# (Refer Slide Time 6:48)

Size: px
Start display at page:

## Transcription

1 Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about minimization of Boolean functions first by using Boolean algebra and then by map method by drawing a graphical representation of the truth table and then identifying the patterns of 1s and group them and reduce the variables in that process, number of variables as well as number of terms. If you remember we also talked about min terms and max terms. That is we can write an expression Boolean algebra either as sum of products or product of sums that is AND terms combined with an OR gate and OR terms combined with an AND gate. So one is called sum of products and the other is called product of sums because analogous to the algebra 1 looks like a series of product terms and sum them, the other looks like a series of sum terms you multiply these sum terms as a product. Sometimes what happens is when you draw a Karnaugh Map to simplify you find that there are more 1s than 0s. The idea is to minimize we said. The total number of terms should be as small as possible and the number of literals in each of these terms should be as few as possible. So when you have large groups of 1s it results in many prime implicants and essential prime implicants. If there are more 1s than 0s is it possible to use the 0s and get F bar complement of F expression. A 1 in the truth table says F is true the function is true and the 0 in the truth table says the function is false. So when you group 0s we can get an F bar expression just as we get F expression by grouping 1s and once I have F bar I have De Morgan s Theorem to get an F. So, that is one approach some people use. That also depends on the type of gates you want. It all depends on whether you want a sum of product as the minimum expression or the product of sum as the minimum expression. So let us today see an example where we will use 0s to simplify the logic function. We will use our same familiar example from the last few classes. We will be using the function F is equal to A plus BC bar this has been our example. So when you do the Karnaugh Map for this if you remember (Refer Slide Time: 5:40) this is the K map where there is a one here one here one here one here one here if you look at a truth table you had one entry in the third row and last four rows. The first row second and fourth rows had 0 in the output and all other rows have 1 in the output. And if you map it this is what we got.

2 (Refer Slide Time 6:48) What we did last time was to simplify this using 1 here and then here, of course this is a trivial example, even though there are large number of 1s if the pattern is good large groups of 1s together it will give you a very small sum of product expression because larger and larger groups give you smaller and smaller product terms, that way we had a nice example. In this example we had A for this and BC bar. But just to give you the concept of using 0s to simplify the expression I am going to feel these entries of the truth table which had output false with 0s I am going to use 0s to simplify my logic function. So if I group these 1s and write prime implicants I will get F expression, expression for the output F. If I now group these 0s and identify prime implicants or essential prime implicants I will get F bar is it not, whenever the function is not true there is a 0 entry in the truth table as well as in the Karnaugh Map. So now I am going to group these two 0s and these two 0s so I will call this one, prime implicant one, prime implicant two, F bar is sum of prime implicant 1 and sum of prime implicant 2, a combination of prime implicant 1 and prime implicant 2 when you say sum you mean really OR operation which is 1. This is A bar B bar correct and this is A bar C (Refer Slide time: 8:32), this is only F bar but we want F because the problem definition or the truth table given to you is to implement a function F which has the output asserted as true for the given combinations but what we got is F bar output not asserted or output asserted as 0 so we do not want this but we want a complement of this and you know how to get the complement. It is by applying DeMorgans theorem on both sides we get F which is nothing but A OR B because the variable gets changed into complement where AND becomes OR, OR becomes AND, variable gets complemented and you can simplify this to the original F which is A plus BC bar because now if I do this this would become A plus AB plus AC bar plus BC bar and the view of the identity in the Boolean algebra if you remember A OR AB is A so this is redundant similarly A OR AC bar is also A, this compared with

3 this gives you A so these two terms get knocked off so the result is A plus BC bar and this is what this is. (Refer Slide Time 10:33) There are a couple of points I want to make really; one is, smaller number of 1s grouping is easier only if they are randomly situated actually. When 1s are nicely grouped we may find a simplified expression of a minimum form. But if we had 1s and 0s spread in the random fashion as more 0s than 1s and more 1s than 0s then may be it s a good idea to go for simplification using 0s. The second thing is this is the expression for F without this simplification. This simplification I need to prove that this is same as this, I can stop here. This is the minimum product of sum. This is the sum of product expression (Refer Slide Time: 11:24) and this is the product of sum expression. So if you wanted the solution in product of sum expression it is here, I would use this expression the minimum product of sum this is a minimum sum of product. Just as you get a minimum sum of product expression using Karnaugh Map I will also get a minimum product of sum expression using Karnaugh Map using 0s. Where will I use that situation? I will use the situation where I want to have OR gates feeding into an AND gates because here each product term is an AND gate and the sum term represent an OR gate. Sum is equal to OR, sum is an OR operator because you put a plus we call it sum plus it is an OR operation and dot is an AND operation. Hence the sum term represents an OR gate and product term represents an AND gate. So if you want to have fewer OR gates and larger number of AND gates I will use the sum of product expression or if I have fewer AND gates and larger number of OR gates I will use this. Thus depending on the topology as they call it I will have either a sum of product expression or product of sum expression even if number of 0s more or less even without

4 considering the number of 0s and 1s in the truth table or regardless of 0s or 1s distribution in the truth table or the Karnaugh Map we may sometime want to write an expression as a product of sum expression. In that case I will use this approach. I will group 0s together and get F bar and then F but you can do one more thing, you can skip this by reading judiciously because A OR B is corresponding to this you because this I can do it mentally. Writing A bar and B bar and taking its complement knocking of the bars here and removing this AND and putting an OR also can be done in my mind and I can see that whenever two 0s are together this is A bar and this is B bar I can write this as instead of A bar I will use A, I will use an OR symbol using B. That means I will read the map as if I would read a product term. (Refer Slide Time 14:49) I will read a sum term as I would read a product term except that I will remember to complement each variable and remember to complement each operation. The AND operation will be written as OR operation and variables will be written as its complement. So without going through these two steps which is of course necessary but I am not doing something which is wrong but I am just trying to simplify my procedure visualize the procedure such that these two things are mentally done in your mind so you directly read the map as this. Let us take one more example to prove this point. This time we will have a four variable map sigma m number of min terms will form the sum 1, 3, 4, 5, 9, 11, 14, 15. This is the map for F (Refer Slide Time: 15:47). I can use any variable I will call them ABCD so the variable for which the min term min terms for which the output is 1 or true or 1 which is this, 3 which is this, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15 this is the distribution. So this is prime implicant one essential prime implicant isthese two, this one cannot be combined in any other way, this is the most efficient way of combining because this one has to be combined so this has to be there, this one has to be combined, I

5 could have combined this in this way but this is not necessary because I have already taken this one into account and these four 1s form a prime implicant. Now this first term will be this which is B bar D OR this one A bar B C bar then this one ABC. Simple, you have done this earlier. There is no ambiguity here in terms of non essential prime implicants and all that. On the other hand, if I try other terms have to be put in this so you represent this as sum of product this is a product of sum so you will put a product which is pi, capital M for max terms and small m for min terms so what are the max terms that will be there? Whatever term is not here that will be a max term so there will be a 0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13. (Refer Slide Time 19:29) It so happened that I equally chose just not that, I wanted to have a large number of 1s and large number of 0s so it happened when I took this example that exactly there are eight 1s and eight 0s. So you could have proceeded either way proceeded using the sum of product way or product of sum way. If you had a specific reason to go for a product of sum because you wanted to use AND gate fitting to OR gate I will have do it using sum of products and if you are going to have OR gates fitting to AND gates I should go for product of sums. But if you are not given a choice like that if you are not given a condition constraint like that. In this case there are eight 1s and eight 0s I can go either way. So I will now put the 0s here and I will draw another map here same map but in order to avoid cluttering I will redo it here 0 0 so I can group these 0s into groups of two 0s or four 0s or eight 0s as the case may be based on the case may be based on the adjacency rule and then try to read them. So these four 0s form a group, these two 0s form a group, prime implicant, these two form a group so there are only three terms and I can write F bar and then take a complement of that using De Morgan s identity or De Morgan s theorem and then write the product of sum form bar, as I told you just now a while ago I can directly read the

7 variable map. At some length we have done a four variable map, and conceptually that is good enough. We talked about implicants, prime implicants, essential prime implicants, non essential prime implicants, how to use a non essential prime implicant properly and all that. We will have to now go to some examples of systems small 1s, we will design and think of some real examples. so far I have been giving you min terms and max term lists without any physical relationship, any physical correlation or anything, it is just arbitrary sum of products, arbitrary product of sums, arbitrary 0s and 1s in the expression or arbitrary 1s and 0s in the truth table. Before we move on to some of the real life examples I want to give you one more concept which is a very simple concept it is called don t care condition. This is called don t care state. What is a don t care state? I have a truth table here, the eight rows or a map with eight cells, a map with sixteen cells or a truth table with sixteen rows and we defined for each of these rows or cells an output to be true or false asserted to be 1 or 0, that means you are very clear what you want the output to be for each of the input combinations because based on that condition you are designing a system or a circuit. On the other hand I may have a system a circuit, I will define the output to be true for certain combinations of the inputs when it has to be false for certain other combinations of the input and there may be some combination which are not covered in both the list. I can give you a list of combinations in input, how many combinations are possible with three inputs? Eight combinations are possible, out of these eight combinations I will say definitely for certain combinations let us say for three combinations the output has to be true and for another three may be the output has to be false and then there are two combinations which are not defined means you may not define it for many reasons, these combinations may not occur in your system or these combinations may occur but you don t worry too much about that it can be 1 or 0 the output can be true or false because it is not going to effect your process in anyway.

8 (Refer Slide Time 29:50) Hence there are certain combinations in any system any circuit, certain combinations input for which you will not define the inputs, the inputs are undefined, it need not be define for practical reasons, such a combination of inputs may not occur in practice or the practical reasons could be such a combination of inputs if it occurs I really don t know I don t really care what it is because that is not going to effect my processing in anyway. Whatever is the reason if you want to say there are certain combinations of inputs for which I do not care that is way it is called don t care state, I do not care what the output is so such cases are called don t care states. I will give you a simple example. Suppose I want to count 4 using one hand where in one hand I will use only four fingers all the time and the fifth finger will not be used so I will say, supposing I show a 3 like this you know it is 3 or I put let us say how much I show like this, this is also 2 because these four are the fingers you will have to look at, I am not showing any sign or whatever. But supposing I put three and this thumb also out I will always tell you to look at my four fingers and determine the condition like 3 or 2 or 1, and this finger you don t even look at but I am showing this thumb you don t even look at but I may put it like this, like this but it doesn t matter because this is not going to effect you because this is 1 or this is also 1, this is also 2 and like that I may have four inputs otherwise three inputs and certain combinations by four inputs is going to affect my output so I would be worried about those, if it happens I have to take some action and certain other combinations if it happens I don t care that thing is going to happen I don t have to take any action. So we can always say 0 we are only interested in certain combinations of the input giving a logical output 1. When that is the case and when any other combination is coming the output can be 0 then you are very safe. I don t want a false output whenever I have a condition for which the output is required to be 1 I need an output to be 1. If there is a

10 (Refer Slide Time 35:20) Whichever don t care states are useful to introduction further either the number of terms or in a given term if you can reduce the number of variables we call them literals. I said ABC, AB bar, A bar B bar these are all literals, A bar B bar are all literals, each variable s inner term is called a literal and each is a term. There are two terms with two literals each, three terms with two literals, three literals, three literals. So by using don t care if you can reduce it further either the number of terms or a literal in any of those terms then I will use it to my advantage use it as a 1. Otherwise I will not purposely go and introduce an extra term to cover a don t care. I don t want to introduce a term in order to include my don t care condition, it is a waste. So the idea is always to reduce the hardware. The theme of this course as I said in the beginning is reduce hardware, hardware reduction will result in power saving, cost saving, size saving, space saving and everything. That is why we want efficient hardware but reliable hardware, we can t knock it of arbitrarily and say reduce hardware. Usually fifty percent of the terms I have reduced the hardware but you will not get fifty percent of marks you will get 0 marks that is the problem. I see it as a digital course so whether you get a 0 mark it is a 1 mark so it is right or wrong? So, reduction at what cost? It is the reduction without losing the reliability of the circuit. So let us take an example of that class I can use the same thing and put some don t cares. I will take for example the same sigma M, what is the output or 1, what are the terms for which the output is 1? It is 1, 3, 4, 5, 9, 11, 14, 15 I don t want to change any of these but instead of making all other terms as 0s I will say may be 6, 7, 8, and 10 are don t cares. How do I write it? It is d for don t care some books use x, this d will be replaced in some books by x, some books by phi, some books by capital D so all the same don t care.

11 (Refer Slide Time 38:11) Don t care terms are, arbitrarily I put that why not I put these four? It is 2, 6, 7, 8 just to show the effect. I don t have an idea of what it is going to look like. From the list of 0s I am arbitrarily assuming these four terms need not to be really 0s they need not be 1s they need not be 0s of the output but they can be don t cares, you don t worry about whether the output is a 1 or 0 for these four conditions of input combinations. So my map gets modified with don t care, this is the modified map modified K map with don t care states. What are the terms for which there is 1 to start with? These are 1s, these are 1s, these are 1s, and these are 1s. Now I am going to add 2, 6, 7, 8 when I do 2, 6, 7, 8 I don t mark a 1 there. Remember, if I mark a 1 there when I try to simplify this map reduce this map I will make an effort to include every possible 1 that will be unnecessary waste of effort. So what I will do is I will have to use another symbol. if I put a 0 again I may ignore them, if I put a 0 I will ignore it, if I put a 1 I will necessarily have to include it so what I will do is use another symbol I can use d or x or phi whatever is less. So let me use d, this is 2 (Refer Slide time: 40:12), 6, 7, 8. These four ds I have included to indicate the don t care conditions of those four combinations of the input. these four combinations of input in the acquired output need not be 1 it need not be 0 they can be anything, they can be either 1 or 0 because that does not effect my circuit performance in anyway because I may not have those combinations of input at all to start with or even if it does occur doesn t matter to me what happens. If that is the case then how do I simplify? Now I will have more options, I would probably do this plus 1, 2 or need not even have it I can have these four and these four (Refer Slide Time: 41:28). So this is my 1, this is my 2, this is my 3, prime implicant 1 essential EPI 1, 2 and 3 essential prime implicants. Now remember, look at this and see that this d has not been included, this d is has not been included so it is not mandatory. It is not necessary to include all ds. At the same

12 time I use d to my advantage I use these two ds because they are advantageous and I am able to make a simpler grouping of these two ds. If I don t have these two ds I have to use this as one prime implicant which will have three literals. Now I have a prime implicant with has only two literals that means I am knocking one of the inputs of my gate AND gate that is an advantage, it is a hardware saving. So this is the concept of don t cares and how to use don t cares. Now let us write the expression. Once you have don t cares then combine them we don t have to keep them separate any more, you can just write the expression as if, you write a normal expression. (Refer Slide Time 43:44) So one would be A bar B plus two would be BC plus three would be B bar, this is B bar and D. this is what we got now including don t care. Out of four don t cares I will really use only two and I have not used the other two because these two is an advantage, you exploit them to reduce the hardware. But at the same time don t feel obliged to include every don t care. It is going to be a burden to include every don t care because it is going to unnecessarily give you more terms which are not recommended. If I want to combine this d I have to put one more term which is not necessary. This one is already covered you put a d here I will have an extra term with three literals which is a waste one extra NAND gate, one extra AND gate with three inputs and that input has to fit into an OR gate that means OR gate input also has been increased by 1 so all those extra burden is not necessary, it is the same thing with these three. Originally we had this expression, we now have that expression B bar D is same in both, these two terms have been introduced, each by one literal. These two AND gates will now have the modified form with only two inputs, here we have three inputs so that is the advantage in this hardware so I am having three AND gates fitting into an OR gate. I am not writing the values here you know that this is A bar so you have to come through A

13 and inverter B B C D inverter so now extra two inverters have to be also included. This is the story of the don t cares. So now we have exhausted all possibilities of simplification. Of course I have shown you several things we saw in an arbitrary fashion. What I mean is sort of arbitrary, the examples we took. We didn t take any device except don t cares I tried to justify A plus B bar, A plus BC bar, I said can have a combination but justifying after we do this circuit. But now we have to do it the other way. We have to have a system like any system you want to design what you want from that system for that system you write the truth table that is the design. you identify a physical device system that you want, how many inputs are there in the system, how many outputs are there in the system, what is the input output relationship you want and for the input output relationship you want you write the truth table and from the truth table you can either use Boolean algebra to simplify it or go to Karnaugh Map and simplify it and you can do it the sum of products way or the product of sum way depending on the type of hardware relationship you want to gain. Therefore what you have to do is to take simple examples of logic functions, arithmetic functions. The one interesting thing is in this course we have always been talking about logic gates logic means decision, true or false or AND and OR etc. For example this function is true why this is called logic because this function is true if and only if both the inputs are true and for all other cases the output is false. So we think of it as a logical statement, logically we can make sense. OR gate is a logical gate. If at least one of the inputs is true the output is true or an NOR gate you will say the other way. NOR is complement of OR, only if both the inputs are 0 the output is 1 and in all other cases the output is 0. But then I said these are all digital systems, many times it is also computational intensive. You remember we talked about the computers as the basic building blocks anything can be thought of as a computer. So the basic thing in a computer is an arithmetic circuit. Logic also comes in occasionally but mostly arithmetic add, subtract, multiply, divide and so on. We will see that later on in this course in subsequent lectures. We can also build arithmetic using logic. Actually they are called logic gates but we will use arithmetic gates like add circuit, subtract circuit and things like that using these logic blocks. Why is logic same as arithmetic because there are only two things. We are talking about binary variables a variable which has only two values 0 or 1 so it doesn t matter if it is arithmetic or logic because when you have two inputs we have to add these two inputs but only one output is possible, the adder will have two inputs and one output let us say we have to add two binary numbers. Two binary numbers you are going to add I have two inputs and one output and each of these inputs can have only two values and output can also have two values. So, if both the inputs are 0 the output is 0 the sum of two 0s is 0

14 but if one of the input is 1 the output has to be 1, if one is a 1 and the other is 0 the output is 1 the sum is a 1. So sum is 0 if both the inputs are 0, sum is 1 if one of the input is 1. What will happen if sum is 1 in both the inputs? Then 1 1 is input both the inputs are 1 the sum of two 1s is 2 and I can t represent 2 but I can represent 0 or 1 so output has to be 0. And you should also remember to include another output called carry output which will know that when both the inputs are 1 output will be 0 even though the output is 0 sum is 0 it results in a carry so we will have to know how to handle the carry. But that is the arithmetic part. What I am trying to say is this is a logic function basically, I will have to look at the two values of the input to determine output. If the two values of the input gives me the output so my logic gates can be used for my arithmetic operations. So what we have done is the basic introduction to the logic gates, introduction to Boolean algebra, we talked about min terms max terms, sum of products, product of sum, Karnaugh Map simplification, don t cares etc but then all of them will have to lead to the realization of things which we need. Therefore in the subsequent classes we will take design example from combinational logic both logically and arithmetic how we can design and build. that means you have to first design and specify a circuit, specify the inputs and outputs and find what is the relationship between input and output, represent from my truth table and use the tools that you have learnt, Boolean algebra or Karnaugh Map with or without don t cares, sum of products, product of sum, etc then finally come up with the simplification and that simplification will be drawn in terms of true gates and that gate circuit will work as an arithmetic circuit so the logic circuit will become an arithmetic circuit. We will see in subsequent lectures.

### (Refer Slide Time 3:31)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 5 Logic Simplification In the last lecture we talked about logic functions

### (Refer Slide Time 5:19)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 7 Logic Minimization using Karnaugh Maps In the last lecture we introduced

### (Refer Slide Time: 1:43)

(Refer Slide Time: 1:43) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Pattern Detector So, we talked about Moore

### (Refer Slide Time: 00:01:30)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 32 Design using Programmable Logic Devices (Refer Slide Time: 00:01:30)

### Slide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 5 for ENEL 353 Fall 207 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Fall Term, 207 SN s ENEL 353 Fall 207 Slide Set 5 slide

### IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

### (Refer Slide Time: 00:01:53)

Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 36 Design of Circuits using MSI Sequential Blocks (Refer Slide Time:

### Continuing with whatever we saw in the previous lectures, we are going to discuss or continue to discuss the hardwired logic design.

Computer Organization Part I Prof. S. Raman Department of Computer Science & Engineering Indian Institute of Technology Lecture 10 Controller Design: Micro programmed and hard wired (contd) Continuing

### Chapter 2. Boolean Expressions:

Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian محرم 1439 ه Winter

### 2.6 BOOLEAN FUNCTIONS

2.6 BOOLEAN FUNCTIONS Binary variables have two values, either 0 or 1. A Boolean function is an expression formed with binary variables, the two binary operators AND and OR, one unary operator NOT, parentheses

Get Free notes at Module-I One s Complement: Complement all the bits.i.e. makes all 1s as 0s and all 0s as 1s Two s Complement: One s complement+1 SIGNED BINARY NUMBERS Positive integers (including zero)

### ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 3 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

### Module -7. Karnaugh Maps

1 Module -7 Karnaugh Maps 1. Introduction 2. Canonical and Standard forms 2.1 Minterms 2.2 Maxterms 2.3 Canonical Sum of Product or Sum-of-Minterms (SOM) 2.4 Canonical product of sum or Product-of-Maxterms(POM)

### Contents. Chapter 3 Combinational Circuits Page 1 of 34

Chapter 3 Combinational Circuits Page of 34 Contents Contents... 3 Combinational Circuits... 2 3. Analysis of Combinational Circuits... 2 3.. Using a Truth Table... 2 3..2 Using a Boolean unction... 4

### Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map

Points Addressed in this Lecture Lecture 4: Logic Simplication & Karnaugh Map Professor Peter Cheung Department of EEE, Imperial College London Standard form of Boolean Expressions Sum-of-Products (SOP),

### Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi

Project and Production Management Prof. Arun Kanda Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture - 8 Consistency and Redundancy in Project networks In today s lecture

### CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey 2. Introduction Logic gates are connected together to produce a specified output for certain specified combinations of input

### Introduction to Computer Architecture

Boolean Operators The Boolean operators AND and OR are binary infix operators (that is, they take two arguments, and the operator appears between them.) A AND B D OR E We will form Boolean Functions of

### Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 08 Constants and Inline Functions Welcome to module 6 of Programming

### Week - 01 Lecture - 03 Euclid's Algorithm for gcd. Let us continue with our running example of gcd to explore more issues involved with program.

Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 01 Lecture - 03 Euclid's Algorithm

### Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

### Arithmetic-logic units

Arithmetic-logic units An arithmetic-logic unit, or ALU, performs many different arithmetic and logic operations. The ALU is the heart of a processor you could say that everything else in the CPU is there

### MODULE 5 - COMBINATIONAL LOGIC

Introduction to Digital Electronics Module 5: Combinational Logic 1 MODULE 5 - COMBINATIONAL LOGIC OVERVIEW: For any given combination of input binary bits or variables, the logic will have a specific

### Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

### 1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another

### Boolean Analysis of Logic Circuits

Course: B.Sc. Applied Physical Science (Computer Science) Year & Sem.: IInd Year, Sem - IIIrd Subject: Computer Science Paper No.: IX Paper Title: Computer System Architecture Lecture No.: 7 Lecture Title:

### 2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

### Gate Level Minimization Map Method

Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

### 4 KARNAUGH MAP MINIMIZATION

4 KARNAUGH MAP MINIMIZATION A Karnaugh map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the

### EECS150 Homework 2 Solutions Fall ) CLD2 problem 2.2. Page 1 of 15

1.) CLD2 problem 2.2 We are allowed to use AND gates, OR gates, and inverters. Note that all of the Boolean expression are already conveniently expressed in terms of AND's, OR's, and inversions. Thus,

### UNIT II. Circuit minimization

UNIT II Circuit minimization The complexity of the digital logic gates that implement a Boolean function is directly related to the complexity of the algebraic expression from which the function is implemented.

### Lecture 05 I/O statements Printf, Scanf Simple statements, Compound statements

Programming, Data Structures and Algorithms Prof. Shankar Balachandran Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 05 I/O statements Printf, Scanf Simple

### COMP combinational logic 1 Jan. 18, 2016

In lectures 1 and 2, we looked at representations of numbers. For the case of integers, we saw that we could perform addition of two numbers using a binary representation and using the same algorithm that

### Chapter 2 Combinational Logic Circuits

Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Overview Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard

### Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

### Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology, Madras. Lecture No.

Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture No. # 13 Transportation Problem, Methods for Initial Basic Feasible

### Optimized Implementation of Logic Functions

June 25, 22 9:7 vra235_ch4 Sheet number Page number 49 black chapter 4 Optimized Implementation of Logic Functions 4. Nc3xe4, Nb8 d7 49 June 25, 22 9:7 vra235_ch4 Sheet number 2 Page number 5 black 5 CHAPTER

### DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES

DIGITAL CIRCUIT LOGIC UNIT 7: MULTI-LEVEL GATE CIRCUITS NAND AND NOR GATES 1 iclicker Question 13 Considering the K-Map, f can be simplified as (2 minutes): A) f = b c + a b c B) f = ab d + a b d AB CD

### Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

### Combinational Logic Circuits

Chapter 3 Combinational Logic Circuits 12 Hours 24 Marks 3.1 Standard representation for logical functions Boolean expressions / logic expressions / logical functions are expressed in terms of logical

### Simplification of Boolean Functions

COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 5 -- page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean

### CprE 281: Digital Logic

CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Minimization CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev Administrative

### Starting Boolean Algebra

Boolean Algebra March 2, 27 Diagram for FunChip2 Here is a picture of FunChip2 that we created more or less randomly in class on /25 (used in various Activities): Starting Boolean Algebra Boolean algebra

### Problem Solving through Programming In C Prof. Anupam Basu Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur

Problem Solving through Programming In C Prof. Anupam Basu Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture - 04 Introduction to Programming Language Concepts

### Specifying logic functions

CSE4: Components and Design Techniques for Digital Systems Specifying logic functions Instructor: Mohsen Imani Slides from: Prof.Tajana Simunic and Dr.Pietro Mercati We have seen various concepts: Last

### Slides for Lecture 15

Slides for Lecture 5 ENEL 353: Digital Circuits Fall 203 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary October, 203 ENEL 353 F3 Section

### Fundamentals of Operations Research. Prof. G. Srinivasan. Department of Management Studies. Indian Institute of Technology Madras.

Fundamentals of Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology Madras Lecture No # 06 Simplex Algorithm Initialization and Iteration (Refer Slide

### Designing Computer Systems Boolean Algebra

Designing Computer Systems Boolean Algebra 08:34:45 PM 4 June 2013 BA-1 Scott & Linda Wills Designing Computer Systems Boolean Algebra Programmable computers can exhibit amazing complexity and generality.

### CSC 220: Computer Organization Unit 10 Arithmetic-logic units

College of Computer and Information Sciences Department of Computer Science CSC 220: Computer Organization Unit 10 Arithmetic-logic units 1 Remember: 2 Arithmetic-logic units An arithmetic-logic unit,

### Programming, Data Structures and Algorithms Prof. Hema Murthy Department of Computer Science and Engineering Indian Institute of Technology, Madras

Programming, Data Structures and Algorithms Prof. Hema Murthy Department of Computer Science and Engineering Indian Institute of Technology, Madras Module 06 Lecture - 46 Stacks: Last in first out Operations:

### A B AB CD Objectives:

Objectives:. Four variables maps. 2. Simplification using prime implicants. 3. "on t care" conditions. 4. Summary.. Four variables Karnaugh maps Minterms A A m m m3 m2 A B C m4 C A B C m2 m8 C C m5 C m3

### Lecture #21 March 31, 2004 Introduction to Gates and Circuits

Lecture #21 March 31, 2004 Introduction to Gates and Circuits To this point we have looked at computers strictly from the perspective of assembly language programming. While it is possible to go a great

### Boolean algebra. June 17, Howard Huang 1

Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware

### (Refer Slide Time: 01.26)

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture # 22 Why Sorting? Today we are going to be looking at sorting.

### Combinational Logic & Circuits

Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

### Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples

Lecture B: Logic Minimization Incompletely Specified Functions with Don t Cares 2-Level Transformation Review Boolean Cube Karnaugh-Map Representation and Methods Examples Incompletely specified functions

### LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

LSN 4 Boolean Algebra & Logic Simplification Department of Engineering Technology LSN 4 Key Terms Variable: a symbol used to represent a logic quantity Compliment: the inverse of a variable Literal: a

### (Refer Slide Time: 02.06)

Data Structures and Algorithms Dr. Naveen Garg Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture 27 Depth First Search (DFS) Today we are going to be talking

### (Refer Slide Time: 1:40)

Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering, Indian Institute of Technology, Delhi Lecture - 3 Instruction Set Architecture - 1 Today I will start discussion

### Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

### DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS

C H A P T E R 6 DIGITAL ARITHMETIC: OPERATIONS AND CIRCUITS OUTLINE 6- Binary Addition 6-2 Representing Signed Numbers 6-3 Addition in the 2 s- Complement System 6-4 Subtraction in the 2 s- Complement

### Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

### Digital Techniques. Lecture 1. 1 st Class

Digital Techniques Lecture 1 1 st Class Digital Techniques Digital Computer and Digital System: Digital computer is a part of digital system, it based on binary system. A block diagram of digital computer

### Austin Herring Recitation 002 ECE 200 Project December 4, 2013

1. Fastest Circuit a. How Design Was Obtained The first step of creating the design was to derive the expressions for S and C out from the given truth tables. This was done using Karnaugh maps. The Karnaugh

### Combinational Logic Circuits Part III -Theoretical Foundations

Combinational Logic Circuits Part III -Theoretical Foundations Overview Simplifying Boolean Functions Algebraic Manipulation Karnaugh Map Manipulation (simplifying functions of 2, 3, 4 variables) Systematic

### Boolean Algebra & Digital Logic

Boolean Algebra & Digital Logic Boolean algebra was developed by the Englishman George Boole, who published the basic principles in the 1854 treatise An Investigation of the Laws of Thought on Which to

### 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

### Experiment 3: Logic Simplification

Module: Logic Design Name:... University no:.. Group no:. Lab Partner Name: Mr. Mohamed El-Saied Experiment : Logic Simplification Objective: How to implement and verify the operation of the logical functions

### Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 02 Octal and Hexadecimal Number Systems Welcome

### Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

Gate-Level Minimization BME28 Logic Circuits Yalçın İŞLER islerya@yahoo.com http://me.islerya.com Complexity of Digital Circuits Directly related to the complexity of the algebraic expression we use to

### DKT 122/3 DIGITAL SYSTEM 1

Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits

### CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

### Week - 04 Lecture - 01 Merge Sort. (Refer Slide Time: 00:02)

Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 04 Lecture - 01 Merge Sort (Refer

### BOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.

COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless

### Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 14 Scan Converting Lines, Circles and Ellipses Hello everybody, welcome again

### ECE380 Digital Logic

ECE38 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Dr. D. J. Jackson Lecture 8- Terminology For

### DIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (K-MAPS)

DIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (K-MAPS) 1 Learning Objectives 1. Given a function (completely or incompletely specified) of three to five variables, plot it on a Karnaugh map. The function

### 1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z

CS W3827 05S Solutions for Midterm Exam 3/3/05. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.

### 9/10/2016. The Dual Form Swaps 0/1 and AND/OR. ECE 120: Introduction to Computing. Every Boolean Expression Has a Dual Form

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Boolean Properties and Optimization The Dual Form Swaps 0/1 and AND/OR Boolean

### Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 9 Normal Forms

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 9 Normal Forms In the last class we have seen some consequences and some equivalences,

### UNIT-4 BOOLEAN LOGIC. NOT Operator Operates on single variable. It gives the complement value of variable.

UNIT-4 BOOLEAN LOGIC Boolean algebra is an algebra that deals with Boolean values((true and FALSE). Everyday we have to make logic decisions: Should I carry the book or not?, Should I watch TV or not?

### QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

### (Refer Slide Time: 00:02:02)

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 20 Clipping: Lines and Polygons Hello and welcome everybody to the lecture

### Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

### CARLETON UNIVERSITY. Laboratory 2.0

CARLETON UNIVERSITY Department of Electronics ELEC 267 Switching Circuits Jan 3, 28 Overview Laboratory 2. A 3-Bit Binary Sign-Extended Adder/Subtracter A binary adder sums two binary numbers for example

### Digital Logic Lecture 7 Gate Level Minimization

Digital Logic Lecture 7 Gate Level Minimization By Ghada Al-Mashaqbeh The Hashemite University Computer Engineering Department Outline Introduction. K-map principles. Simplification using K-maps. Don t-care

### Simplification of Boolean Functions

Simplification of Boolean Functions Contents: Why simplification? The Map Method Two, Three, Four and Five variable Maps. Simplification of two, three, four and five variable Boolean function by Map method.

### Gate-Level Minimization. section instructor: Ufuk Çelikcan

Gate-Level Minimization section instructor: Ufuk Çelikcan Compleity of Digital Circuits Directly related to the compleity of the algebraic epression we use to build the circuit. Truth table may lead to

### ECE 550D Fundamentals of Computer Systems and Engineering. Fall 2017

ECE 550D Fundamentals of Computer Systems and Engineering Fall 2017 Combinational Logic Prof. John Board Duke University Slides are derived from work by Profs. Tyler Bletsch and Andrew Hilton (Duke) Last

### There are many other applications like constructing the expression tree from the postorder expression. I leave you with an idea as how to do it.

Programming, Data Structures and Algorithms Prof. Hema Murthy Department of Computer Science and Engineering Indian Institute of Technology, Madras Lecture 49 Module 09 Other applications: expression tree

### CMPE223/CMSE222 Digital Logic

CMPE223/CMSE222 Digital Logic Optimized Implementation of Logic Functions: Strategy for Minimization, Minimum Product-of-Sums Forms, Incompletely Specified Functions Terminology For a given term, each

### (Refer Slide Time: 00:02:00)

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 18 Polyfill - Scan Conversion of a Polygon Today we will discuss the concepts

### Chapter 3. Gate-Level Minimization. Outlines

Chapter 3 Gate-Level Minimization Introduction The Map Method Four-Variable Map Five-Variable Map Outlines Product of Sums Simplification Don t-care Conditions NAND and NOR Implementation Other Two-Level

### (Refer Slide Time: 00:02:04)

Computer Architecture Prof. Anshul Kumar Department of Computer Science and Engineering Indian Institute of Technology, Delhi Lecture - 27 Pipelined Processor Design: Handling Control Hazards We have been

### Chapter 2 Boolean algebra and Logic Gates

Chapter 2 Boolean algebra and Logic Gates 2. Introduction In working with logic relations in digital form, we need a set of rules for symbolic manipulation which will enable us to simplify complex expressions

### Week - 03 Lecture - 18 Recursion. For the last lecture of this week, we will look at recursive functions. (Refer Slide Time: 00:05)

Programming, Data Structures and Algorithms in Python Prof. Madhavan Mukund Department of Computer Science and Engineering Indian Institute of Technology, Madras Week - 03 Lecture - 18 Recursion For the