# 6.945 Adventures in Advanced Symbolic Programming

Size: px
Start display at page:

Transcription

1 MIT OpenCourseWare Adventures in Advanced Symbolic Programming Spring 2009 For information about citing these materials or our Terms of Use, visit:

2 ps.txt Tue Feb 26 11:37: MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Spring 2008 Problem Set 4 Issued: Wed. 27 Feb Due: Wed. 5 Mar Reading: MIT Scheme Reference Manual, section 2.11: Macros This is complicated stuff, so don t try to read it until you need to in the compilation part of the problem set. Code: load.scm, rule-compiler.scm, matcher.scm, rule-simplifier.scm, rules.scm, all attached. Pattern Matching and Instantiation, continued In this problem set we extend our pattern matching system to build a primitive algebraic simplifier, based on pattern matching and instantiation. In rules.scm there are two elementary rule systems. A rule has three parts: a pattern to match a subexpression, a predicate expression that must be true for the rule to be applicable, and a skeleton to be instantiated and replace the matched subexpression. The rules are assembled into a list and handed to the rule-simplifier procedure. The result is a simplifier procedure that can be applied to an algebraic expression. The first rule system demonstrates only elementary features. It does not use segment variables or restricted variables. The first system has three rules: The first rule implements the associative law of addition, the second implements the commutative law of multiplication, and the third implements the distributive law of multiplication over addition. The commutative law looks like: (rule (* (? b) (? a)) (expr<? a b) (* (? a) (? b))) Notice the rule-restriction predicate expression in the rule for the commutative law. The restriction predicate expr<? imposes an ordering on algebraic expressions.

3 ps.txt Tue Feb 26 11:37: Problem 4.1: Why is the (expr<? a b) restriction necessary in the commutative law? What would go wrong if the there was no restriction? (Indicated by the symbol "" in the restriction slot of the rule.) The second system of rules is far more interesting. It is built with the assumption that addition and multiplication are n-ary operations: it needs segment variables to make this work. It also uses variable restrictions to allow rules for simplifying numerical terms and prefactors. Problem 4.2: In the second system how does the use of the ordering on expressions imposed on the commutative laws make the numerical simplification rules effective? Suppose that the commutative laws did not force an ordering, how would we have to write the numerical simplification rules? Explain why numerical simplification would become very expensive. Problem 4.3: The ordering in the commutative laws evolves an n^2 bubble sort on the terms of a sum and the factors of a product. This can get pretty bad if there are many terms, as in a serious algebra problem. Is there some way in this system to make a more efficient sort? If not, why not? If so, how would you arrange it? Problem 4.4: The system we have described does not collect like terms. For example: (algebra-2 (+ (* 4 x) (* 3 x))) ;Value (+ (* 3 x) (* 4 x)) Add rules that cause the collection of like terms, leaving the result as a sum of terms. Demonstrate your solution. Your solution must be able to handle problems like: (algebra-3 (+ y (* x -2 w) (* x 4 y) (* w x) z (* 5 z) (* x w) (* x y 3))) ;Value: (+ y (* 6 z) (* 7 x y))

4 ps.txt Tue Feb 26 11:37: Now that we have some experience with the use of such a rule system, let s dive in to see how it works. The center of the simplifier is in the file rule-simplifier.scm. It is composed of three parts. The first one, rule-simplifier, is a simple recursive simplifier constructor. It produces a procedure, simplify-expression, that takes an expression and uses the rules to simplify the expression. It recursively simplifies all the subexpressions of an expression, and then applies the rules to simplify the resulting expression. It does this repeatedly until the process converges and the expression returned is a fixed point of the simplification process. (define (rule-simplifier the-rules) (define (simplify-expression expression) (let ((ssubs (if (list? expression) (map simplify-expression expression) expression))) (let ((result (try-rules ssubs the-rules))) (if result (simplify-expression result) ssubs)))) (rule-memoize simplify-expression)) The procedure rule-memoize may be thought of as an identity function: (define (rule-memoize f) f) ; CAVEAT: Defined in "load.scm" but we can change this to be a memoizer that can greatly reduce the computational complexity of the process. A rule returns #f if it cannot be applied to an expression. The procedure try-rules just scans the list of rules, returning the result of the first rule that applies, or the #f if no rule applies: (define (try-rules expression the-rules) (define (scan rules) (if (null? rules) #f (or ((car rules) expression) (scan (cdr rules))))) (scan the-rules))

5 ps.txt Tue Feb 26 11:37: A rule is made from a matcher combinator procedure, a restriction predicate procedure and an instantiator procedure. These are put together by the procedure rule:make. If the matcher succeeds it produces a dictionary and a count of items eaten by the matcher from the list containing the expression to match. If this number is 1 then if either there is no restriction predicate or the restriction predicate is satisfied then the instantiator is called. The restriction predicate procedure and the instantiator procedure take as arguments the values of the variables bound in the match. These procedures are compiled from the rule patterns and skeletons, by a process we will see later. (define (rule:make matcher restriction instantiator) (define (the-rule expression) (matcher (list expression) () (lambda (dictionary n) (and (= n 1) (let ((args (map match:value dictionary))) (and (or (not restriction) (apply restriction args)) (apply instantiator args))))))) the-rule) Problem 4.5: Problem 3.27 in SICP (pp ) shows the basic idea of memoization. Can this help the simplifier? How? Write a memoizer that may be useful in dealing with expressions in the rule-simplifier procedure. One problem is that we don t want to store a table with an unbounded number of big expression. However, most of the advantage in this kind of memoizer comes from using it as a cache for recent results. Implement an LRU memoizer mechanism that stores only a limited number of entries and throws away the Least-Recently Used one. Demonstrate your program.

6 ps.txt Tue Feb 26 11:37: Magic Macrology The call to rule:make is composed from the expression representing a rule by the rule compiler, found in rule-compiler.scm. There are complications here, imposed by the use of a macro implementing syntax for rules. Consider the rule: (rule (* (?? a) (? y) (? x) (?? b)) (expr<? x y) (* (?? a) (? x) (? y) (?? b))) The rule macro turns this into a call to compile-rule: (compile-rule (* (?? a) (? y) (? x) (?? b)) (expr<? x y) (* (?? a) (? x) (? y) (?? b)) some-environment) We can see the expression this expands into with the following magic incantation: (pp (syntax (compile-rule (* (?? a) (? y) (? x) (?? b)) (expr<? x y) (* (?? a) (? x) (? y) (?? b)) (the-environment)) (the-environment))) ==> (rule:make (match:list (match:eqv (quote *)) (match:segment (quote a)) (match:element (quote y)) (match:element (quote x)) (match:segment (quote b))) (lambda (b x y a) (expr<? x y)) (lambda (b x y a) (cons (quote *) (append a (cons x (cons y b)))))) We see that the rule expands into a call to rule:make with arguments that construct the matcher combinator, the predicate procedure, and the instantiation procedure. This is the expression that is evaluated to make the rule. In more conventional languages macros expand directly into code that is substituted for the macro call. However this process is not referentially transparent, because the macro expansion may use symbols that conflict with the user s symbols. In Scheme we try to avoid this problem, allowing a user to write "hygienic macros" that cannot cause conflicts. However this is a bit more complicated than just substituting one expression for another. We will not try to explain the problems or the solutions here, but we will just use the solutions described in the MIT Scheme reference manual, section 2.11.

7 ps.txt Tue Feb 26 11:37: ;;;; File: load.scm -- Loader for rule system (load "rule-compiler") (load "matcher") (load "rule-simplifier") (define (rule-memoize x) x) ;;; NB: Scaffolding stub for prob 4.5 (load "rules") ;;;; File: rule-compiler.scm (define-syntax rule (sc-macro-transformer (lambda (form env) (if (syntax-match? (DATUM EXPRESSION DATUM) (cdr form)) (compile-rule (cadr form) (caddr form) (cadddr form) env) (ill-formed-syntax form))))) (define (compile-rule pattern restriction template env) (let ((names (pattern-names pattern))) (rule:make,(compile-pattern pattern env),(compile-restriction restriction env names),(compile-instantiator template env names))))

8 ps.txt Tue Feb 26 11:37: (define (pattern-names pattern) (let loop ((pattern pattern) (names ())) (cond ((or (match:element? pattern) (match:segment? pattern)) (let ((name (match:variable-name pattern))) (if (memq name names) names (cons name names)))) ((list? pattern) (let elt-loop ((elts pattern) (names names)) (if (pair? elts) (elt-loop (cdr elts) (loop (car elts) names)) names))) (else names)))) (define (compile-pattern pattern env) (let loop ((pattern pattern)) (cond ((match:element? pattern) (if (match:restricted? pattern) (match:element,(match:variable-name pattern),(match:restriction pattern)) (match:element,(match:variable-name pattern)))) ((match:segment? pattern) (match:segment,(match:variable-name pattern))) ((null? pattern) (match:eqv ())) ((list? pattern) loop pattern))) (else (match:eqv,pattern))))) (define (match:element? pattern) (and (pair? pattern) (eq? (car pattern)?))) (define (match:segment? pattern) (and (pair? pattern) (eq? (car pattern)??))) (define (match:variable-name pattern) (cadr pattern)) ;;; These restrictions are for variable elements. (define (match:restricted? pattern) (not (null? (cddr pattern)))) (define (match:restriction pattern) (caddr pattern))

9 ps.txt Tue Feb 26 11:37: ;;; The restriction is a predicate that must be true for the rule to ;;; be applicable. This is not the same as a variable element ;;; restriction. (define (compile-restriction expr env names) (if (eq? expr ) #f (make-lambda names env (lambda (env) (close-syntax expr env))))) (define (compile-instantiator skel env names) (make-lambda names env (lambda (env) (list quasiquote (let ((wrap (lambda (expr) (close-syntax expr env)))) (let loop ((skel skel)) (cond ((skel:element? skel) (list unquote (wrap (skel:element-expression skel)))) ((skel:segment? skel) (list unquote-splicing (wrap (skel:segment-expression skel)))) ((list? skel) (map loop skel)) (else skel)))))))) (define (skel:constant? skeleton) (not (pair? skeleton))) (define (skel:element? skeleton) (and (pair? skeleton) (eq? (car skeleton)?))) (define (skel:element-expression skeleton) (cadr skeleton)) (define (skel:segment? skeleton) (and (pair? skeleton) (eq? (car skeleton)??))) (define (skel:segment-expression skeleton) (cadr skeleton))

10 ps.txt Tue Feb 26 11:37: ;; Magic! (define (make-lambda bvl use-env generate-body) (capture-syntactic-environment (lambda (transform-env) (close-syntax (,(close-syntax lambda transform-env),bvl,(capture-syntactic-environment (lambda (use-env*) (close-syntax (generate-body use-env*) transform-env)))) use-env)))) # ;;; For example (pp (syntax (rule (+ (? a) (+ (? b) (? c))) (+ (+ (? a) (? b)) (? c)) ) (the-environment))) (rule:make (match:list (match:eqv (quote +)) (match:element (quote a)) (match:list (match:eqv (quote +)) (match:element (quote b)) (match:element (quote c)))) #f (lambda (c b a) (list (quote +) (list (quote +) a b) c))) (pp (syntax (rule (+ (? a) (+ (? b) (? c))) (> a 3) (+ (+ (? a) (? b)) (? c)) ) (the-environment))) (rule:make (match:list (match:eqv (quote +)) (match:element (quote a)) (match:list (match:eqv (quote +)) (match:element (quote b)) (match:element (quote c)))) (lambda (c b a) (> a 3)) (lambda (c b a) (list (quote +) (list (quote +) a b) c))) #

11 ps.txt Tue Feb 26 11:37: ;;;; File: matcher.scm ;;;; Matcher based on match combinators, CPH/GJS style. ;;; Idea is in Hewitt s PhD thesis (1969). (declare (usual-integrations)) ;;; There are match procedures that can be applied to data items. A ;;; match procedure either accepts or rejects the data it is applied ;;; to. Match procedures can be combined to apply to compound data ;;; items. ;;; A match procedure takes a list containing a data item, a ;;; dictionary, and a success continuation. The dictionary ;;; accumulates the assignments of match variables to values found in ;;; the data. The success continuation takes two arguments: the new ;;; dictionary, and the number of items absorbed from the list by the ;;; match. If a match procedure fails it returns #f. ;;; Primitive match procedures: (define (match:eqv pattern-constant) (define (eqv-match data dictionary succeed) (and (pair? data) (eqv? (car data) pattern-constant) (succeed dictionary 1))) eqv-match) ;;; Here we have added an optional restriction argument to allow ;;; conditional matches. (define (match:element variable #!optional restriction?) (if (default-object? restriction?) (set! restriction? (lambda (x) #t))) (define (element-match data dictionary succeed) (and (pair? data) ;; NB: might be many distinct restrictions (restriction? (car data)) (let ((vcell (match:lookup variable dictionary))) (if vcell (and (equal? (match:value vcell) (car data)) (succeed dictionary 1)) (succeed (match:bind variable (car data) dictionary) 1))))) element-match)

12 ps.txt Tue Feb 26 11:37: (define (match:segment variable) (define (segment-match data dictionary succeed) (and (list? data) (let ((vcell (match:lookup variable dictionary))) (if vcell (let lp ((data data) (pattern (match:value vcell)) (n 0)) (cond ((pair? pattern) (if (and (pair? data) (equal? (car data) (car pattern))) (lp (cdr data) (cdr pattern) (+ n 1)) #f)) ((not (null? pattern)) #f) (else (succeed dictionary n)))) (let ((n (length data))) (let lp ((i 0)) (if (<= i n) (or (succeed (match:bind variable (list-head data i) dictionary) i) (lp (+ i 1))) #f))))))) segment-match) (define (match:list. match-combinators) (define (list-match data dictionary succeed) (and (pair? data) (let lp ((data (car data)) (matchers match-combinators) (dictionary dictionary)) (cond ((pair? matchers) ((car matchers) data dictionary (lambda (new-dictionary n) (if (> n (length data)) (error "Matcher ate too much." n)) (lp (list-tail data n) (cdr matchers) new-dictionary)))) ((pair? data) #f) ((null? data) (succeed dictionary 1)) (else #f))))) list-match)

13 ps.txt Tue Feb 26 11:37: ;;; Syntax of matching is determined here. (define (match:->combinators pattern) (define (compile pattern) (cond ((match:element? pattern) (if (match:restricted? pattern) (match:element (match:variable-name pattern) (match:restriction pattern)) (match:element (match:variable-name pattern)))) ((match:segment? pattern) (match:segment (match:variable-name pattern))) ((list? pattern) (apply match:list (map compile pattern))) (else (match:eqv pattern)))) (compile pattern)) (define (match:element? pattern) (and (pair? pattern) (eq? (car pattern)?))) (define (match:segment? pattern) (and (pair? pattern) (eq? (car pattern)??))) (define (match:variable-name pattern) (cadr pattern)) ;;; These restrictions are for variable elements. (define (match:restricted? pattern) (not (null? (cddr pattern)))) (define (match:restriction pattern) (caddr pattern)) (define (matcher pattern) (let ((match-combinator (match:->combinators pattern))) (lambda (datum) (match-combinator (list datum) () (lambda (dictionary number-of-items-eaten) (and (= number-of-items-eaten 1) dictionary)))))) ;;; Support for the dictionary. (define (match:bind variable data-object dictionary) (cons (list variable data-object) dictionary)) (define (match:lookup variable dictionary) (assq variable dictionary)) (define (match:value vcell) (cadr vcell))

14 ps.txt Tue Feb 26 11:37: # ((match:->combinators (a ((? b) 2 3) 1 c)) ((a (1 2 3) 1 c)) () (lambda (x y) (succeed,x,y))) ;Value: (succeed ((b 1)) 1) ((match:->combinators (a ((? b) 2 3) (? b) c)) ((a (1 2 3) 2 c)) () (lambda (x y) (succeed,x,y))) ;Value: #f ((match:->combinators (a ((? b) 2 3) (? b) c)) ((a (1 2 3) 1 c)) () (lambda (x y) (succeed,x,y))) ;Value: (succeed ((b 1)) 1) ((match:->combinators (a (?? x) (?? y) (?? x) c)) ((a b b b b b b c)) () (lambda (x y) (pp (succeed,x,y)) #f)) (succeed ((y (b b b b b b)) (x ())) 1) (succeed ((y (b b b b)) (x (b))) 1) (succeed ((y (b b)) (x (b b))) 1) (succeed ((y ()) (x (b b b))) 1) ;Value: #f ((matcher (a ((? b) 2 3) (? b) c)) (a (1 2 3) 1 c)) ;Value: ((b 1)) #

15 ps.txt Tue Feb 26 11:37: ;;;; File: rule-simplifier.scm ;;;; Match and Substitution Language Interpreter (declare (usual-integrations)) ;;; This is a descendent of the infamous rule interpreter, ;;; originally written by GJS for a lecture in the faculty course held ;;; at MIT in the summer of 1983, and subsequently used and tweaked ;;; from time to time. This subsystem has been a serious pain in the ;;; ass, because of its expressive limitations, but I have not had the ;;; guts to seriously improve it since its first appearance. -- GJS ;;; January I have the guts now! The new matcher is based on ;;; combinators and is in matcher.scm. -- GJS (define (rule-simplifier the-rules) (define (simplify-expression expression) (let ((ssubs (if (list? expression) (map simplify-expression expression) expression))) (let ((result (try-rules ssubs the-rules))) (if result (simplify-expression result) ssubs)))) (rule-memoize simplify-expression)) (define (try-rules expression the-rules) (define (scan rules) (if (null? rules) #f (or ((car rules) expression) (scan (cdr rules))))) (scan the-rules)) ;;;; Rule applicator, using combinator-based matcher. (define (rule:make matcher restriction instantiator) (define (the-rule expression) (matcher (list expression) () (lambda (dictionary n) (and (= n 1) (let ((args (map match:value dictionary))) (and (or (not restriction) (apply restriction args)) (apply instantiator args))))))) the-rule)

16 ps.txt Tue Feb 26 11:37: ;;; File: rules.scm -- Some sample algebraic simplification rules (define algebra-1 (rule-simplifier (list ;; Associative law of addition (rule (+ (? a) (+ (? b) (? c))) (+ (+ (? a) (? b)) (? c))) ;; Commutative law of multiplication (rule (* (? b) (? a)) (expr<? a b) (* (? a) (? b))) ;; Distributive law of multiplication over addition (rule (* (? a) (+ (? b) (? c))) (+ (* (? a) (? b)) (* (? a) (? c)))) ))) (define (expr<? x y) (cond ((null? x) (if (null? y) #f #t)) ((null? y) #f) ((number? x) (if (number? y) (< x y) #t)) ((number? y) #f) ((symbol? x) (if (symbol? y) (symbol<? x y) #t)) ((symbol? y) #f) ((list? x) (if (list? y) (let ((nx (length x)) (ny (length y))) (cond ((< nx ny) #t) ((> nx ny) #f) (else (let lp ((x x) (y y)) (cond ((null? x) #f) ; same ((expr<? (car x) (car y)) #t) ((expr<? (car y) (car x)) #f) (else (lp (cdr x) (cdr y)))))))))) ((list? y) #f) (else (error "Unknown expression type -- expr<?" x y)))) # (algebra-1 (* (+ y (+ z w)) x)) ;Value: (+ (+ (* x y) (* x z)) (* w x)) #

17 ps.txt Tue Feb 26 11:37: (define algebra-2 (rule-simplifier (list ;; Sums (rule (+ (? a)) (? a)) (rule (+ (?? a) (+ (?? b))) (+ (?? a) (?? b))) (rule (+ (+ (?? a)) (?? b)) (+ (?? a) (?? b))) (rule (+ (?? a) (? y) (? x) (?? b)) (expr<? x y) (+ (?? a) (? x) (? y) (?? b))) ;; Products (rule (* (? a)) (? a)) (rule (* (?? a) (* (?? b))) (* (?? a) (?? b))) (rule (* (* (?? a)) (?? b)) (* (?? a) (?? b))) (rule (* (?? a) (? y) (? x) (?? b)) (expr<? x y) (* (?? a) (? x) (? y) (?? b))) ;; Distributive law (rule (* (? a) (+ (?? b))) (+ (?? (map (lambda (x) (*,a,x)) b))))

18 ps.txt Tue Feb 26 11:37: ;; Numerical simplifications below (rule (+ 0 (?? x)) (+ (?? x))) (rule (+ (? x number?) (? y number?) (?? z)) (+ (? (+ x y)) (?? z))) (rule (* 0 (?? x)) 0) (rule (* 1 (?? x)) (* (?? x))) (rule (* (? x number?) (? y number?) (?? z)) (* (? (* x y)) (?? z))) ))) # (algebra-2 (* (+ y (+ z w)) x)) ;Value: (+ (* w x) (* x y) (* x z)) (algebra-2 (+ (* 3 (+ x 1)) -3)) ;Value: (* 3 x) #

### Building a system for symbolic differentiation

Computer Science 21b Structure and Interpretation of Computer Programs Building a system for symbolic differentiation Selectors, constructors and predicates: (constant? e) Is e a constant? (variable? e)

### Building a system for symbolic differentiation

Computer Science 21b Structure and Interpretation of Computer Programs Building a system for symbolic differentiation Selectors, constructors and predicates: (constant? e) Is e a constant? (variable? e)

### An Explicit-Continuation Metacircular Evaluator

Computer Science (1)21b (Spring Term, 2018) Structure and Interpretation of Computer Programs An Explicit-Continuation Metacircular Evaluator The vanilla metacircular evaluator gives a lot of information

### A Brief Introduction to Scheme (II)

A Brief Introduction to Scheme (II) Philip W. L. Fong pwlfong@cs.uregina.ca Department of Computer Science University of Regina Regina, Saskatchewan, Canada Lists Scheme II p.1/29 Lists Aggregate data

### 6.184 Lecture 4. Interpretation. Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson

6.184 Lecture 4 Interpretation Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson 1 Interpretation Parts of an interpreter Arithmetic calculator

### Why do we need an interpreter? SICP Interpretation part 1. Role of each part of the interpreter. 1. Arithmetic calculator.

.00 SICP Interpretation part Parts of an interpreter Arithmetic calculator Names Conditionals and if Store procedures in the environment Environment as explicit parameter Defining new procedures Why do

### CS61A Midterm 2 Review (v1.1)

Spring 2006 1 CS61A Midterm 2 Review (v1.1) Basic Info Your login: Your section number: Your TA s name: Midterm 2 is going to be held on Tuesday 7-9p, at 1 Pimentel. What will Scheme print? What will the

### Scheme in Scheme: The Metacircular Evaluator Eval and Apply

Scheme in Scheme: The Metacircular Evaluator Eval and Apply CS21b: Structure and Interpretation of Computer Programs Brandeis University Spring Term, 2015 The metacircular evaluator is A rendition of Scheme,

### Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson

Streams, Delayed Evaluation and a Normal Order Interpreter CS 550 Programming Languages Jeremy Johnson 1 Theme This lecture discusses the stream model of computation and an efficient method of implementation

### 6.037 Lecture 4. Interpretation. What is an interpreter? Why do we need an interpreter? Stages of an interpreter. Role of each part of the interpreter

6.037 Lecture 4 Interpretation Interpretation Parts of an interpreter Meta-circular Evaluator (Scheme-in-scheme!) A slight variation: dynamic scoping Original material by Eric Grimson Tweaked by Zev Benjamin,

### Fall Semester, The Metacircular Evaluator. Today we shift perspective from that of a user of computer langugaes to that of a designer of

1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Fall Semester, 1996 Lecture Notes { October 31,

### Project 2: Scheme Interpreter

Project 2: Scheme Interpreter CSC 4101, Fall 2017 Due: 12 November 2017 For this project, you will implement a simple Scheme interpreter in C++ or Java. Your interpreter should be able to handle the same

1 of 5 5/11/2006 12:10 AM CS 61A Spring 2006 Midterm 2 solutions 1. Box and pointer. Note: Please draw actual boxes, as in the book and the lectures, not XX and X/ as in these ASCII-art solutions. Also,

### Principles of Programming Languages Topic: Functional Programming Professor L. Thorne McCarty Spring 2003

Principles of Programming Languages Topic: Functional Programming Professor L. Thorne McCarty Spring 2003 CS 314, LS, LTM: Functional Programming 1 Scheme A program is an expression to be evaluated (in

### Below are example solutions for each of the questions. These are not the only possible answers, but they are the most common ones.

6.001, Fall Semester, 2002 Quiz II Sample solutions 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs

### MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. Issued: Wed. 26 April 2017 Due: Wed.

ps.txt Fri Apr 07 14:24:11 2017 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.945 Spring 2017 Problem Set 9 Issued: Wed. 26 April 2017 Due: Wed. 12

### regsim.scm ~/umb/cs450/ch5.base/ 1 11/11/13

1 File: regsim.scm Register machine simulator from section 5.2 of STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS This file can be loaded into Scheme as a whole. Then you can define and simulate machines

### CSc 520 Principles of Programming Languages

CSc 520 Principles of Programming Languages 9: Scheme Metacircular Interpretation Christian Collberg collberg@cs.arizona.edu Department of Computer Science University of Arizona Copyright c 2005 Christian

### Syntactic Sugar: Using the Metacircular Evaluator to Implement the Language You Want

Computer Science 21b (Spring Term, 2017) Structure and Interpretation of Computer Programs Syntactic Sugar: Using the Metacircular Evaluator to Implement the Language You Want Here is one of the big ideas

### Scheme. Functional Programming. Lambda Calculus. CSC 4101: Programming Languages 1. Textbook, Sections , 13.7

Scheme Textbook, Sections 13.1 13.3, 13.7 1 Functional Programming Based on mathematical functions Take argument, return value Only function call, no assignment Functions are first-class values E.g., functions

### CS 61A Interpreters, Tail Calls, Macros, Streams, Iterators. Spring 2019 Guerrilla Section 5: April 20, Interpreters.

CS 61A Spring 2019 Guerrilla Section 5: April 20, 2019 1 Interpreters 1.1 Determine the number of calls to scheme eval and the number of calls to scheme apply for the following expressions. > (+ 1 2) 3

### 6.037 Lecture 7B. Scheme Variants Normal Order Lazy Evaluation Streams

6.037 Lecture 7B Scheme Variants Normal Order Lazy Evaluation Streams Edited by Mike Phillips & Ben Vandiver Original Material by Eric Grimson & Duane Boning Further Variations on a Scheme Beyond Scheme

### Using Symbols in Expressions (1) evaluate sub-expressions... Number. ( ) machine code to add

Using Symbols in Expressions (1) (define z y) z Symbol y z ==> y prints as (+ x 3) evaluate sub-expressions... PrimProc Number Number ( ) machine code to add 23 3 Number 26 apply... ==> 26 prints as 1

### Essentials of Programming Languages Language

Essentials of Programming Languages Language Version 5.3 August 6, 2012 The Essentials of Programming Languages language in DrRacket provides a subset of functions and syntactic forms of racket mostly

### Essentials of Programming Languages Language

Essentials of Programming Languages Language Version 6.90.0.26 April 20, 2018 The Essentials of Programming Languages language in DrRacket provides a subset of functions and syntactic forms of racket mostly

### Discussion 12 The MCE (solutions)

Discussion 12 The MCE (solutions) ;;;;METACIRCULAR EVALUATOR FROM CHAPTER 4 (SECTIONS 4.1.1-4.1.4) of ;;;; STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS ;;;from section 4.1.4 -- must precede def of

### Introduction to Scheme

How do you describe them Introduction to Scheme Gul Agha CS 421 Fall 2006 A language is described by specifying its syntax and semantics Syntax: The rules for writing programs. We will use Context Free

### Deferred operations. Continuations Structure and Interpretation of Computer Programs. Tail recursion in action.

Deferred operations Continuations 6.037 - Structure and Interpretation of Computer Programs Mike Phillips (define the-cons (cons 1 #f)) (set-cdr! the-cons the-cons) (define (run-in-circles l) (+

### Functional Programming. Pure Functional Languages

Functional Programming Pure functional PLs S-expressions cons, car, cdr Defining functions read-eval-print loop of Lisp interpreter Examples of recursive functions Shallow, deep Equality testing 1 Pure

### Functional Programming. Pure Functional Languages

Functional Programming Pure functional PLs S-expressions cons, car, cdr Defining functions read-eval-print loop of Lisp interpreter Examples of recursive functions Shallow, deep Equality testing 1 Pure

### Lecture 09: Data Abstraction ++ Parsing is the process of translating a sequence of characters (a string) into an abstract syntax tree.

Lecture 09: Data Abstraction ++ Parsing Parsing is the process of translating a sequence of characters (a string) into an abstract syntax tree. program text Parser AST Processor Compilers (and some interpreters)

### From Syntactic Sugar to the Syntactic Meth Lab:

From Syntactic Sugar to the Syntactic Meth Lab: Using Macros to Cook the Language You Want a V E N E TRUT H Brandeis S PA R T U N T O I T S I N N E R M OS T COMPUTER SCIENCE 21B: Structure and Interpretation

### ;;; Determines if e is a primitive by looking it up in the primitive environment. ;;; Define indentation and output routines for the output for

Page 1/11 (require (lib "trace")) Allow tracing to be turned on and off (define tracing #f) Define a string to hold the error messages created during syntax checking (define error msg ""); Used for fancy

### CS 360 Programming Languages Interpreters

CS 360 Programming Languages Interpreters Implementing PLs Most of the course is learning fundamental concepts for using and understanding PLs. Syntax vs. semantics vs. idioms. Powerful constructs like

### Building up a language SICP Variations on a Scheme. Meval. The Core Evaluator. Eval. Apply. 2. syntax procedures. 1.

6.001 SICP Variations on a Scheme Scheme Evaluator A Grand Tour Techniques for language design: Interpretation: eval/appl Semantics vs. snta Sntactic transformations Building up a language... 3. 1. eval/appl

### (scheme-1) has lambda but NOT define

CS61A Lecture 12 2011-0-11 Colleen Lewis (calc) review (scheme-1) has lambda but NOT define Remember calc-apply? STk> (calc-apply '+ '(1 2 )) 6 STk> (calc-apply '* '(2 4 )) 24 STk> (calc-apply '/ '(10

### Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs. Lexical addressing

Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs Lexical addressing The difference between a interpreter and a compiler is really two points on a spectrum of possible

### User-defined Functions. Conditional Expressions in Scheme

User-defined Functions The list (lambda (args (body s to a function with (args as its argument list and (body as the function body. No quotes are needed for (args or (body. (lambda (x (+ x 1 s to the increment

### Racket: Macros. Advanced Functional Programming. Jean-Noël Monette. November 2013

Racket: Macros Advanced Functional Programming Jean-Noël Monette November 2013 1 Today Macros pattern-based macros Hygiene Syntax objects and general macros Examples 2 Macros (According to the Racket Guide...)

### 6.001, Spring Semester, 1998, Final Exam Solutions Your Name: 2 Part c: The procedure eval-until: (define (eval-until exp env) (let ((return (eval-seq

1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 1998, Final Exam Solutions Your

### Documentation for LISP in BASIC

Documentation for LISP in BASIC The software and the documentation are both Copyright 2008 Arthur Nunes-Harwitt LISP in BASIC is a LISP interpreter for a Scheme-like dialect of LISP, which happens to have

### INTRODUCTION TO SCHEME

INTRODUCTION TO SCHEME PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2019 Dalhousie University 1/110 SCHEME: A FUNCTIONAL PROGRAMMING LANGUAGE Functions are first-class values: Can be passed as

### CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages Lecture 17: Functional Programming Zheng (Eddy Zhang Rutgers University April 4, 2018 Class Information Homework 6 will be posted later today. All test cases

### Scheme Quick Reference

Scheme Quick Reference COSC 18 Winter 2003 February 10, 2003 1 Introduction This document is a quick reference guide to common features of the Scheme language. It is by no means intended to be a complete

### CS450 - Structure of Higher Level Languages

Spring 2018 Streams February 24, 2018 Introduction Streams are abstract sequences. They are potentially infinite we will see that their most interesting and powerful uses come in handling infinite sequences.

### Project 5 - The Meta-Circular Evaluator

MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Fall Semester, 2005 Project 5 - The Meta-Circular

### Project 5 - The Meta-Circular Evaluator

MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 2005 Project 5 - The Meta-Circular

### CS61A Summer 2010 George Wang, Jonathan Kotker, Seshadri Mahalingam, Eric Tzeng, Steven Tang

CS61A Notes Week 6B: Streams Streaming Along A stream is an element and a promise to evaluate the rest of the stream. You ve already seen multiple examples of this and its syntax in lecture and in the

### Functional Programming. Pure Functional Programming

Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

### Evaluating Scheme Expressions

Evaluating Scheme Expressions How Scheme evaluates the expressions? (procedure arg 1... arg n ) Find the value of procedure Find the value of arg 1 Find the value of arg n Apply the value of procedure

### 6.034 Artificial Intelligence February 9, 2007 Recitation # 1. (b) Draw the tree structure corresponding to the following list.

6.034 Artificial Intelligence February 9, 2007 Recitation # 1 1 Lists and Trees (a) You are given two lists: (define x (list 1 2 3)) (define y (list 4 5 6)) What would the following evaluate to: (append

### Normal Order (Lazy) Evaluation SICP. Applicative Order vs. Normal (Lazy) Order. Applicative vs. Normal? How can we implement lazy evaluation?

Normal Order (Lazy) Evaluation Alternative models for computation: Normal (Lazy) Order Evaluation Memoization Streams Applicative Order: evaluate all arguments, then apply operator Normal Order: pass unevaluated

### Programming Languages

Programming Languages Tevfik Koşar Lecture - XIII March 2 nd, 2006 1 Roadmap Functional Languages Lambda Calculus Intro to Scheme Basics Functions Bindings Equality Testing Searching 2 1 Functional Languages

### This exam is worth 70 points, or about 23% of your total course grade. The exam contains 15 questions.

CS 61A Final Exam May 16, 2008 Your name login: cs61a This exam is worth 70 points, or about 23% of your total course grade. The exam contains 15 questions. This booklet contains 18 numbered pages including

### CSC 533: Programming Languages. Spring 2015

CSC 533: Programming Languages Spring 2015 Functional programming LISP & Scheme S-expressions: atoms, lists functional expressions, evaluation, define primitive functions: arithmetic, predicate, symbolic,

### Introduction to Functional Programming in Racket. CS 550 Programming Languages Jeremy Johnson

Introduction to Functional Programming in Racket CS 550 Programming Languages Jeremy Johnson 1 Objective To introduce functional programming in racket Programs are functions and their semantics involve

### CS 342 Lecture 8 Data Abstraction By: Hridesh Rajan

CS 342 Lecture 8 Data Abstraction By: Hridesh Rajan 1 Com S 342 so far So far we have studied: Language design goals, Basic functional programming, Flat recursion over lists, Notion of Scheme procedures

### 6.001: Structure and Interpretation of Computer Programs

6.001: Structure and Interpretation of Computer Programs Symbols Quotation Relevant details of the reader Example of using symbols Alists Differentiation Data Types in Lisp/Scheme Conventional Numbers

### CS 61A, Fall, 2002, Midterm #2, L. Rowe. 1. (10 points, 1 point each part) Consider the following five box-and-arrow diagrams.

CS 61A, Fall, 2002, Midterm #2, L. Rowe 1. (10 points, 1 point each part) Consider the following five box-and-arrow diagrams. a) d) 3 1 2 3 1 2 e) b) 3 c) 1 2 3 1 2 1 2 For each of the following Scheme

### Scheme Quick Reference

Scheme Quick Reference COSC 18 Fall 2003 This document is a quick reference guide to common features of the Scheme language. It is not intended to be a complete language reference, but it gives terse summaries

### Notes on Higher Order Programming in Scheme. by Alexander Stepanov

by Alexander Stepanov August 1986 INTRODUCTION Why Scheme? Because it allows us to deal with: 1. Data Abstraction - it allows us to implement ADT (abstact data types) in a very special way. The issue of

### 4/19/2018. Chapter 11 :: Functional Languages

Chapter 11 :: Functional Languages Programming Language Pragmatics Michael L. Scott Historical Origins The imperative and functional models grew out of work undertaken by Alan Turing, Alonzo Church, Stephen

### University of Massachusetts Lowell

University of Massachusetts Lowell 91.301: Organization of Programming Languages Fall 2002 Quiz 1 Solutions to Sample Problems 2 91.301 Problem 1 What will Scheme print in response to the following statements?

### CS 314 Principles of Programming Languages. Lecture 16

CS 314 Principles of Programming Languages Lecture 16 Zheng Zhang Department of Computer Science Rutgers University Friday 28 th October, 2016 Zheng Zhang 1 CS@Rutgers University Class Information Reminder:

### 11/6/17. Functional programming. FP Foundations, Scheme (2) LISP Data Types. LISP Data Types. LISP Data Types. Scheme. LISP: John McCarthy 1958 MIT

Functional programming FP Foundations, Scheme (2 In Text: Chapter 15 LISP: John McCarthy 1958 MIT List Processing => Symbolic Manipulation First functional programming language Every version after the

### 4.2 Variations on a Scheme -- Lazy Evaluation

[Go to first, previous, next page; contents; index] 4.2 Variations on a Scheme -- Lazy Evaluation Now that we have an evaluator expressed as a Lisp program, we can experiment with alternative choices in

### Summer 2017 Discussion 10: July 25, Introduction. 2 Primitives and Define

CS 6A Scheme Summer 207 Discussion 0: July 25, 207 Introduction In the next part of the course, we will be working with the Scheme programming language. In addition to learning how to write Scheme programs,

### COP4020 Programming Assignment 1 - Spring 2011

COP4020 Programming Assignment 1 - Spring 2011 In this programming assignment we design and implement a small imperative programming language Micro-PL. To execute Mirco-PL code we translate the code to

### COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages Functional Programming Prof. Robert van Engelen Overview What is functional programming? Historical origins of functional programming Functional programming today Concepts

### CSCC24 Functional Programming Scheme Part 2

CSCC24 Functional Programming Scheme Part 2 Carolyn MacLeod 1 winter 2012 1 Based on slides from Anya Tafliovich, and with many thanks to Gerald Penn and Prabhakar Ragde. 1 The Spirit of Lisp-like Languages

### CSE341: Programming Languages Lecture 17 Implementing Languages Including Closures. Dan Grossman Autumn 2018

CSE341: Programming Languages Lecture 17 Implementing Languages Including Closures Dan Grossman Autumn 2018 Typical workflow concrete syntax (string) "(fn x => x + x) 4" Parsing Possible errors / warnings

### TAIL RECURSION, SCOPE, AND PROJECT 4 11

TAIL RECURSION, SCOPE, AND PROJECT 4 11 COMPUTER SCIENCE 61A Noveber 12, 2012 1 Tail Recursion Today we will look at Tail Recursion and Tail Call Optimizations in Scheme, and how they relate to iteration

### An Explicit Continuation Evaluator for Scheme

Massachusetts Institute of Technology Course Notes 2 6.844, Spring 05: Computability Theory of and with Scheme February 17 Prof. Albert R. Meyer revised March 3, 2005, 1265 minutes An Explicit Continuation

### Lexical vs. Dynamic Scope

Intro Lexical vs. Dynamic Scope where do I point to? Remember in Scheme whenever we call a procedure we pop a frame and point it to where the procedure points to (its defining environment). This is called

### Functional Programming. Big Picture. Design of Programming Languages

Functional Programming Big Picture What we ve learned so far: Imperative Programming Languages Variables, binding, scoping, reference environment, etc What s next: Functional Programming Languages Semantics

### CSE413: Programming Languages and Implementation Racket structs Implementing languages with interpreters Implementing closures

CSE413: Programming Languages and Implementation Racket structs Implementing languages with interpreters Implementing closures Dan Grossman Fall 2014 Hi! I m not Hal J I love this stuff and have taught

### CSc 520. Principles of Programming Languages 7: Scheme List Processing

CSc 520 Principles of Programming Languages 7: Scheme List Processing Christian Collberg Department of Computer Science University of Arizona collberg@cs.arizona.edu Copyright c 2005 Christian Collberg

### Functional Programming - 2. Higher Order Functions

Functional Programming - 2 Higher Order Functions Map on a list Apply Reductions: foldr, foldl Lexical scoping with let s Functional-11, CS5314, Sp16 BGRyder 1 Higher Order Functions Functions as 1st class

### An introduction to Scheme

An introduction to Scheme Introduction A powerful programming language is more than just a means for instructing a computer to perform tasks. The language also serves as a framework within which we organize

### 6.001 Notes: Section 8.1

6.001 Notes: Section 8.1 Slide 8.1.1 In this lecture we are going to introduce a new data type, specifically to deal with symbols. This may sound a bit odd, but if you step back, you may realize that everything

### Functional Programming

Functional Programming CS331 Chapter 14 Functional Programming Original functional language is LISP LISt Processing The list is the fundamental data structure Developed by John McCarthy in the 60 s Used

### CSc 520 Principles of Programming Languages. Examining Lists. Constructing Lists... 7: Scheme List Processing

Constructing Lists CSc 520 Principles of Programming Languages 7: Scheme List Processing Christian Collberg collberg@cs.arizona.edu Department of Computer Science University of Arizona The most important

### Concepts of programming languages

Concepts of programming languages Lecture 7 Wouter Swierstra 1 Last time Relating evaluation and types How to handle variable binding in embedded languages? 2 DSLs: approaches A stand-alone DSL typically

### CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341)

CSE 413 Languages & Implementation Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) 1 Goals Representing programs as data Racket structs as a better way to represent

### Lecture #24: Programming Languages and Programs

Lecture #24: Programming Languages and Programs A programming language is a notation for describing computations or processes. These range from low-level notations, such as machine language or simple hardware

### STREAMS 10. Basics of Streams. Practice with Streams COMPUTER SCIENCE 61AS. 1. What is a stream?

STREAMS 10 COMPUTER SCIENCE 61AS Basics of Streams 1. What is a stream? A stream is an element and a promise to evaluate the rest of the stream. Streams are a clever idea that allows one to use sequence

### An Introduction to Scheme

An Introduction to Scheme Stéphane Ducasse stephane.ducasse@inria.fr http://stephane.ducasse.free.fr/ Stéphane Ducasse 1 Scheme Minimal Statically scoped Functional Imperative Stack manipulation Specification

### YOUR NAME PLEASE: *** SOLUTIONS ***

YOUR NAME PLEASE: *** SOLUTIONS *** Computer Science 201b SAMPLE Exam 1 SOLUTIONS February 15, 2015 Closed book and closed notes. No electronic devices. Show ALL work you want graded on the test itself.

### Announcements. The current topic: Scheme. Review: BST functions. Review: Representing trees in Scheme. Reminder: Lab 2 is due on Monday at 10:30 am.

The current topic: Scheme! Introduction! Object-oriented programming: Python Functional programming: Scheme! Introduction! Numeric operators, REPL, quotes, functions, conditionals! Function examples, helper

### CSE 341 Section 7. Eric Mullen Spring Adapted from slides by Nicholas Shahan, Dan Grossman, and Tam Dang

CSE 341 Section 7 Eric Mullen Spring 2017 Adapted from slides by Nicholas Shahan, Dan Grossman, and Tam Dang Outline Interpreting LBI (Language Being Implemented) Assume Correct Syntax Check for Correct

### Scheme: Strings Scheme: I/O

Scheme: Strings Scheme: I/O CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Wednesday, April 5, 2017 Glenn G. Chappell Department of Computer Science University of

### Simplifying Logical Formulas

Simplifying Logical Formulas Assume we have a SCHEME logical expression involving the operators and, or, not, and the truth constants #t and (). Example: (and a (not b) (or b c) (not (and c (not d))) #t

### CS61A Discussion Notes: Week 11: The Metacircular Evaluator By Greg Krimer, with slight modifications by Phoebus Chen (using notes from Todd Segal)

CS61A Discussion Notes: Week 11: The Metacircular Evaluator By Greg Krimer, with slight modifications by Phoebus Chen (using notes from Todd Segal) What is the Metacircular Evaluator? It is the best part

### Important Example: Gene Sequence Matching. Corrigiendum. Central Dogma of Modern Biology. Genetics. How Nucleotides code for Amino Acids

Important Example: Gene Sequence Matching Century of Biology Two views of computer science s relationship to biology: Bioinformatics: computational methods to help discover new biology from lots of data

### Programming Languages. Thunks, Laziness, Streams, Memoization. Adapted from Dan Grossman s PL class, U. of Washington

Programming Languages Thunks, Laziness, Streams, Memoization Adapted from Dan Grossman s PL class, U. of Washington You ve been lied to Everything that looks like a function call in Racket is not necessarily

### How to Design Programs Languages

How to Design Programs Languages Version 4.1 August 12, 2008 The languages documented in this manual are provided by DrScheme to be used with the How to Design Programs book. 1 Contents 1 Beginning Student

### Some Naughty Bits. Jeremy Brown. January 7-8, 2003

Advanced Scheme Techniques Some Naughty Bits Jeremy Brown January 7-8, 2003 Page 1 Jeremy H. Brown January 7-8, 2003 Acknowledgements Jonathan Bachrach, Alan Bawden, Chris Hanson, Neel Krishnaswami, and

### Review Analyzing Evaluator. CS61A Lecture 25. What gets returned by mc-eval? (not analyzing eval) REVIEW What is a procedure?

2 1 Review Analyzing Evaluator CS61A Lecture 2011-08-02 Colleen Lewis What s look like What the output of analyze was Fact: The body of a lambda gets analyzed! We can give names to analyzed lambdas What