

More information

Predecessor. Predecessor. Predecessors. Predecessors. Predecessor Problem van Emde Boas Tries. Predecessor Problem van Emde Boas Tries.

Predecessor. Predecessor. Predecessors. Predecessors. Predecessor Problem van Emde Boas Tries. Predecessor Problem van Emde Boas Tries. Philip Bille s problem. Maintain a set S U = {,..., u-} supporting predecessor(x): return the largest element in S that is x. sucessor(x): return the smallest element in S that is x. insert(x): set S =

More information

4. Suffix Trees and Arrays

4. Suffix Trees and Arrays 4. Suffix Trees and Arrays Let T = T [0..n) be the text. For i [0..n], let T i denote the suffix T [i..n). Furthermore, for any subset C [0..n], we write T C = {T i i C}. In particular, T [0..n] is the

More information

Practical Approaches to Reduce the Space Requirement of Lempel-Ziv-Based Compressed Text Indices

Practical Approaches to Reduce the Space Requirement of Lempel-Ziv-Based Compressed Text Indices Practical Approaches to Reduce the Space Requirement of Lempel-Ziv-Based Compressed Text Indices DIEGO ARROYUELO University of Chile and GONZALO NAVARRO University of Chile Given a text T[1..u] over an

More information

Lecture L16 April 19, 2012

Lecture L16 April 19, 2012 6.851: Advanced Data Structures Spring 2012 Prof. Erik Demaine Lecture L16 April 19, 2012 1 Overview In this lecture, we consider the string matching problem - finding some or all places in a text where

More information

PAPER Constructing the Suffix Tree of a Tree with a Large Alphabet

PAPER Constructing the Suffix Tree of a Tree with a Large Alphabet IEICE TRANS. FUNDAMENTALS, VOL.E8??, NO. JANUARY 999 PAPER Constructing the Suffix Tree of a Tree with a Large Alphabet Tetsuo SHIBUYA, SUMMARY The problem of constructing the suffix tree of a tree is

More information

Fully-Functional Succinct Trees

Fully-Functional Succinct Trees Fully-Functional Succinct Trees Kunihiko Sadakane Gonzalo Navarro Abstract We propose new succinct representations of ordinal trees, which have been studied extensively. It is known that any n-node static

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer)

COSC 2007 Data Structures II Final Exam. Part 1: multiple choice (1 mark each, total 30 marks, circle the correct answer) COSC 2007 Data Structures II Final Exam Thursday, April 13 th, 2006 This is a closed book and closed notes exam. There are total 3 parts. Please answer the questions in the provided space and use back

More information

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology Trees : Part Section. () (2) Preorder, Postorder and Levelorder Traversals Definition: A tree is a connected graph with no cycles Consequences: Between any two vertices, there is exactly one unique path

More information

On Wavelet Tree Construction

On Wavelet Tree Construction On Wavelet Tree Construction Lehrstuhl für Informatik 2, Universität Würzburg, Germany CPM 2011 On Wavelet Tree Construction (1) Table of contents Definitions General Balanced wavelet tree Huffman shaped

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

Course Review for Finals. Cpt S 223 Fall 2008

Course Review for Finals. Cpt S 223 Fall 2008 Course Review for Finals Cpt S 223 Fall 2008 1 Course Overview Introduction to advanced data structures Algorithmic asymptotic analysis Programming data structures Program design based on performance i.e.,

More information

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false.

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false. Name: Class: Date: CSCI-401 Examlet #5 True/False Indicate whether the sentence or statement is true or false. 1. The root node of the standard binary tree can be drawn anywhere in the tree diagram. 2.

More information

Greedy Approach: Intro

Greedy Approach: Intro Greedy Approach: Intro Applies to optimization problems only Problem solving consists of a series of actions/steps Each action must be 1. Feasible 2. Locally optimal 3. Irrevocable Motivation: If always

More information

4. Suffix Trees and Arrays

4. Suffix Trees and Arrays 4. Suffix Trees and Arrays Let T = T [0..n) be the text. For i [0..n], let T i denote the suffix T [i..n). Furthermore, for any subset C [0..n], we write T C = {T i i C}. In particular, T [0..n] is the

More information

CS301 - Data Structures Glossary By

CS301 - Data Structures Glossary By CS301 - Data Structures Glossary By Abstract Data Type : A set of data values and associated operations that are precisely specified independent of any particular implementation. Also known as ADT Algorithm

More information

EE 368. Weeks 5 (Notes)

EE 368. Weeks 5 (Notes) EE 368 Weeks 5 (Notes) 1 Chapter 5: Trees Skip pages 273-281, Section 5.6 - If A is the root of a tree and B is the root of a subtree of that tree, then A is B s parent (or father or mother) and B is A

More information

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees Chapter 11 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Introduction to Trees Applications

More information

Graphs: basic concepts and algorithms

Graphs: basic concepts and algorithms : basic concepts and algorithms Topics covered by this lecture: - Reminder Trees Trees (in-order,post-order,pre-order) s (BFS, DFS) Denitions: Reminder Directed graph (digraph): G = (V, E), V - vertex

More information

arxiv: v2 [cs.ds] 23 Mar 2016

arxiv: v2 [cs.ds] 23 Mar 2016 Simple and Efficient Fully-Functional Succinct Trees Joshimar Cordova and Gonzalo Navarro Department of Computer Science, University of Chile {jcordova gnavarro}@dcc.uchile.cl arxiv:1601.06939v2 [cs.ds]

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

Improved Range Minimum Queries

Improved Range Minimum Queries Improved Range Minimum Queries Héctor Ferrada, Gonzalo Navarro Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Santiago, Chile Abstract Fischer and Heun

More information

Succinct Dynamic Cardinal Trees

Succinct Dynamic Cardinal Trees Noname manuscript No. (will be inserted by the editor) Succinct Dynamic Cardinal Trees Diego Arroyuelo Pooya Davoodi Srinivasa Rao Satti the date of receipt and acceptance should be inserted later Abstract

More information

Draw a diagram of an empty circular queue and describe it to the reader.

Draw a diagram of an empty circular queue and describe it to the reader. 1020_1030_testquestions.text Wed Sep 10 10:40:46 2014 1 1983/84 COSC1020/30 Tests >>> The following was given to students. >>> Students can have a good idea of test questions by examining and trying the

More information

Chapter 4 Trees. Theorem A graph G has a spanning tree if and only if G is connected.

Chapter 4 Trees. Theorem A graph G has a spanning tree if and only if G is connected. Chapter 4 Trees 4-1 Trees and Spanning Trees Trees, T: A simple, cycle-free, loop-free graph satisfies: If v and w are vertices in T, there is a unique simple path from v to w. Eg. Trees. Spanning trees:

More information

Chapter Summary. Introduction to Trees Applications of Trees Tree Traversal Spanning Trees Minimum Spanning Trees

Chapter Summary. Introduction to Trees Applications of Trees Tree Traversal Spanning Trees Minimum Spanning Trees Trees Chapter 11 Chapter Summary Introduction to Trees Applications of Trees Tree Traversal Spanning Trees Minimum Spanning Trees Introduction to Trees Section 11.1 Section Summary Introduction to Trees

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

1. Meshes. D7013E Lecture 14

1. Meshes. D7013E Lecture 14 D7013E Lecture 14 Quadtrees Mesh Generation 1. Meshes Input: Components in the form of disjoint polygonal objects Integer coordinates, 0, 45, 90, or 135 angles Output: A triangular mesh Conforming: A triangle

More information

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs

Lecture 5. Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Lecture 5 Treaps Find, insert, delete, split, and join in treaps Randomized search trees Randomized search tree time costs Reading: Randomized Search Trees by Aragon & Seidel, Algorithmica 1996, http://sims.berkeley.edu/~aragon/pubs/rst96.pdf;

More information

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler Transform

Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler Transform Faster Average Case Low Memory Semi-External Construction of the Burrows-Wheeler German Tischler The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus Hinxton, Cambridge, CB10 1SA, United Kingdom

More information

Simple and Efficient Fully-Functional Succinct Trees

Simple and Efficient Fully-Functional Succinct Trees Simple and Efficient Fully-Functional Succinct Trees Joshimar Cordova, Gonzalo Navarro Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile Abstract The

More information

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices.

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices. Trees Trees form the most widely used subclasses of graphs. In CS, we make extensive use of trees. Trees are useful in organizing and relating data in databases, file systems and other applications. Formal

More information

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Lecture 7 February 26, 2010

Lecture 7 February 26, 2010 6.85: Advanced Data Structures Spring Prof. Andre Schulz Lecture 7 February 6, Scribe: Mark Chen Overview In this lecture, we consider the string matching problem - finding all places in a text where some

More information

Optimal Succinctness for Range Minimum Queries

Optimal Succinctness for Range Minimum Queries Optimal Succinctness for Range Minimum Queries Johannes Fischer Universität Tübingen, Center for Bioinformatics (ZBIT), Sand 14, D-72076 Tübingen fischer@informatik.uni-tuebingen.de Abstract. For a static

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Optimal Search Trees; Tries Ulf Leser Content of this Lecture Optimal Search Trees Definition Construction Analysis Searching Strings: Tries Ulf Leser: Algorithms and Data

More information

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers?

1) What is the primary purpose of template functions? 2) Suppose bag is a template class, what is the syntax for declaring a bag b of integers? Review for Final (Chapter 6 13, 15) 6. Template functions & classes 1) What is the primary purpose of template functions? A. To allow a single function to be used with varying types of arguments B. To

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

Lecture 18 April 12, 2005

Lecture 18 April 12, 2005 6.897: Advanced Data Structures Spring 5 Prof. Erik Demaine Lecture 8 April, 5 Scribe: Igor Ganichev Overview In this lecture we are starting a sequence of lectures about string data structures. Today

More information

A Fully-Functional Static and Dynamic Succinct Trees

A Fully-Functional Static and Dynamic Succinct Trees A Fully-Functional Static and Dynamic Succinct Trees GONZALO NAVARRO, University of Chile, Chile KUNIHIKO SADAKANE, National Institute of Informatics, Japan We propose new succinct representations of ordinal

More information

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees

CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees CSE 417 Dynamic Programming (pt 4) Sub-problems on Trees Reminders > HW4 is due today > HW5 will be posted shortly Dynamic Programming Review > Apply the steps... 1. Describe solution in terms of solution

More information

DATA STRUCTURE : A MCQ QUESTION SET Code : RBMCQ0305

DATA STRUCTURE : A MCQ QUESTION SET Code : RBMCQ0305 Q.1 If h is any hashing function and is used to hash n keys in to a table of size m, where n

More information

Course Review. Cpt S 223 Fall 2009

Course Review. Cpt S 223 Fall 2009 Course Review Cpt S 223 Fall 2009 1 Final Exam When: Tuesday (12/15) 8-10am Where: in class Closed book, closed notes Comprehensive Material for preparation: Lecture slides & class notes Homeworks & program

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Trees. Truong Tuan Anh CSE-HCMUT

Trees. Truong Tuan Anh CSE-HCMUT Trees Truong Tuan Anh CSE-HCMUT Outline Basic concepts Trees Trees A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes

More information

Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Binary Trees and Huffman Encoding Binary Search Trees Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary is a

More information

Trees. Eric McCreath

Trees. Eric McCreath Trees Eric McCreath 2 Overview In this lecture we will explore: general trees, binary trees, binary search trees, and AVL and B-Trees. 3 Trees Trees are recursive data structures. They are useful for:

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 5:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 5:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Algorithms and Data Structures

Algorithms and Data Structures Algorithms and Data Structures Optimal Search Trees; Tries Marius Kloft Static Key Sets Sometimes, the set of keys is fixed Streets of a city, cities in a country, keywords of a prog. lang., Softer: Searches

More information

LCP Array Construction

LCP Array Construction LCP Array Construction The LCP array is easy to compute in linear time using the suffix array SA and its inverse SA 1. The idea is to compute the lcp values by comparing the suffixes, but skip a prefix

More information

Lecture 6: Suffix Trees and Their Construction

Lecture 6: Suffix Trees and Their Construction Biosequence Algorithms, Spring 2007 Lecture 6: Suffix Trees and Their Construction Pekka Kilpeläinen University of Kuopio Department of Computer Science BSA Lecture 6: Intro to suffix trees p.1/46 II:

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Trees-I Prof. Muhammad Saeed Tree Representation.. Analysis Of Algorithms 2 .. Tree Representation Analysis Of Algorithms 3 Nomenclature Nodes (13) Size (13) Degree of a node Depth

More information

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible.

l So unlike the search trees, there are neither arbitrary find operations nor arbitrary delete operations possible. DDS-Heaps 1 Heaps - basics l Heaps an abstract structure where each object has a key value (the priority), and the operations are: insert an object, find the object of minimum key (find min), and delete

More information

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology Introduction Chapter 4 Trees for large input, even linear access time may be prohibitive we need data structures that exhibit average running times closer to O(log N) binary search tree 2 Terminology recursive

More information

Efficient Sequential Algorithms, Comp309. Motivation. Longest Common Subsequence. Part 3. String Algorithms

Efficient Sequential Algorithms, Comp309. Motivation. Longest Common Subsequence. Part 3. String Algorithms Efficient Sequential Algorithms, Comp39 Part 3. String Algorithms University of Liverpool References: T. H. Cormen, C. E. Leiserson, R. L. Rivest Introduction to Algorithms, Second Edition. MIT Press (21).

More information

* Due 11:59pm on Sunday 10/4 for Monday lab and Tuesday 10/6 Wednesday Lab

* Due 11:59pm on Sunday 10/4 for Monday lab and Tuesday 10/6 Wednesday Lab ===Lab Info=== *100 points * Due 11:59pm on Sunday 10/4 for Monday lab and Tuesday 10/6 Wednesday Lab ==Assignment== In this assignment you will work on designing a class for a binary search tree. You

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

Applications of Suffix Tree

Applications of Suffix Tree Applications of Suffix Tree Let us have a glimpse of the numerous applications of suffix trees. Exact String Matching As already mentioned earlier, given the suffix tree of the text, all occ occurrences

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

ITCT Lecture 6.1: Huffman Codes

ITCT Lecture 6.1: Huffman Codes ITCT Lecture 6.1: Huffman Codes Prof. Ja-Ling Wu Department of Computer Science and Information Engineering National Taiwan University Huffman Encoding 1. Order the symbols according to their probabilities

More information

15 July, Huffman Trees. Heaps

15 July, Huffman Trees. Heaps 1 Huffman Trees The Huffman Code: Huffman algorithm uses a binary tree to compress data. It is called the Huffman code, after David Huffman who discovered d it in 1952. Data compression is important in

More information

1 Inverted Treaps 1. INTRODUCTION

1 Inverted Treaps 1. INTRODUCTION Inverted Treaps ROBERTO KONOW, Universidad Diego Portales and University of Chile GONZALO NAVARRO, University of Chile CHARLES L.A CLARKE, University of Waterloo ALEJANDRO LÓPEZ-ORTÍZ, University of Waterloo

More information

COSC 2011 Section N. Trees: Terminology and Basic Properties

COSC 2011 Section N. Trees: Terminology and Basic Properties COSC 2011 Tuesday, March 27 2001 Overview Trees and Binary Trees Quick review of definitions and examples Tree Algorithms Depth, Height Tree and Binary Tree Traversals Preorder, postorder, inorder Binary

More information

CMSC 341 Lecture 15 Leftist Heaps

CMSC 341 Lecture 15 Leftist Heaps Based on slides from previous iterations of this course CMSC 341 Lecture 15 Leftist Heaps Prof. John Park Review of Heaps Min Binary Heap A min binary heap is a Complete binary tree Neither child is smaller

More information

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2004 Goodrich, Tamassia (2,4) Trees 1 Multi-Way Search Tree A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d -1 key-element

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

Succinct and I/O Efficient Data Structures for Traversal in Trees

Succinct and I/O Efficient Data Structures for Traversal in Trees Succinct and I/O Efficient Data Structures for Traversal in Trees Craig Dillabaugh 1, Meng He 2, and Anil Maheshwari 1 1 School of Computer Science, Carleton University, Canada 2 Cheriton School of Computer

More information

COMP 250 Fall recurrences 2 Oct. 13, 2017

COMP 250 Fall recurrences 2 Oct. 13, 2017 COMP 250 Fall 2017 15 - recurrences 2 Oct. 13, 2017 Here we examine the recurrences for mergesort and quicksort. Mergesort Recall the mergesort algorithm: we divide the list of things to be sorted into

More information

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes

Greedy Algorithms. CLRS Chapters Introduction to greedy algorithms. Design of data-compression (Huffman) codes Greedy Algorithms CLRS Chapters 16.1 16.3 Introduction to greedy algorithms Activity-selection problem Design of data-compression (Huffman) codes (Minimum spanning tree problem) (Shortest-path problem)

More information

CIS265/ Trees Red-Black Trees. Some of the following material is from:

CIS265/ Trees Red-Black Trees. Some of the following material is from: CIS265/506 2-3-4 Trees Red-Black Trees Some of the following material is from: Data Structures for Java William H. Ford William R. Topp ISBN 0-13-047724-9 Chapter 27 Balanced Search Trees Bret Ford 2005,

More information

Introduction to Computers and Programming. Concept Question

Introduction to Computers and Programming. Concept Question Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 7 April 2 2004 Concept Question G1(V1,E1) A graph G(V, where E) is V1 a finite = {}, nonempty E1 = {} set of G2(V2,E2) vertices and

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

Prelim 2 Solution. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader

Prelim 2 Solution. CS 2110, November 19, 2015, 7:30 PM Total. Sorting Invariants Max Score Grader Prelim 2 CS 2110, November 19, 2015, 7:30 PM 1 2 3 4 5 6 Total Question True Short Complexity Searching Trees Graphs False Answer Sorting Invariants Max 20 15 13 14 17 21 100 Score Grader The exam is closed

More information

Binary Trees. Height 1

Binary Trees. Height 1 Binary Trees Definitions A tree is a finite set of one or more nodes that shows parent-child relationship such that There is a special node called root Remaining nodes are portioned into subsets T1,T2,T3.

More information

Data Structures Question Bank Multiple Choice

Data Structures Question Bank Multiple Choice Section 1. Fundamentals: Complexity, Algorthm Analysis 1. An algorithm solves A single problem or function Multiple problems or functions Has a single programming language implementation 2. A solution

More information

Trees. Reading: Weiss, Chapter 4. Cpt S 223, Fall 2007 Copyright: Washington State University

Trees. Reading: Weiss, Chapter 4. Cpt S 223, Fall 2007 Copyright: Washington State University Trees Reading: Weiss, Chapter 4 1 Generic Rooted Trees 2 Terms Node, Edge Internal node Root Leaf Child Sibling Descendant Ancestor 3 Tree Representations n-ary trees Each internal node can have at most

More information

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms...

Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms... Second Semester - Question Bank Department of Computer Science Advanced Data Structures and Algorithms.... Q1) Let the keys are 28, 47, 20, 36, 43, 23, 25, 54 and table size is 11 then H(28)=28%11=6; H(47)=47%11=3;

More information

Lecture 9 March 4, 2010

Lecture 9 March 4, 2010 6.851: Advanced Data Structures Spring 010 Dr. André Schulz Lecture 9 March 4, 010 1 Overview Last lecture we defined the Least Common Ancestor (LCA) and Range Min Query (RMQ) problems. Recall that an

More information

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010 Uses for About Binary January 31, 2010 Uses for About Binary Uses for Uses for About Basic Idea Implementing Binary Example: Expression Binary Search Uses for Uses for About Binary Uses for Storage Binary

More information

12 Abstract Data Types

12 Abstract Data Types 12 Abstract Data Types 12.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT). Define

More information