Note: The following (with modifications) is adapted from Silberschatz (our course textbook), Project: Producer-Consumer Problem.

Size: px
Start display at page:

Download "Note: The following (with modifications) is adapted from Silberschatz (our course textbook), Project: Producer-Consumer Problem."

Transcription

1 CSCI-375 Operating Systems Lab #5 Semaphores, Producer/Consumer Problem October 19, 2016 Note: The following (with modifications) is adapted from Silberschatz (our course textbook), Project: Producer-Consumer Problem. The code below illustrates how a semaphore is created: sem_t sem; // Create the semaphore and initialize it to 5 sem_init(&sem, 0, 5); The sem_init() creates and initializes a semaphore. This function is passed three parameters: 1. A pointer to the semaphore 2. A flag indicating the level of sharing 3. The semaphore s initial value In this example, by passing the flag 0, we are indicating that this semaphore can only be shared by threads belonging to the same process that created the semaphore. A nonzero value would allow other processes to access the semaphore as well. Pthreads names the P() and V() operations that we discussed in class sem_wait() and sem_post(), respectively. The code example below creates a binary semaphore mutex with an initial value of 1 and illustrates its use in protecting a critical section: sem_t mutex; // Create the semaphore and initialize it to 1 sem_init(&mutex, 0, 1); sem_wait(&mutex); // *** critical section *** sem_post(&mutex); Your task is to carefully read, understand, complete, and run the code below, which implements a semaphore-based solution to the bounded buffer producer/consumer problem that we discussed in class. The parts of the program that you need to complete are written in boldface.

2 The buffer is manipulated with two functions, insert_item() and remove_item(), which are called by the producer and consumer threads, respectively. After you complete (by using semaphores) the insert_item() and remove_item()functions, these functions will synchronize the producer and consumer threads. You must use three semaphores: empty and full, which count the number of empty and full slots in the buffer, and mutex, which is a binary (or mutual exclusion) semaphore that protects the actual insertion or removal of items in the buffer (i.e., the critical section). The main() function initializes the buffer and creates separate producer and consumer threads. Once it has created the producer and consumer threads, the main() function will sleep for a period of time and, upon awakening, will terminate the application. The main() function is passed three parameters on the command line: 1. How long to sleep before terminating 2. The number of producer threads 3. The number of consumer threads The producer thread alternates between sleeping for a random period of time and inserting a random integer into the buffer. The consumer thread sleeps for a random period of time and, upon awakening, attempts to remove an item from the buffer. After you complete the code, compile it: gcc buffer.c lpthread or gcc buffer.c lpthread lposix After successful compilation, run the program and test it. Submit a printout of the completed program. // buffer.c // Bounded-buffer Producer/Consumer problem with semaphores #include <stdio.h> #include <stdlib.h> #include <pthread.h> #define TRUE 1 #define BUFFER_SIZE 5 typedef int buffer_item; buffer_item buffer[buffer_size]; // DECLARE THE 3 SEMAPHORES empty, full, AND mutex int insertpointer = 0, removepointer = 0; void *producer(void *param); void *consumer(void *param); int insert_item(buffer_item item);

3 int remove_item(buffer_item *item); int insert_item(buffer_item item) // EXECUTE OPERATION ON empty SEMAPHORE TO WAIT FOR EMPTY SPACE IN BUFFER // EXECUTE OPERATION ON mutex SEMAPHORE TO WAIT FOR ACCESS TO CRITICAL // SECTION (I.E., BUFFER) TO INSERT ITEM buffer[insertpointer++] = item; insertpointer = insertpointer % 5; // EXECUTE OPERATION ON mutex SEMAPHORE TO RELEASE ACCESS TO CRITICAL SECTION (I.E., BUFFER) // EXECUTE OPERATION ON full SEMAPHORE TO SIGNAL AVAILABILITY OF ONE MORE ITEM IN BUFFER int remove_item(buffer_item *item) // EXECUTE OPERATION ON full SEMAPHORE TO WAIT FOR ITEM IN BUFFER // EXECUTE OPERATION ON mutex SEMAPHORE TO WAIT FOR ACCESS TO CRITICAL // SECTION (I.E., BUFFER) TO REMOVE ITEM *item = buffer[removepointer]; buffer[removepointer++] = -1; removepointer = removepointer % 5; // EXECUTE OPERATION ON mutex SEMAPHORE TO RELEASE ACCESS TO CRITICAL SECTION (I.E., BUFFER) // EXECUTE OPERATION ON empty SEMAPHORE TO SIGNAL AVAILABILITY OF ONE MORE FREE SPACE IN BUFFER int main(int argc, char *argv[])

4 int sleeptime, producerthreads, consumerthreads; int i, j; if(argc!= 4) fprintf(stderr, "Useage: <sleep time> <producer threads> <consumer threads>\n"); return -1; sleeptime = atoi(argv[1]); producerthreads = atoi(argv[2]); consumerthreads = atoi(argv[3]); // INITIALIZE THE THREE SEMAPHORES srand(time(0)); //Create the producer and consumer threads for(i = 0; i < producerthreads; i++) pthread_t tid; pthread_attr_t attr; pthread_attr_init(&attr); pthread_create(&tid, &attr, producer, NULL); for(j = 0; j < consumerthreads; j++) pthread_t tid; pthread_attr_t attr; pthread_attr_init(&attr); pthread_create(&tid, &attr, consumer, NULL); //Sleep for user specified time sleep(sleeptime); void *producer(void *param) buffer_item random; int r;

5 while(true) r = rand() % 5; sleep(r); random = rand(); if(insert_item(random)) fprintf(stderr, "Error"); printf("producer produced %d \n", random); void *consumer(void *param) buffer_item random; int r; while(true) r = rand() % 5; sleep(r); if(remove_item(&random)) fprintf(stderr, "Error Consuming"); else printf("consumer consumed %d \n", random);

ANKARA UNIVERSITY COMPUTER ENGINEERING DEPARTMENT BLM334-COM334 PROJECT

ANKARA UNIVERSITY COMPUTER ENGINEERING DEPARTMENT BLM334-COM334 PROJECT ANKARA UNIVERSITY COMPUTER ENGINEERING DEPARTMENT BLM334-COM334 PROJECT Due date: 08.05.2013 Lab Hours You re expected to implement Producer-Consumer Problem that is described below. (Any form of cheating

More information

CS-345 Operating Systems. Tutorial 2: Grocer-Client Threads, Shared Memory, Synchronization

CS-345 Operating Systems. Tutorial 2: Grocer-Client Threads, Shared Memory, Synchronization CS-345 Operating Systems Tutorial 2: Grocer-Client Threads, Shared Memory, Synchronization Threads A thread is a lightweight process A thread exists within a process and uses the process resources. It

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 1 Review: Sync Terminology Worksheet 2 Review: Semaphores 3 Semaphores o Motivation: Avoid busy waiting by blocking a process execution

More information

Thread Fundamentals. CSCI 315 Operating Systems Design 1

Thread Fundamentals. CSCI 315 Operating Systems Design 1 Thread Fundamentals Notice: This set of slides is based on the notes by Professor Perrone of Bucknell and the textbook authors Silberschatz, Galvin, and Gagne, as well as the tutorial by Blaise Barney

More information

W4118 Operating Systems. Instructor: Junfeng Yang

W4118 Operating Systems. Instructor: Junfeng Yang W4118 Operating Systems Instructor: Junfeng Yang Outline Semaphores Producer-consumer problem Monitors and condition variables 2 Semaphore motivation Problem with lock: mutual exclusion, but no ordering

More information

Process Synchronization

Process Synchronization Process Synchronization Basic Concepts Objectives To introduce the critical-section problem, to ensure the consistency of shared data To introduce the concept of an atomic transaction and describe mechanisms

More information

Synchronization II. Today. ! Condition Variables! Semaphores! Monitors! and some classical problems Next time. ! Deadlocks

Synchronization II. Today. ! Condition Variables! Semaphores! Monitors! and some classical problems Next time. ! Deadlocks Synchronization II Today Condition Variables Semaphores Monitors and some classical problems Next time Deadlocks Condition variables Many times a thread wants to check whether a condition is true before

More information

Chapter 4 Threads. Images from Silberschatz 03/12/18. CS460 Pacific University 1

Chapter 4 Threads. Images from Silberschatz 03/12/18. CS460 Pacific University 1 Chapter 4 Threads Images from Silberschatz Pacific University 1 Threads Multiple lines of control inside one process What is shared? How many PCBs? Pacific University 2 Typical Usages Word Processor Web

More information

Synchroniza+on II COMS W4118

Synchroniza+on II COMS W4118 Synchroniza+on II COMS W4118 References: Opera+ng Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright no2ce: care has been taken to use only those web images deemed by the instructor

More information

Synchronization II. q Condition Variables q Semaphores and monitors q Some classical problems q Next time: Deadlocks

Synchronization II. q Condition Variables q Semaphores and monitors q Some classical problems q Next time: Deadlocks Synchronization II q Condition Variables q Semaphores and monitors q Some classical problems q Next time: Deadlocks Condition variables Locks are not enough to build concurrent programs Many times a thread

More information

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1

Thread. Disclaimer: some slides are adopted from the book authors slides with permission 1 Thread Disclaimer: some slides are adopted from the book authors slides with permission 1 IPC Shared memory Recap share a memory region between processes read or write to the shared memory region fast

More information

Data Races and Deadlocks! (or The Dangers of Threading) CS449 Fall 2017

Data Races and Deadlocks! (or The Dangers of Threading) CS449 Fall 2017 Data Races and Deadlocks! (or The Dangers of Threading) CS449 Fall 2017 Data Race Shared Data: 465 1 8 5 6 209? tail A[] thread switch Enqueue(): A[tail] = 20; tail++; A[tail] = 9; tail++; Thread 0 Thread

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics CS 485G6: Systems Programming Lecture 34: 5 Apr 6 Shared Variables in Threaded C Programs Question: Which variables in a threaded C program are shared? The answer is not as simple

More information

Carnegie Mellon. Synchroniza+on : Introduc+on to Computer Systems Recita+on 14: November 25, Pra+k Shah (pcshah) Sec+on C

Carnegie Mellon. Synchroniza+on : Introduc+on to Computer Systems Recita+on 14: November 25, Pra+k Shah (pcshah) Sec+on C Synchroniza+on 15-213: Introduc+on to Computer Systems Recita+on 14: November 25, 2013 Pra+k Shah (pcshah) Sec+on C 1 Topics News Shared State Race condi+ons Synchroniza+on Mutex Semaphore Readers- writers

More information

CS 6400 Lecture 11 Name:

CS 6400 Lecture 11 Name: Readers and Writers Example - Granularity Issues. Multiple concurrent readers, but exclusive access for writers. Original Textbook code with ERRORS - What are they? Lecture 11 Page 1 Corrected Textbook

More information

[537] Semaphores. Tyler Harter

[537] Semaphores. Tyler Harter [537] Semaphores Tyler Harter Producer/Consumer Problem Producers generate data (like pipe writers). Consumers grab data and process it (like pipe readers). Producer/consumer problems are frequent in systems.

More information

POSIX Semaphores. Operations on semaphores (taken from the Linux man page)

POSIX Semaphores. Operations on semaphores (taken from the Linux man page) POSIX Semaphores A variable of type sem_t Example Declaration of a semaphore sem_t sem; Operations on semaphores (taken from the Linux man page) int sem_init(sem_t *sem, int pshared, unsigned int value);

More information

Synchronization: Advanced

Synchronization: Advanced Synchronization: Advanced CS 485G-006: Systems Programming Lecture 35: 27 Apr 2016 1 Enforcing Mutual Exclusion Question: How can we guarantee a safe trajectory? Answer: We must synchronize the execution

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, April 8, 7 Instructor: Seth Copen Goldstein, Franz Franchetti Today Threads review Sharing Mutual exclusion Semaphores Traditional

More information

POSIX threads CS 241. February 17, Copyright University of Illinois CS 241 Staff

POSIX threads CS 241. February 17, Copyright University of Illinois CS 241 Staff POSIX threads CS 241 February 17, 2012 Copyright University of Illinois CS 241 Staff 1 Recall: Why threads over processes? Creating a new process can be expensive Time A call into the operating system

More information

Process Synchroniza/on

Process Synchroniza/on Process Synchroniza/on Andrew Case Slides adapted from Mohamed Zahran, Clark Barre9, Jinyang Li, Randy Bryant and Dave O Hallaron Topics Sharing data Race condi/ons Mutual exclusion and semaphores Sample

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, November 6, 7 Instructor: Randy Bryant Today Threads review Sharing Mutual exclusion Semaphores 3 Traditional View of a Process

More information

Process Synchronization

Process Synchronization Process Synchronization Part III, Modified by M.Rebaudengo - 2013 Silberschatz, Galvin and Gagne 2009 POSIX Synchronization POSIX.1b standard was adopted in 1993 Pthreads API is OS-independent It provides:

More information

Compile the Hello World program

Compile the Hello World program OS Project1 1 Hello World Writing a Hello World program #include header.h main ( int argc, char *argv[] ) { printf( Hello World!\n ); } Compile the Hello World program > gcc helloworld.c o helloworld 2

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2019 Lecture 6 Processes Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Fork( ) causes a branch

More information

Semaphores Semaphores: A Definition

Semaphores Semaphores: A Definition 23 Semaphores As we know now, one needs both locks and condition variables to solve a broad range of relevant and interesting concurrency problems. The first person who realized this years ago was Edsger

More information

CS 345 Operating Systems. Tutorial 2: Treasure Room Simulation Threads, Shared Memory, Synchronization

CS 345 Operating Systems. Tutorial 2: Treasure Room Simulation Threads, Shared Memory, Synchronization CS 345 Operating Systems Tutorial 2: Treasure Room Simulation Threads, Shared Memory, Synchronization Assignment 2 We have a treasure room, Team A and Team B. Treasure room has N coins inside. Each team

More information

Pre-lab #2 tutorial. ECE 254 Operating Systems and Systems Programming. May 24, 2012

Pre-lab #2 tutorial. ECE 254 Operating Systems and Systems Programming. May 24, 2012 Pre-lab #2 tutorial ECE 254 Operating Systems and Systems Programming May 24, 2012 Content Concurrency Concurrent Programming Thread vs. Process POSIX Threads Synchronization and Critical Sections Mutexes

More information

Assignment #2. Problem 2.1: airplane synchronization

Assignment #2. Problem 2.1: airplane synchronization Computer Architecture and Operating Systems Course: 320202 Jacobs University Bremen Date: 2009-02-25 Dr. Jürgen Schönwälder, Alen Stojanov Deadline: 2009-03-06 Assignment #2 Problem 2.1: airplane synchronization

More information

Threads. Threads (continued)

Threads. Threads (continued) Threads A thread is an alternative model of program execution A process creates a thread through a system call Thread operates within process context Use of threads effectively splits the process state

More information

CS 25200: Systems Programming. Lecture 26: Classic Synchronization Problems

CS 25200: Systems Programming. Lecture 26: Classic Synchronization Problems CS 25200: Systems Programming Lecture 26: Classic Synchronization Problems Dr. Jef Turkstra 2018 Dr. Jeffrey A. Turkstra 1 Announcements Lab 5 posted this evening Web server Password protection SSL cgi-bin

More information

Threads. Jo, Heeseung

Threads. Jo, Heeseung Threads Jo, Heeseung Multi-threaded program 빠른실행 프로세스를새로생성에드는비용을절약 데이터공유 파일, Heap, Static, Code 의많은부분을공유 CPU 를보다효율적으로활용 코어가여러개일경우코어에 thread 를할당하는방식 2 Multi-threaded program Pros. Cons. 대량의데이터처리에적합 - CPU

More information

Synchronization and Semaphores. Copyright : University of Illinois CS 241 Staff 1

Synchronization and Semaphores. Copyright : University of Illinois CS 241 Staff 1 Synchronization and Semaphores Copyright : University of Illinois CS 241 Staff 1 Synchronization Primatives Counting Semaphores Permit a limited number of threads to execute a section of the code Binary

More information

Carnegie Mellon Concurrency and Synchronization

Carnegie Mellon Concurrency and Synchronization Concurrency and Synchronization CMPSCI 3: Computer Systems Principles int pthread_join (pthread_t thread, void **value_ptr) { int result; ptw3_thread_t * tp = (ptw3_thread_t *) thread.p; if (NULL == tp

More information

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS. Information and Computer Science Department. ICS 431 Operating Systems. Lab # 9.

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS. Information and Computer Science Department. ICS 431 Operating Systems. Lab # 9. KING FAHD UNIVERSITY OF PETROLEUM & MINERALS Information and Computer Science Department ICS 431 Operating Systems Lab # 9 Semaphores Objectives: In this lab, we will use semaphore to solve various synchronization

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 8 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many partners can we cave for project:

More information

Operating Systems, Final exam May 2016 Bachelor's Degree in Computer Science and Engineering

Operating Systems, Final exam May 2016 Bachelor's Degree in Computer Science and Engineering RULES: The final grades and the review dates will be anounced in Aula Global. The exam duration is two hours and a half. Books and notes are not allowed. A valid ID document will be necessary to submmit

More information

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5 CS 153 Lab4 and 5 Kishore Kumar Pusukuri Outline Introduction A thread is a straightforward concept : a single sequential flow of control. In traditional operating systems, each process has an address

More information

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits

Threads. What is a thread? Motivation. Single and Multithreaded Processes. Benefits CS307 What is a thread? Threads A thread is a basic unit of CPU utilization contains a thread ID, a program counter, a register set, and a stack shares with other threads belonging to the same process

More information

Carnegie Mellon Synchronization: Advanced

Carnegie Mellon Synchronization: Advanced 1 Synchronization: Advanced 15-213 / 18-213: Introduction to Computer Systems 25 th Lecture, Nov. 20, 2018 2 Reminder: Semaphores Semaphore: non-negative global integer synchronization variable Manipulated

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

CS 3305 Intro to Threads. Lecture 6

CS 3305 Intro to Threads. Lecture 6 CS 3305 Intro to Threads Lecture 6 Introduction Multiple applications run concurrently! This means that there are multiple processes running on a computer Introduction Applications often need to perform

More information

Shared Memory: Virtual Shared Memory, Threads & OpenMP

Shared Memory: Virtual Shared Memory, Threads & OpenMP Shared Memory: Virtual Shared Memory, Threads & OpenMP Eugen Betke University of Hamburg Department Informatik Scientific Computing 09.01.2012 Agenda 1 Introduction Architectures of Memory Systems 2 Virtual

More information

[537] Concurrency Bugs. Tyler Harter

[537] Concurrency Bugs. Tyler Harter [537] Concurrency Bugs Tyler Harter Review Semaphores CV s vs. Semaphores CV rules of thumb: - Keep state in addition to CV s - Always do wait/signal with lock held - Whenever you acquire a lock, recheck

More information

Lecture Contents. 1. Overview. 2. Multithreading Models 3. Examples of Thread Libraries 4. Summary

Lecture Contents. 1. Overview. 2. Multithreading Models 3. Examples of Thread Libraries 4. Summary Lecture 4 Threads 1 Lecture Contents 1. Overview 2. Multithreading Models 3. Examples of Thread Libraries 4. Summary 2 1. Overview Process is the unit of resource allocation and unit of protection. Thread

More information

High Performance Computing Lecture 21. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 21. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 21 Matthew Jacob Indian Institute of Science Semaphore Examples Semaphores can do more than mutex locks Example: Consider our concurrent program where process P1 reads

More information

HPCSE - I. «Introduction to multithreading» Panos Hadjidoukas

HPCSE - I. «Introduction to multithreading» Panos Hadjidoukas HPCSE - I «Introduction to multithreading» Panos Hadjidoukas 1 Processes and Threads POSIX Threads API Outline Thread management Synchronization with mutexes Deadlock and thread safety 2 Terminology -

More information

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois Condition Variables CS 241 Prof. Brighten Godfrey March 16, 2012 University of Illinois 1 Synchronization primitives Mutex locks Used for exclusive access to a shared resource (critical section) Operations:

More information

Synchronization Primitives

Synchronization Primitives Synchronization Primitives Locks Synchronization Mechanisms Very primitive constructs with minimal semantics Semaphores A generalization of locks Easy to understand, hard to program with Condition Variables

More information

CS 453/552: Operating Systems Midterm Examination

CS 453/552: Operating Systems Midterm Examination CS 453/552: Operating Systems Midterm Examination Time: 110 minutes Name : Total Points: 150 This exam has 9 questions, for a total of 165 points. Graduate students need to answer all questions. There

More information

CS 105, Spring 2007 Ring Buffer

CS 105, Spring 2007 Ring Buffer CS 105, Spring 2007 Ring Buffer April 11, 2007 1 Introduction A ring buffer, also called a circular buffer, is a common method of sharing information between a producer and a consumer. In class, we have

More information

Announcements. Class feedback for mid-course evaluations Receive about survey to fill out until this Friday

Announcements. Class feedback for mid-course evaluations Receive  about survey to fill out until this Friday Announcements Project 2: Part 2a will be graded this week Part 2b take longer since we compare all graphs Project 3: Shared memory segments Linux: use shmget and shmat across server + client processes

More information

Process Synchronization(2)

Process Synchronization(2) CSE 3221.3 Operating System Fundamentals No.6 Process Synchronization(2) Prof. Hui Jiang Dept of Computer Science and Engineering York University Semaphores Problems with the software solutions. Not easy

More information

CSci 4061 Introduction to Operating Systems. Synchronization Basics: Locks

CSci 4061 Introduction to Operating Systems. Synchronization Basics: Locks CSci 4061 Introduction to Operating Systems Synchronization Basics: Locks Synchronization Outline Basics Locks Condition Variables Semaphores Basics Race condition: threads + shared data Outcome (data

More information

CSC 1600: Chapter 6. Synchronizing Threads. Semaphores " Review: Multi-Threaded Processes"

CSC 1600: Chapter 6. Synchronizing Threads. Semaphores  Review: Multi-Threaded Processes CSC 1600: Chapter 6 Synchronizing Threads with Semaphores " Review: Multi-Threaded Processes" 1 badcnt.c: An Incorrect Program" #define NITERS 1000000 unsigned int cnt = 0; /* shared */ int main() pthread_t

More information

Today. Threads review Sharing Mutual exclusion Semaphores

Today. Threads review Sharing Mutual exclusion Semaphores SYNCHRONIZATION Today Threads review Sharing Mutual exclusion Semaphores Process: Traditional View Process = process context + code, data, and stack Process context Program context: Data registers Condition

More information

Synchronization and Semaphores. Copyright : University of Illinois CS 241 Staff 1

Synchronization and Semaphores. Copyright : University of Illinois CS 241 Staff 1 Synchronization and Semaphores Copyright : University of Illinois CS 241 Staff 1 Synchronization Primatives Counting Semaphores Permit a limited number of threads to execute a section of the code Binary

More information

Recitation 14: Proxy Lab Part 2

Recitation 14: Proxy Lab Part 2 Recitation 14: Proxy Lab Part 2 Instructor: TA(s) 1 Outline Proxylab Threading Threads and Synchronization 2 ProxyLab ProxyLab is due in 1 week. No grace days Late days allowed (-15%) Make sure to submit

More information

Threads. Jo, Heeseung

Threads. Jo, Heeseung Threads Jo, Heeseung Multi-threaded program 빠른실행 프로세스를새로생성에드는비용을절약 데이터공유 파일, Heap, Static, Code 의많은부분을공유 CPU 를보다효율적으로활용 코어가여러개일경우코어에 thread 를할당하는방식 2 Multi-threaded program Pros. Cons. 대량의데이터처리에적합 - CPU

More information

Multicore and Multiprocessor Systems: Part I

Multicore and Multiprocessor Systems: Part I Chapter 3 Multicore and Multiprocessor Systems: Part I Max Planck Institute Magdeburg Jens Saak, Scientific Computing II 44/337 Symmetric Multiprocessing Definition (Symmetric Multiprocessing (SMP)) The

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 9 CPU Scheduling II (Scheduling Algorithms, Thread Scheduling, Real-time CPU Scheduling) Summer 2018 Overview Objective: 1. To describe priority scheduling

More information

Using Semaphores CS 241. March 14, University of Illinois

Using Semaphores CS 241. March 14, University of Illinois Using Semaphores CS 241 March 14, 2012 University of Illinois Slides adapted in part from material accompanying Bryant & O Hallaron, Computer Systems: A Programmer's Perspective, 2/E 1 Announcements MP6

More information

Process Synchronization(2)

Process Synchronization(2) EECS 3221.3 Operating System Fundamentals No.6 Process Synchronization(2) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Semaphores Problems with the software solutions.

More information

PThreads in a Nutshell

PThreads in a Nutshell PThreads in a Nutshell Chris Kauffman CS 499: Spring 2016 GMU Logistics Today POSIX Threads Briefly Reading Grama 7.1-9 (PThreads) POSIX Threads Programming Tutorial HW4 Upcoming Post over the weekend

More information

Programming with Threads Dec 7, 2009"

Programming with Threads Dec 7, 2009 Programming with Threads Dec 7, 2009" Administrivia" 2! Shared Variables in Threaded C Programs" 3! Threads Memory Model" 4! Example of Threads Accessing Another Threadʼs Stack" char **ptr; /* global */

More information

Threads need to synchronize their activities to effectively interact. This includes:

Threads need to synchronize their activities to effectively interact. This includes: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS Information and Computer Science Department ICS 431 Operating Systems Lab # 8 Threads Synchronization ( Mutex & Condition Variables ) Objective: When multiple

More information

CPSC 341 OS & Networks. Threads. Dr. Yingwu Zhu

CPSC 341 OS & Networks. Threads. Dr. Yingwu Zhu CPSC 341 OS & Networks Threads Dr. Yingwu Zhu Processes Recall that a process includes many things An address space (defining all the code and data pages) OS resources (e.g., open files) and accounting

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 Lecture 7 Threads Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How many processes can a core

More information

Operating Systems Prof. Ashok K Agrawala

Operating Systems Prof. Ashok K Agrawala CSMC 412 Operating Systems Prof. Ashok K Agrawala 2005 Ashok Agrawala Set 4 4.1 Silberschatz, Galvin and Gagne 2005 Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux

More information

Lecture 5 Threads and Pthreads II

Lecture 5 Threads and Pthreads II CSCI-GA.3033-017 Special Topics: Multicore Programming Lecture 5 Threads and Pthreads II Christopher Mitchell, Ph.D. cmitchell@cs.nyu.edu http://z80.me Context We re exploring the layers of an application

More information

Programming Languages

Programming Languages Programming Languages Dr. Michael Petter WS 2016/17 Exercise Sheet 3 Assignment 3.1 Lockfree vs. locked programming The purpose of the following exercises is to get acquainted with the pthreads library,

More information

York University Lassonde School of Engineering Department of Electrical Engineering and Computer Science

York University Lassonde School of Engineering Department of Electrical Engineering and Computer Science York University Lassonde School of Engineering Department of Electrical Engineering and Computer Science Midterm EECS 3221.03Z Operating Systems Fundamentals Feb 26, 2015 (14:30-16:00) Section: EECS3221Z

More information

Operating systems. Lecture 12

Operating systems. Lecture 12 Operating systems. Lecture 12 Michał Goliński 2018-12-18 Introduction Recall Critical section problem Peterson s algorithm Synchronization primitives Mutexes Semaphores Plan for today Classical problems

More information

CS Operating system

CS Operating system Name / ID (please PRINT) Seq#: Seat Number CS 3733.001 -- Operating system Spring 2017 -- Midterm II -- April 13, 2017 You have 75 min. Good Luck! This is a closed book/note examination. But You can use

More information

Preview. What are Pthreads? The Thread ID. The Thread ID. The thread Creation. The thread Creation 10/25/2017

Preview. What are Pthreads? The Thread ID. The Thread ID. The thread Creation. The thread Creation 10/25/2017 Preview What are Pthreads? What is Pthreads The Thread ID The Thread Creation The thread Termination The pthread_join() function Mutex The pthread_cancel function The pthread_cleanup_push() function The

More information

Lecture 4 Threads. (chapter 4)

Lecture 4 Threads. (chapter 4) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 4 Threads (chapter 4) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The slides here are adapted/modified

More information

11/04/2018. Outline. Process. Process. Pthread Library. Process and threads

11/04/2018. Outline. Process. Process. Pthread Library. Process and threads Outline 1. General descriptions 2. Thread management 3. Scheduler(s) in Linux 4. Time management 5. Handling periodic threads 6. Mutual exclusion 7. Examples Process A process is the main execution entity

More information

Chapter 5: Threads. Single and Multithreaded Processes

Chapter 5: Threads. Single and Multithreaded Processes Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads Chapter 5: Threads 5.1 Silberschatz, Galvin and Gagne 2003 Single and Multithreaded Processes 5.2

More information

Lecture #24 Synchronization

Lecture #24 Synchronization Lecture #24 Synchronization 8-600: Foundations of Computer Systems November 27, 207 Today Sharing Mutual exclusion Semaphores 2 Shared Variables in Threaded C Programs Question: Which variables in a threaded

More information

CSE 380: Homework 2: Synchronization

CSE 380: Homework 2: Synchronization CSE 380 Homework 2 1 CSE 380: Homework 2: Synchronization Due : Thursday, October 2, 2003 Submit a hardcopy solution of the problems in class on Oct 2, and submit code and documentation for the programs

More information

Sistemi in tempo reale

Sistemi in tempo reale Sistemi in tempo reale Semaphores Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa October 5, 2011 Outline 1 Semaphores Mutual exclusion Synchronization Exercise Producer /

More information

1. Introduction. 2. Project Submission and Deliverables

1. Introduction. 2. Project Submission and Deliverables Spring 2018 Programming Project 2 Due 11:59 PM, Wednesday, 3/21/18 (3/21 is the Wednesday after Spring Break, so if you don t want to work on the program over break or save all the work for those last

More information

High Performance Computing Course Notes Shared Memory Parallel Programming

High Performance Computing Course Notes Shared Memory Parallel Programming High Performance Computing Course Notes 2009-2010 2010 Shared Memory Parallel Programming Techniques Multiprocessing User space multithreading Operating system-supported (or kernel) multithreading Distributed

More information

CS 153 Lab6. Kishore Kumar Pusukuri

CS 153 Lab6. Kishore Kumar Pusukuri Outline Mutex vs Condition Variables Unlocking and locking mutex leads spinning or polling, wastes CPU time. We could sleep for some amount of time, but we do not know how long to sleep. A mutex is for

More information

4.8 Summary. Practice Exercises

4.8 Summary. Practice Exercises Practice Exercises 191 structures of the parent process. A new task is also created when the clone() system call is made. However, rather than copying all data structures, the new task points to the data

More information

Process Synchronization(2)

Process Synchronization(2) EECS 3221.3 Operating System Fundamentals No.6 Process Synchronization(2) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Semaphores Problems with the software solutions.

More information

CISC2200 Threads Spring 2015

CISC2200 Threads Spring 2015 CISC2200 Threads Spring 2015 Process We learn the concept of process A program in execution A process owns some resources A process executes a program => execution state, PC, We learn that bash creates

More information

CSE 333 SECTION 9. Threads

CSE 333 SECTION 9. Threads CSE 333 SECTION 9 Threads HW4 How s HW4 going? Any Questions? Threads Sequential execution of a program. Contained within a process. Multiple threads can exist within the same process. Every process starts

More information

CSMC 412. Operating Systems Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 2006 CMSC 412 Set 4

CSMC 412. Operating Systems Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 2006 CMSC 412 Set 4 CSMC 412 Operating Systems Prof. Ashok K Agrawala 2005 Ashok Agrawala Set 4 1 Threads Overview Multithreading Models Threading Issues Pthreads Windows XP Threads Linux Threads Java Threads 2 Single and

More information

Chapter 6 Synchronization

Chapter 6 Synchronization Chapter 6 Synchronization Images from Silberschatz Pacific University 1 My code is slow Don't worry about speed at this point Later solutions: use the optimizer with gcc: -O# # is 0,1,2,3 0 do not optimize

More information

Synchronization. Semaphores implementation

Synchronization. Semaphores implementation Synchronization Semaphores implementation Possible implementations There are seeral possible implementations (standard and non standard)of a semaphore Semaphores through pipe POSIX semaphores Linux semaphores

More information

Operating systems fundamentals - B06

Operating systems fundamentals - B06 Operating systems fundamentals - B06 David Kendall Northumbria University David Kendall (Northumbria University) Operating systems fundamentals - B06 1 / 12 Introduction Introduction to threads Reminder

More information

Operating Systems & Concurrency: Process Concepts

Operating Systems & Concurrency: Process Concepts Operating Systems & Concurrency: Process Concepts Michael Brockway October 6, 2011 Outline Processes - context, data area, states Process creation, termination unix examples Processes and threads Processes

More information

Process Synchronization

Process Synchronization Process Synchronization Reading: Silberschatz chapter 6 Additional Reading: Stallings chapter 5 EEL 358 1 Outline Concurrency Competing and Cooperating Processes The Critical-Section Problem Fundamental

More information

CS240: Programming in C. Lecture 18: PThreads

CS240: Programming in C. Lecture 18: PThreads CS240: Programming in C Lecture 18: PThreads Thread Creation Initially, your main() program comprises a single, default thread. pthread_create creates a new thread and makes it executable. This routine

More information

CS 105, Spring 2015 Ring Buffer

CS 105, Spring 2015 Ring Buffer CS 105, Spring 2015 Ring Buffer March 10, 2015 1 Introduction A ring buffer, also called a circular buffer, is a common method of sharing information between a producer and a consumer. In class, we have

More information

real time operating systems course

real time operating systems course real time operating systems course 4 introduction to POSIX pthread programming introduction thread creation, join, end thread scheduling thread cancellation semaphores thread mutexes and condition variables

More information

CS345 Opera,ng Systems. Φροντιστήριο Άσκησης 2

CS345 Opera,ng Systems. Φροντιστήριο Άσκησης 2 CS345 Opera,ng Systems Φροντιστήριο Άσκησης 2 Inter- process communica0on Exchange data among processes Methods Signals Pipes Sockets Shared Memory Sockets Endpoint of communica,on link between two programs

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto For more information please consult Advanced Programming in the UNIX Environment, 3rd Edition, W. Richard Stevens and

More information

CS3733: Operating Systems

CS3733: Operating Systems Outline CS3733: Operating Systems Topics: Synchronization, Critical Sections and Semaphores (SGG Chapter 6) Instructor: Dr. Tongping Liu 1 Memory Model of Multithreaded Programs Synchronization for coordinated

More information