Isabelle s meta-logic. p.1

Size: px
Start display at page:

Download "Isabelle s meta-logic. p.1"

Transcription

1 Isabelle s meta-logic p.1

2 Basic constructs Implication = (==>) For separating premises and conclusion of theorems p.2

3 Basic constructs Implication = (==>) For separating premises and conclusion of theorems Equality (==) For definitions p.2

4 Basic constructs Implication = (==>) For separating premises and conclusion of theorems Equality (==) For definitions Universal quantifier (!!) For binding local variables p.2

5 Basic constructs Implication = (==>) For separating premises and conclusion of theorems Equality (==) For definitions Universal quantifier (!!) For binding local variables Do not use inside HOL formulae p.2

6 Notation [ A 1 ;... ; A n ] = B abbreviates A 1 =... = A n = B p.3

7 Notation [ A 1 ;... ; A n ] = B abbreviates A 1 =... = A n = B ; and p.3

8 The proof state 1. x 1... x p. [ A 1 ;... ; A n ] = B x 1... x p A 1... A n B Local constants Local assumptions Actual (sub)goal p.4

9 Type and function definition in Isabelle/HOL p.5

10 Type definition in Isabelle/HOL p.6

11 Introducing new types Keywords: typedecl: pure declaration types: abbreviation datatype: recursive datatype p.7

12 typedecl typedecl name Introduces new opaque type name without definition p.8

13 typedecl typedecl name Introduces new opaque type name without definition Example: typedecl addr An abstract type of addresses p.8

14 types types name = τ Introduces an abbreviation name for type τ p.9

15 types types name = τ Introduces an abbreviation name for type τ Examples: types name = string ( a, b)foo = a list b list p.9

16 types types name = τ Introduces an abbreviation name for type τ Examples: types name = string ( a, b)foo = a list b list Type abbreviations are expanded immediately after parsing Not present in internal representation and Isabelle output p.9

17 datatype p.10

18 The example datatype a list = Nil Cons a ( a list) Properties: Types: Nil :: a list Cons :: a a list a list Distinctness: Nil Cons x xs Injectivity: (Cons x xs = Cons y ys) = (x = y xs = ys) p.11

19 The general case datatype (α 1,...,α n )τ = C 1 τ 1,1...τ 1,n1... C k τ k,1...τ k,nk Types: C i :: τ i,1 τ i,ni (α 1,...,α n )τ Distinctness: C i... C j... if i j Injectivity: (C i x 1...x ni = C i y 1...y ni ) = (x 1 = y 1... x ni = y ni ) p.12

20 The general case datatype (α 1,...,α n )τ = C 1 τ 1,1...τ 1,n1... C k τ k,1...τ k,nk Types: C i :: τ i,1 τ i,ni (α 1,...,α n )τ Distinctness: C i... C j... if i j Injectivity: (C i x 1...x ni = C i y 1...y ni ) = (x 1 = y 1... x ni = y ni ) Distinctness and Injectivity are applied automatically Induction must be applied explicitly p.12

21 Function definition in Isabelle/HOL p.13

22 Why nontermination can be harmful How about f x = f x + 1? p.14

23 Why nontermination can be harmful How about f x = f x + 1? Subtract f x on both sides. = 0 = 1 p.14

24 Why nontermination can be harmful How about f x = f x + 1? Subtract f x on both sides. = 0 = 1! All functions in HOL must be total! p.14

25 Function definition schemas in Isabelle/HOL Non-recursive with definition No problem p.15

26 Function definition schemas in Isabelle/HOL Non-recursive with definition No problem Primitive-recursive with primrec Terminating by construction p.15

27 Function definition schemas in Isabelle/HOL Non-recursive with definition No problem Primitive-recursive with primrec Terminating by construction Well-founded recursion with fun Automatic termination proof p.15

28 Function definition schemas in Isabelle/HOL Non-recursive with definition No problem Primitive-recursive with primrec Terminating by construction Well-founded recursion with fun Automatic termination proof Well-founded recursion with function User-supplied termination proof p.15

29 definition p.16

30 Definition (non-recursive) by example definition sq :: nat nat where sq n = n * n p.17

31 Definitions: pitfalls definition prime :: nat bool where prime p = (1 < p (m dvd p m = 1 m = p)) p.18

32 Definitions: pitfalls definition prime :: nat bool where prime p = (1 < p (m dvd p m = 1 m = p)) Not a definition: free m not on left-hand side p.18

33 Definitions: pitfalls definition prime :: nat bool where prime p = (1 < p (m dvd p m = 1 m = p)) Not a definition: free m not on left-hand side! Every free variable on the rhs must occur on the lhs! p.18

34 Definitions: pitfalls definition prime :: nat bool where prime p = (1 < p (m dvd p m = 1 m = p)) Not a definition: free m not on left-hand side! Every free variable on the rhs must occur on the lhs! prime p = (1 < p ( m. m dvd p m = 1 m = p)) p.18

35 Using definitions Definitions are not used automatically p.19

36 Using definitions Definitions are not used automatically Unfolding the definition of sq: apply(unfold sq_def) p.19

37 primrec p.20

38 The example primrec app :: a list a list a list where app Nil ys = ys app (Cons x xs) ys = Cons x (app xs ys) p.21

39 The general case If τ is a datatype (with constructors C 1,...,C k ) then f :: τ τ can be defined by primitive recursion: f x 1...(C 1 y 1,1...y 1,n1 )...x p = r 1. f x 1...(C k y k,1...y k,nk )...x p = r k p.22

40 The general case If τ is a datatype (with constructors C 1,...,C k ) then f :: τ τ can be defined by primitive recursion: f x 1...(C 1 y 1,1...y 1,n1 )...x p = r 1. f x 1...(C k y k,1...y k,nk )...x p = r k The recursive calls in r i must be structurally smaller, i.e. of the form f a 1...y i,j...a p p.22

41 nat is a datatype datatype nat = 0 Suc nat p.23

42 nat is a datatype datatype nat = 0 Suc nat Functions on nat definable by primrec! primrec f :: nat... f 0 =... f(suc n) =... f n... p.23

43 More predefined types and functions p.24

44 Type option datatype a option = None Some a p.25

45 Type option datatype a option = None Some a Important application:... a option partial function: None no result Some a result a p.25

46 Type option datatype a option = None Some a Important application:... a option partial function: None no result Some a result a Example: consts lookup :: k ( k v) list v option p.25

47 Type option datatype a option = None Some a Important application:... a option partial function: None no result Some a result a Example: consts lookup :: k ( k v) list v option primrec lookup k [] = None p.25

48 Type option datatype a option = None Some a Important application:... a option partial function: None no result Some a result a Example: consts lookup :: k ( k v) list v option primrec lookup k [] = None lookup k (x#xs) = (if fst x = k then Some(snd x) else lookup k xs) p.25

49 case Datatype values can be taken apart with case expressions: (case xs of []... y#ys... y... ys...) p.26

50 case Datatype values can be taken apart with case expressions: (case xs of []... y#ys... y... ys...) Wildcards: (case xs of [] [] y#_ [y]) p.26

51 case Datatype values can be taken apart with case expressions: (case xs of []... y#ys... y... ys...) Wildcards: (case xs of [] [] y#_ [y]) Nested patterns: (case xs of [0] 0 [Suc n] n _ 2) p.26

52 case Datatype values can be taken apart with case expressions: (case xs of []... y#ys... y... ys...) Wildcards: (case xs of [] [] y#_ [y]) Nested patterns: (case xs of [0] 0 [Suc n] n _ 2) Complicated patterns mean complicated proofs! p.26

53 case Datatype values can be taken apart with case expressions: (case xs of []... y#ys... y... ys...) Wildcards: (case xs of [] [] y#_ [y]) Nested patterns: (case xs of [0] 0 [Suc n] n _ 2) Complicated patterns mean complicated proofs! Needs ( ) in context p.26

54 Proof by case distinction If t :: τ and τ is a datatype apply( case_tac t) p.27

55 Proof by case distinction If t :: τ and τ is a datatype apply( case_tac t) creates k subgoals t = C i x 1...x p =... one for each constructor C i of type τ. p.27

56 Demo: trees p.28

57 fun From primitive recursion to arbitrary pattern matching p.29

58 Example: Fibonacchi fun fib :: nat nat where fib 0 = 0 fib (Suc 0) = 1 fib (Suc(Suc n)) = fib (n+1) + fib n p.30

59 Example: Separation fun sep :: a a list a list where sep a [] = [] sep a [x] = [x] sep a (x#y#zs) = x # a # sep a (y#zs) p.31

60 Example: Ackermann fun ack :: nat nat nat where ack 0 n = Suc n ack (Suc m) 0 = ack m (Suc 0) ack (Suc m) (Suc n) = ack m (ack (Suc m) n) p.32

61 Key features of fun Arbitrary pattern matching p.33

62 Key features of fun Arbitrary pattern matching Order of equations matters p.33

63 Key features of fun Arbitrary pattern matching Order of equations matters Termination must be provable by lexicographic combination of size measures p.33

64 Size size(n::nat) = n p.34

65 Size size(n::nat) = n size(xs) = length xs p.34

66 Size size(n::nat) = n size(xs) = length xs size counts number of (non-nullary) constructors p.34

67 Lexicographic ordering Either the first component decreases, or it stays unchanged and the second component decreases: p.35

68 Lexicographic ordering Either the first component decreases, or it stays unchanged and the second component decreases: (5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > p.35

69 Lexicographic ordering Either the first component decreases, or it stays unchanged and the second component decreases: Similar for tuples: (5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > (5, 6, 3) > (4, 12, 5) > (4, 11, 9) > (4, 11, 8) > p.35

70 Lexicographic ordering Either the first component decreases, or it stays unchanged and the second component decreases: Similar for tuples: (5, 3) > (4, 7) > (4, 6) > (4, 0) > (3, 42) > (5, 6, 3) > (4, 12, 5) > (4, 11, 9) > (4, 11, 8) > Theorem If each component ordering terminates, then their lexicographic product terminates, too. p.35

71 Ackermann terminates ack 0 n = Suc n ack (Suc m) 0 = ack m (Suc 0) ack (Suc m) (Suc n) = ack m (ack (Suc m) n) p.36

72 Ackermann terminates ack 0 n = Suc n ack (Suc m) 0 = ack m (Suc 0) ack (Suc m) (Suc n) = ack m (ack (Suc m) n) because the arguments of each recursive call are lexicographically smaller than the arguments on the lhs. p.36

73 Ackermann terminates ack 0 n = Suc n ack (Suc m) 0 = ack m (Suc 0) ack (Suc m) (Suc n) = ack m (ack (Suc m) n) because the arguments of each recursive call are lexicographically smaller than the arguments on the lhs. Note: order of arguments not important for Isabelle! p.36

74 Computation Induction If f :: τ τ is defined by fun, a special induction schema is provided to prove P(x) for all x :: τ: p.37

75 Computation Induction If f :: τ τ is defined by fun, a special induction schema is provided to prove P(x) for all x :: τ: for each equation f(e) = t, prove P(e) assuming P(r) for all recursive calls f(r) in t. p.37

76 Computation Induction If f :: τ τ is defined by fun, a special induction schema is provided to prove P(x) for all x :: τ: for each equation f(e) = t, prove P(e) assuming P(r) for all recursive calls f(r) in t. Induction follows course of (terminating!) computation p.37

77 Computation Induction: Example fun div2 :: nat nat where div2 0 = 0 div2 (Suc 0) = 0 div2(suc(suc n)) = Suc(div2 n) p.38

78 Computation Induction: Example fun div2 :: nat nat where div2 0 = 0 div2 (Suc 0) = 0 div2(suc(suc n)) = Suc(div2 n) induction rule div2.induct: P(0) P(Suc 0) P(n) = P(Suc(Suc n)) P(m) p.38

79 Demo: fun p.39

Theorem Proving Principles, Techniques, Applications Recursion

Theorem Proving Principles, Techniques, Applications Recursion NICTA Advanced Course Theorem Proving Principles, Techniques, Applications Recursion 1 CONTENT Intro & motivation, getting started with Isabelle Foundations & Principles Lambda Calculus Higher Order Logic,

More information

Overview. A Compact Introduction to Isabelle/HOL. Tobias Nipkow. System Architecture. Overview of Isabelle/HOL

Overview. A Compact Introduction to Isabelle/HOL. Tobias Nipkow. System Architecture. Overview of Isabelle/HOL Overview A Compact Introduction to Isabelle/HOL Tobias Nipkow TU München 1. Introduction 2. Datatypes 3. Logic 4. Sets p.1 p.2 System Architecture Overview of Isabelle/HOL ProofGeneral Isabelle/HOL Isabelle

More information

An Introduction to Isabelle/HOL 2008

An Introduction to Isabelle/HOL 2008 An Introduction to Isabelle/HOL 2008 Tobias Nipkow TU München p.1 Overview of Isabelle/HOL p.2 System Architecture ProofGeneral Isabelle/HOL Isabelle Standard ML (X)Emacs based interface Isabelle instance

More information

Programming and Proving in

Programming and Proving in Programming and Proving in = λ β Isabelle HOL α Tobias Nipkow Fakultät für Informatik Technische Universität München 1 Notation Implication associates to the right: A = B = C means A = (B = C) Similarly

More information

Programming and Proving in Isabelle/HOL

Programming and Proving in Isabelle/HOL Programming and Proving in Isabelle/HOL Tobias Nipkow Fakultät für Informatik Technische Universität München 2013 MOD Summer School 1 Notation Implication associates to the right: A = B = C means A = (B

More information

Concrete Semantics. A Proof Assistant Approach. Tobias Nipkow Fakultät für Informatik Technische Universität München

Concrete Semantics. A Proof Assistant Approach. Tobias Nipkow Fakultät für Informatik Technische Universität München Concrete Semantics A Proof Assistant Approach Tobias Nipkow Fakultät für Informatik Technische Universität München 2014-1-26 1 Part I Isabelle 2 Chapter 2 Programming and Proving 3 1 Overview of Isabelle/HOL

More information

COMP4161: Advanced Topics in Software Verification. fun. Gerwin Klein, June Andronick, Ramana Kumar S2/2016. data61.csiro.au

COMP4161: Advanced Topics in Software Verification. fun. Gerwin Klein, June Andronick, Ramana Kumar S2/2016. data61.csiro.au COMP4161: Advanced Topics in Software Verification fun Gerwin Klein, June Andronick, Ramana Kumar S2/2016 data61.csiro.au Content Intro & motivation, getting started [1] Foundations & Principles Lambda

More information

2 Programming and Proving

2 Programming and Proving 2 Programming and Proving This chapter introduces HOL as a functional programming language and shows how to prove properties of functional programs by induction. 2.1 Basics 2.1.1 Types, Terms and Formulas

More information

Functional Programming and Modeling

Functional Programming and Modeling Chapter 2 2. Functional Programming and Modeling 2.0 2. Functional Programming and Modeling 2.0 Overview of Chapter Functional Programming and Modeling 2. Functional Programming and Modeling 2.1 Overview

More information

Programming and Proving in Isabelle/HOL

Programming and Proving in Isabelle/HOL Tobias Nipkow Programming and Proving in Isabelle/HOL = Isabelle λ β α February 12, 2013 Contents 1 Introduction 1 2 Programming and Proving 3 21 Basics 3 22 Types bool, nat and list 5 23 Type and function

More information

Programming and Proving in Isabelle/HOL

Programming and Proving in Isabelle/HOL Tobias Nipkow Programming and Proving in Isabelle/HOL = Isabelle λ β HOL α October 8, 2017 Contents 1 Introduction............................................... 1 2 Programming and Proving.................................

More information

Interactive Proof: Introduction to Isabelle/HOL

Interactive Proof: Introduction to Isabelle/HOL Interactive Proof: Introduction to Isabelle/HOL Tobias NIPKOW Technische Universität München Abstract This paper introduces interactive theorem proving with the Isabelle/HOL system [3] The following topics

More information

Basic Foundations of Isabelle/HOL

Basic Foundations of Isabelle/HOL Basic Foundations of Isabelle/HOL Peter Wullinger May 16th 2007 1 / 29 1 Introduction into Isabelle s HOL Why Type Theory Basic Type Syntax 2 More HOL Typed λ Calculus HOL Rules 3 Example proof 2 / 29

More information

Inductive datatypes in HOL. lessons learned in Formal-Logic Engineering

Inductive datatypes in HOL. lessons learned in Formal-Logic Engineering Inductive datatypes in HOL lessons learned in Formal-Logic Engineering Stefan Berghofer and Markus Wenzel Institut für Informatik TU München = Isabelle λ β HOL α 1 Introduction Applications of inductive

More information

Functional Programming with Isabelle/HOL

Functional Programming with Isabelle/HOL Functional Programming with Isabelle/HOL = Isabelle λ β HOL α Florian Haftmann Technische Universität München January 2009 Overview Viewing Isabelle/HOL as a functional programming language: 1. Isabelle/HOL

More information

Tobias Nipkow, Gerwin Klein. Concrete Semantics. with Isabelle/HOL. October 16, Springer-Verlag

Tobias Nipkow, Gerwin Klein. Concrete Semantics. with Isabelle/HOL. October 16, Springer-Verlag Tobias Nipkow, Gerwin Klein Concrete Semantics with Isabelle/HOL October 16, 2017 Springer-Verlag I will not allow books to prove anything. Jane Austen, Persuasion Preface This book is two books. Part

More information

Reasoning about programs. Chapter 9 of Thompson

Reasoning about programs. Chapter 9 of Thompson Reasoning about programs Chapter 9 of Thompson Proof versus testing A proof will state some property of a program that holds for all inputs. Testing shows only that a property holds for a particular set

More information

Inductive data types

Inductive data types Inductive data types Assia Mahboubi 9 juin 2010 In this class, we shall present how Coq s type system allows us to define data types using inductive declarations. Generalities Inductive declarations An

More information

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1 LAST TIME ON HOL Proof rules for propositional and predicate logic Safe and unsafe rules NICTA Advanced Course Forward Proof Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 The Epsilon

More information

Efficient Mergesort. Christian Sternagel. October 11, 2017

Efficient Mergesort. Christian Sternagel. October 11, 2017 Efficient Mergesort Christian Sternagel October 11, 2017 Abstract We provide a formalization of the mergesort algorithm as used in GHC s Data.List module, proving correctness and stability. Furthermore,

More information

CS 457/557: Functional Languages

CS 457/557: Functional Languages CS 457/557: Functional Languages Lists and Algebraic Datatypes Mark P Jones Portland State University 1 Why Lists? Lists are a heavily used data structure in many functional programs Special syntax is

More information

Integration of SMT Solvers with ITPs There and Back Again

Integration of SMT Solvers with ITPs There and Back Again Integration of SMT Solvers with ITPs There and Back Again Sascha Böhme and University of Sheffield 7 May 2010 1 2 Features: SMT-LIB vs. Yices Translation Techniques Caveats 3 4 Motivation Motivation System

More information

10 Years of Partiality and General Recursion in Type Theory

10 Years of Partiality and General Recursion in Type Theory 10 Years of Partiality and General Recursion in Type Theory Ana Bove Chalmers University of Technology DTP 10 July 9th 2010 Claims and Disclaims I know that I know nothing Socrates Ana Bove DTP 10 July

More information

Isabelle. A Proof Assistant for Higher-Order Logic HOL. Markus Wenzel. Springer-Verlag

Isabelle. A Proof Assistant for Higher-Order Logic HOL. Markus Wenzel. Springer-Verlag Tobias Nipkow Markus Wenzel Lawrence C. Paulson = Isabelle λ β HOL α A Proof Assistant for Higher-Order Logic October 8, 2017 Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona

More information

Provably Correct Software

Provably Correct Software Provably Correct Software Max Schäfer Institute of Information Science/Academia Sinica September 17, 2007 1 / 48 The Need for Provably Correct Software BUT bugs are annoying, embarrassing, and cost gazillions

More information

Pattern Matching and Abstract Data Types

Pattern Matching and Abstract Data Types Pattern Matching and Abstract Data Types Tom Murphy VII 3 Dec 2002 0-0 Outline Problem Setup Views ( Views: A Way For Pattern Matching To Cohabit With Data Abstraction, Wadler, 1986) Active Patterns (

More information

Preuves Interactives et Applications

Preuves Interactives et Applications Preuves Interactives et Applications Christine Paulin & Burkhart Wolff http://www.lri.fr/ paulin/preuvesinteractives Université Paris-Saclay HOL and its Specification Constructs 10/12/16 B. Wolff - M2

More information

Turning inductive into equational specifications

Turning inductive into equational specifications Turning inductive into equational specifications Stefan Berghofer and Lukas Bulwahn and Florian Haftmann Technische Universität München Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

More information

MoreIntro_annotated.v. MoreIntro_annotated.v. Printed by Zach Tatlock. Oct 04, 16 21:55 Page 1/10

MoreIntro_annotated.v. MoreIntro_annotated.v. Printed by Zach Tatlock. Oct 04, 16 21:55 Page 1/10 Oct 04, 16 21:55 Page 1/10 * Lecture 02 Infer some type arguments automatically. Set Implicit Arguments. Note that the type constructor for functions (arrow " >") associates to the right: A > B > C = A

More information

Datatype declarations

Datatype declarations Datatype declarations datatype suit = HEARTS DIAMONDS CLUBS SPADES datatype a list = nil (* copy me NOT! *) op :: of a * a list datatype a heap = EHEAP HEAP of a * a heap * a heap type suit val HEARTS

More information

Chapter 3 Linear Structures: Lists

Chapter 3 Linear Structures: Lists Plan Chapter 3 Linear Structures: Lists 1. Two constructors for lists... 3.2 2. Lists... 3.3 3. Basic operations... 3.5 4. Constructors and pattern matching... 3.6 5. Simple operations on lists... 3.9

More information

Recursion. Tjark Weber. Functional Programming 1. Based on notes by Sven-Olof Nyström. Tjark Weber (UU) Recursion 1 / 37

Recursion. Tjark Weber. Functional Programming 1. Based on notes by Sven-Olof Nyström. Tjark Weber (UU) Recursion 1 / 37 Tjark Weber Functional Programming 1 Based on notes by Sven-Olof Nyström Tjark Weber (UU) Recursion 1 / 37 Background FP I / Advanced FP FP I / Advanced FP This course (Functional Programming I) (5 hp,

More information

MoreIntro.v. MoreIntro.v. Printed by Zach Tatlock. Oct 07, 16 18:11 Page 1/10. Oct 07, 16 18:11 Page 2/10. Monday October 10, 2016 lec02/moreintro.

MoreIntro.v. MoreIntro.v. Printed by Zach Tatlock. Oct 07, 16 18:11 Page 1/10. Oct 07, 16 18:11 Page 2/10. Monday October 10, 2016 lec02/moreintro. Oct 07, 16 18:11 Page 1/10 * Lecture 02 Set Implicit Arguments. Inductive list (A: Type) : Type := nil : list A cons : A > list A > list A. Fixpoint length (A: Type) (l: list A) : nat := nil _ => O cons

More information

Combining Proofs and Programs in a Dependently Typed Language. Certification of High-level and Low-level Programs

Combining Proofs and Programs in a Dependently Typed Language. Certification of High-level and Low-level Programs Combining Proofs and Programs in a Dependently Typed Language Stephanie Weirich University of Pennsylvania July 7, 2014 Certification of High-level and Low-level Programs Zombie A functional programming

More information

Exercise 1 ( = 24 points)

Exercise 1 ( = 24 points) 1 Exercise 1 (4 + 5 + 4 + 6 + 5 = 24 points) The following data structure represents polymorphic binary trees that contain values only in special Value nodes that have a single successor: data Tree a =

More information

4 Programming with Types

4 Programming with Types 4 Programming with Types 4.1 Polymorphism We ve been working a lot with lists of numbers, but clearly programs also need to be able to manipulate lists whose elements are drawn from other types lists of

More information

Programming Languages 3. Definition and Proof by Induction

Programming Languages 3. Definition and Proof by Induction Programming Languages 3. Definition and Proof by Induction Shin-Cheng Mu Oct. 22, 2015 Total Functional Programming The next few lectures concerns inductive definitions and proofs of datatypes and programs.

More information

A Verified Compiler from Isabelle/HOL to CakeML

A Verified Compiler from Isabelle/HOL to CakeML A Verified Compiler from Isabelle/HOL to CakeML Lars Hupel and Tobias Nipkow Technische Universität München lars.hupel@tum.de, nipkow@in.tum.de Abstract. Many theorem provers can generate functional programs

More information

Chapter 3 Linear Structures: Lists

Chapter 3 Linear Structures: Lists Plan Chapter 3 Linear Structures: Lists 1. Lists... 3.2 2. Basic operations... 3.4 3. Constructors and pattern matching... 3.5 4. Polymorphism... 3.8 5. Simple operations on lists... 3.11 6. Application:

More information

Data types for mcrl2

Data types for mcrl2 Data types for mcrl2 Aad Mathijssen April 5, 2018 We provide a syntax for the standard data types of the mcrl2 language. This syntax is intended to be a practical mix between standard mathematical notation

More information

Programming with Universes, Generically

Programming with Universes, Generically Programming with Universes, Generically Andres Löh Well-Typed LLP 24 January 2012 An introduction to Agda Agda Functional programming language Static types Dependent types Pure (explicit effects) Total

More information

Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Booleans and Short-Circuit Evaluation. Tuples as Values.

Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Booleans and Short-Circuit Evaluation. Tuples as Values. Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Elsa L Gunter 2112 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421d # true;; - : bool = true # false;; - : bool =

More information

COMP 4161 Data61 Advanced Course. Advanced Topics in Software Verification. Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka

COMP 4161 Data61 Advanced Course. Advanced Topics in Software Verification. Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka COMP 4161 Data61 Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Christine Rizkallah, Miki Tanaka 1 COMP4161 c Data61, CSIRO: provided under Creative Commons Attribution

More information

Programming Languages Lecture 14: Sum, Product, Recursive Types

Programming Languages Lecture 14: Sum, Product, Recursive Types CSE 230: Winter 200 Principles of Programming Languages Lecture 4: Sum, Product, Recursive Types The end is nigh HW 3 No HW 4 (= Final) Project (Meeting + Talk) Ranjit Jhala UC San Diego Recap Goal: Relate

More information

Typed Lambda Calculus

Typed Lambda Calculus Department of Linguistics Ohio State University Sept. 8, 2016 The Two Sides of A typed lambda calculus (TLC) can be viewed in two complementary ways: model-theoretically, as a system of notation for functions

More information

Fall 2018 Lecture N

Fall 2018 Lecture N 15-150 Fall 2018 Lecture N Tuesday, 20 November I m too lazy to figure out the correct number Stephen Brookes midterm2 Mean: 79.5 Std Dev: 18.4 Median: 84 today or, we could procrastinate lazy functional

More information

Flang typechecker Due: February 27, 2015

Flang typechecker Due: February 27, 2015 CMSC 22610 Winter 2015 Implementation of Computer Languages I Flang typechecker Due: February 27, 2015 Project 3 February 9, 2015 1 Introduction The third project is to implement a type checker for Flang,

More information

Programs and Proofs in Isabelle/HOL

Programs and Proofs in Isabelle/HOL Programs and Proofs in Isabelle/HOL Makarius Wenzel http://sketis.net March 2016 = Isabelle λ β α Introduction What is Isabelle? Hanabusa Itcho : Blind monks examining an elephant Introduction 2 History:

More information

Haskell 98 in short! CPSC 449 Principles of Programming Languages

Haskell 98 in short! CPSC 449 Principles of Programming Languages Haskell 98 in short! n Syntax and type inferencing similar to ML! n Strongly typed! n Allows for pattern matching in definitions! n Uses lazy evaluation" F definition of infinite lists possible! n Has

More information

Efficient Mergesort. Christian Sternagel. August 28, 2014

Efficient Mergesort. Christian Sternagel. August 28, 2014 Efficient Mergesort Christian Sternagel August 28, 2014 Abstract We provide a formalization of the mergesort algorithm as used in GHC s Data.List module, proving correctness and stability. Furthermore,

More information

General Bindings and Alpha-Equivalence in Nominal Isabelle

General Bindings and Alpha-Equivalence in Nominal Isabelle General Bindings and Alpha-Equivalence in Nominal Isabelle Christian Urban and Cezary Kaliszyk TU Munich, Germany Abstract. Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem prover.

More information

Programming Up-to-Congruence, Again. WG 2.8 Estes Park

Programming Up-to-Congruence, Again. WG 2.8 Estes Park Programming Up-to-Congruence, Again Stephanie Weirich University of Pennsylvania August 12, 2014 WG 2.8 Estes Park Zombie A functional programming language with a dependent type system intended for lightweight

More information

Haskell: From Basic to Advanced. Part 2 Type Classes, Laziness, IO, Modules

Haskell: From Basic to Advanced. Part 2 Type Classes, Laziness, IO, Modules Haskell: From Basic to Advanced Part 2 Type Classes, Laziness, IO, Modules Qualified types In the types schemes we have seen, the type variables were universally quantified, e.g. ++ :: [a] -> [a] -> [a]

More information

Programming with dependent types: passing fad or useful tool?

Programming with dependent types: passing fad or useful tool? Programming with dependent types: passing fad or useful tool? Xavier Leroy INRIA Paris-Rocquencourt IFIP WG 2.8, 2009-06 X. Leroy (INRIA) Dependently-typed programming 2009-06 1 / 22 Dependent types In

More information

1 The language χ. Models of Computation

1 The language χ. Models of Computation Bengt Nordström, 1 2017-10-13 Department of Computing Science, Chalmers and University of Göteborg, Göteborg, Sweden 1 The language χ The main purpose of the language χ is to illustrate some basic results

More information

Recursion. Lars-Henrik Eriksson. Functional Programming 1. Based on a presentation by Tjark Weber and notes by Sven-Olof Nyström

Recursion. Lars-Henrik Eriksson. Functional Programming 1. Based on a presentation by Tjark Weber and notes by Sven-Olof Nyström Lars-Henrik Eriksson Functional Programming 1 Based on a presentation by Tjark Weber and notes by Sven-Olof Nyström Tjark Weber (UU) Recursion 1 / 41 Comparison: Imperative/Functional Programming Comparison:

More information

CS 320: Concepts of Programming Languages

CS 320: Concepts of Programming Languages CS 320: Concepts of Programming Languages Wayne Snyder Computer Science Department Boston University Lecture 04: Basic Haskell Continued o Polymorphic Types o Type Inference with Polymorphism o Standard

More information

15 212: Principles of Programming. Some Notes on Continuations

15 212: Principles of Programming. Some Notes on Continuations 15 212: Principles of Programming Some Notes on Continuations Michael Erdmann Spring 2011 These notes provide a brief introduction to continuations as a programming technique. Continuations have a rich

More information

CS 320 Homework One Due 2/5 11:59pm

CS 320 Homework One Due 2/5 11:59pm Name: BU ID (no dashes): CS 320 Homework One Due 2/5 11:59pm Write your answers to the problems in the space indicated. Scan your solution and submit to Gradescope as a PDF file. You will receive an email

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Sections p.

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Sections p. CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Sections 10.1-10.3 p. 1/106 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer

More information

Specification and Verification in Higher Order Logic

Specification and Verification in Higher Order Logic Specification and Verification in Higher Order Logic Prof. Dr. K. Madlener 13. April 2011 Prof. Dr. K. Madlener: Specification and Verification in Higher Order Logic 1 Chapter 1 Functional Programming:

More information

ATS: a language to make typeful programming real and fun

ATS: a language to make typeful programming real and fun ATS: a language to make typeful programming real and fun p.1/32 ATS: a language to make typeful programming real and fun Hongwei Xi Boston University Work partly funded by NSF grant CCR-0229480 ATS: a

More information

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, "hi", 3.2), c 4, a 1, b 5} 9/10/2017 4

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, hi, 3.2), c 4, a 1, b 5} 9/10/2017 4 Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Sasa Misailovic 4110 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421a # true;; - : bool = true # false;; - : bool

More information

Lambda Calculus and Type Inference

Lambda Calculus and Type Inference Lambda Calculus and Type Inference Björn Lisper Dept. of Computer Science and Engineering Mälardalen University bjorn.lisper@mdh.se http://www.idt.mdh.se/ blr/ August 17, 2007 Lambda Calculus and Type

More information

A Verified Simple Prover for First-Order Logic

A Verified Simple Prover for First-Order Logic A Verified Simple Prover for First-Order Logic Jørgen Villadsen, Anders Schlichtkrull, and Andreas Halkjær From DTU Compute, AlgoLoG, Technical University of Denmark, 2800 Kongens Lyngby, Denmark jovi@dtu.dk

More information

Lambda Calculus and Type Inference

Lambda Calculus and Type Inference Lambda Calculus and Type Inference Björn Lisper Dept. of Computer Science and Engineering Mälardalen University bjorn.lisper@mdh.se http://www.idt.mdh.se/ blr/ October 13, 2004 Lambda Calculus and Type

More information

Processadors de Llenguatge II. Functional Paradigm. Pratt A.7 Robert Harper s SML tutorial (Sec II)

Processadors de Llenguatge II. Functional Paradigm. Pratt A.7 Robert Harper s SML tutorial (Sec II) Processadors de Llenguatge II Functional Paradigm Pratt A.7 Robert Harper s SML tutorial (Sec II) Rafael Ramirez Dep Tecnologia Universitat Pompeu Fabra Paradigm Shift Imperative Paradigm State Machine

More information

Inference rule for Induction

Inference rule for Induction Inference rule for Induction Let P( ) be a predicate with domain the positive integers BASE CASE INDUCTIVE STEP INDUCTIVE Step: Usually a direct proof Assume P(x) for arbitrary x (Inductive Hypothesis),

More information

Coq Summer School, Session 2 : Basic programming with numbers and lists. Pierre Letouzey

Coq Summer School, Session 2 : Basic programming with numbers and lists. Pierre Letouzey Coq Summer School, Session 2 : Basic programming with numbers and lists Pierre Letouzey Predened data structures Predened types are actually declared to Coq at load time 1 : Inductive bool := true false.

More information

SOFTWARE VERIFICATION AND COMPUTER PROOF (lesson 1) Enrico Tassi Inria Sophia-Antipolis

SOFTWARE VERIFICATION AND COMPUTER PROOF (lesson 1) Enrico Tassi Inria Sophia-Antipolis SOFTWARE VERIFICATION AND COMPUTER PROOF (lesson 1) Enrico Tassi Inria Sophia-Antipolis Who am I? 1. I'm a researcher at Inria 2. I work on proof assistants, the kind of tools that we will be using for

More information

Exercise 1 ( = 18 points)

Exercise 1 ( = 18 points) 1 Exercise 1 (4 + 5 + 4 + 5 = 18 points) The following data structure represents polymorphic binary trees that contain values only in special Value nodes that have a single successor: data Tree a = Leaf

More information

The Worker/Wrapper Transformation

The Worker/Wrapper Transformation The Worker/Wrapper Transformation Andy Gill 1 Graham Hutton 2 1 The University of Kansas 2 The University of Nottingham March 26th, 2009 Andy Gill, Graham Hutton The Worker/Wrapper Transformation March

More information

Haske k ll An introduction to Functional functional programming using Haskell Purely Lazy Example: QuickSort in Java Example: QuickSort in Haskell

Haske k ll An introduction to Functional functional programming using Haskell Purely Lazy Example: QuickSort in Java Example: QuickSort in Haskell Haskell An introduction to functional programming using Haskell Anders Møller amoeller@cs.au.dk The most popular purely functional, lazy programming language Functional programming language : a program

More information

MLW. Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky. March 26, Radboud University Nijmegen

MLW. Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky. March 26, Radboud University Nijmegen 1 MLW Henk Barendregt and Freek Wiedijk assisted by Andrew Polonsky Radboud University Nijmegen March 26, 2012 inductive types 2 3 inductive types = types consisting of closed terms built from constructors

More information

Unit- and Sequence Test Generation with HOL-TestGen

Unit- and Sequence Test Generation with HOL-TestGen Unit- and Sequence Test Generation with HOL-TestGen Tests et Methodes Formelles Prof. Burkhart Wolff Univ - Paris-Sud / LRI 16.6.2015 B.Wolff - HOL-TestGen 1 Overview HOL-TestGen and its Business-Case

More information

An introduction introduction to functional functional programming programming using usin Haskell

An introduction introduction to functional functional programming programming using usin Haskell An introduction to functional programming using Haskell Anders Møller amoeller@cs.au.dkau Haskell The most popular p purely functional, lazy programming g language Functional programming language : a program

More information

1.3 Primitive Recursive Predicates and Bounded Minimalization

1.3 Primitive Recursive Predicates and Bounded Minimalization 12 1 Primitive Recursive Functions 1.3 Primitive Recursive Predicates and Bounded Minimalization 1.3.1 Case discrimination function The case discrimination function D is defined by D(x, y, z) = v x 0 v

More information

Lecture #13: Type Inference and Unification. Typing In the Language ML. Type Inference. Doing Type Inference

Lecture #13: Type Inference and Unification. Typing In the Language ML. Type Inference. Doing Type Inference Lecture #13: Type Inference and Unification Typing In the Language ML Examples from the language ML: fun map f [] = [] map f (a :: y) = (f a) :: (map f y) fun reduce f init [] = init reduce f init (a ::

More information

Computability via Recursive Functions

Computability via Recursive Functions Computability via Recursive Functions Church s Thesis All effective computational systems are equivalent! To illustrate this point we will present the material from chapter 4 using the partial recursive

More information

Computing Fundamentals 2 Introduction to CafeOBJ

Computing Fundamentals 2 Introduction to CafeOBJ Computing Fundamentals 2 Introduction to CafeOBJ Lecturer: Patrick Browne Lecture Room: K408 Lab Room: A308 Based on work by: Nakamura Masaki, João Pascoal Faria, Prof. Heinrich Hußmann. See notes on slides

More information

Automated Reasoning. Natural Deduction in First-Order Logic

Automated Reasoning. Natural Deduction in First-Order Logic Automated Reasoning Natural Deduction in First-Order Logic Jacques Fleuriot Automated Reasoning Lecture 4, page 1 Problem Consider the following problem: Every person has a heart. George Bush is a person.

More information

CIS 500: Software Foundations

CIS 500: Software Foundations CIS 500: Software Foundations Midterm I October 4, 2016 Name (printed): Username (PennKey login id): My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic

More information

Programming in Omega Part 1. Tim Sheard Portland State University

Programming in Omega Part 1. Tim Sheard Portland State University Programming in Omega Part 1 Tim Sheard Portland State University Tim Sheard Computer Science Department Portland State University Portland, Oregon PSU PL Research at Portland State University The Programming

More information

CIS 500: Software Foundations

CIS 500: Software Foundations CIS 500: Software Foundations Midterm I October 2, 2018 Name (printed): Username (PennKey login id): My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic

More information

Handout 2 August 25, 2008

Handout 2 August 25, 2008 CS 502: Compiling and Programming Systems Handout 2 August 25, 2008 Project The project you will implement will be a subset of Standard ML called Mini-ML. While Mini- ML shares strong syntactic and semantic

More information

Exercise 1 (2+2+2 points)

Exercise 1 (2+2+2 points) 1 Exercise 1 (2+2+2 points) The following data structure represents binary trees only containing values in the inner nodes: data Tree a = Leaf Node (Tree a) a (Tree a) 1 Consider the tree t of integers

More information

Rippling: Heuristic Guidance for Inductive Proof (I) Alan Bundy. Automated Reasoning Rippling

Rippling: Heuristic Guidance for Inductive Proof (I) Alan Bundy. Automated Reasoning Rippling Automated Reasoning Rippling: Heuristic Guidance for Inductive Proof (I) Alan Bundy Lecture 16, page 1 Overview In lecture 14 we introduced induction Inductive proofs can be difficult. Problems are in:

More information

1.3. Conditional expressions To express case distinctions like

1.3. Conditional expressions To express case distinctions like Introduction Much of the theory developed in the underlying course Logic II can be implemented in a proof assistant. In the present setting this is interesting, since we can then machine extract from a

More information

c constructor P, Q terms used as propositions G, H hypotheses scope identifier for a notation scope M, module identifiers t, u arbitrary terms

c constructor P, Q terms used as propositions G, H hypotheses scope identifier for a notation scope M, module identifiers t, u arbitrary terms Coq quick reference Meta variables Usage Meta variables Usage c constructor P, Q terms used as propositions db identifier for a hint database s string G, H hypotheses scope identifier for a notation scope

More information

Coq quick reference. Category Example Description. Inductive type with instances defined by constructors, including y of type Y. Inductive X : Univ :=

Coq quick reference. Category Example Description. Inductive type with instances defined by constructors, including y of type Y. Inductive X : Univ := Coq quick reference Category Example Description Meta variables Usage Meta variables Usage c constructor P, Q terms used as propositions db identifier for a hint database s string G, H hypotheses scope

More information

A Case Study of Co-induction in Isabelle 1

A Case Study of Co-induction in Isabelle 1 A Case Study of Co-induction in Isabelle 1 Jacob Frost Computer Laboratory University of Cambridge e-mail:jacob.frost@cl.cam.ac.uk February 1995 1 Supported by ESPRIT Basic Research Project 6453, Types

More information

The List Datatype. CSc 372. Comparative Programming Languages. 6 : Haskell Lists. Department of Computer Science University of Arizona

The List Datatype. CSc 372. Comparative Programming Languages. 6 : Haskell Lists. Department of Computer Science University of Arizona The List Datatype CSc 372 Comparative Programming Languages 6 : Haskell Lists Department of Computer Science University of Arizona collberg@gmail.com All functional programming languages have the ConsList

More information

4.5 Pure Linear Functional Programming

4.5 Pure Linear Functional Programming 4.5 Pure Linear Functional Programming 99 4.5 Pure Linear Functional Programming The linear λ-calculus developed in the preceding sections can serve as the basis for a programming language. The step from

More information

CMSC 330: Organization of Programming Languages. Functional Programming with Lists

CMSC 330: Organization of Programming Languages. Functional Programming with Lists CMSC 330: Organization of Programming Languages Functional Programming with Lists CMSC330 Spring 2018 1 Lists in OCaml The basic data structure in OCaml Lists can be of arbitrary length Implemented as

More information

A general introduction to Functional Programming using Haskell

A general introduction to Functional Programming using Haskell A general introduction to Functional Programming using Haskell Matteo Rossi Dipartimento di Elettronica e Informazione Politecnico di Milano rossi@elet.polimi.it 1 Functional programming in a nutshell

More information

Induction in Coq. Nate Foster Spring 2018

Induction in Coq. Nate Foster Spring 2018 Induction in Coq Nate Foster Spring 2018 Review Previously in 3110: Functional programming in Coq Logic in Coq Curry-Howard correspondence (proofs are programs) Today: Induction in Coq REVIEW: INDUCTION

More information

Programming Language Concepts, CS2104 Lecture 7

Programming Language Concepts, CS2104 Lecture 7 Reminder of Last Lecture Programming Language Concepts, CS2104 Lecture 7 Tupled Recursion Exceptions Types, ADT, Haskell, Components 5th Oct 2007 CS2104, Lecture 7 1 Overview 5th Oct 2007 CS2104, Lecture

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST.0.. COMPUTER SCIENCE TRIPOS Part IA NATURAL SCIENCES TRIPOS Part IA (Paper CS/) POLITICS, PSYCHOLOGY, AND SOCIOLOGY TRIPOS Part I (Paper 9) Monday June 0.0 to 4.0 COMPUTER SCIENCE Paper Answer five

More information

Foundational Nonuniform (Co)datatypes for Higher-Order Logic

Foundational Nonuniform (Co)datatypes for Higher-Order Logic Foundational Nonuniform (Co)datatypes for Higher-Order Logic Jasmin Christian Blanchette, Fabian Meier, Andrei Popescu, and Dmitriy Traytel Vrije Universiteit Amsterdam, The Netherlands, and Inria & LORIA,

More information

Embedding Cryptol in Higher Order Logic

Embedding Cryptol in Higher Order Logic Embedding Cryptol in Higher Order Logic Joe Hurd Computer Laboratory Cambridge University joe.hurd@cl.cam.ac.uk 10 March 2007 Abstract This report surveys existing approaches to embedding Cryptol programs

More information