Working on the Pipeline

Size: px
Start display at page:

Download "Working on the Pipeline"

Transcription

1 Computer Science 6C Spring 27 Working on the Pipeline

2 Datapath Control Signals Computer Science 6C Spring 27 MemWr: write memory MemtoReg: ALU; Mem RegDst: rt ; rd RegWr: write register 4 PC Ext Imm6 Adder Adder Inst Address npc_sel & Equal Mux PC clk RegDst RegWr busw 32 ALUctr: "add", "sub", "OR",... Extender: zero-ext; sign-ext npc_sel: pc+4; branch-if-equal Rd clk Imm6 Rt Rs 5 5 Rw Ra Rb RegFile 6 ExtOp Rt 5 busa Extender busb ALUSrc ALUctr Data In clk ALU 32 MemWr 32 WrEn MemtoReg Adr Data Memory 2

3 Summary of the Control Signals (/2) Computer Science 6C Spring 27 inst Register Transfer add R[rd] R[rs] + R[rt]; PC PC + 4 ALUsrc=RegB, ALUctr= ADD, RegDst=rd, RegWr, npc_sel= +4 sub R[rd] R[rs] R[rt]; PC PC + 4 ALUsrc=RegB, ALUctr= SUB, RegDst=rd, RegWr, npc_sel= +4 ori R[rt] R[rs] + zero_ext(imm6); PC PC + 4 ALUsrc=Im, Extop= Z, ALUctr= OR, RegDst=rt,RegWr, npc_sel= +4 lw R[rt] MEM[ R[rs] + sign_ext(imm6)]; PC PC + 4 ALUsrc=Im, Extop= sn, ALUctr= ADD, MemtoReg, RegDst=rt, RegWr, npc_sel = +4 sw MEM[ R[rs] + sign_ext(imm6)] R[rs]; PC PC + 4 ALUsrc=Im, Extop= sn, ALUctr = ADD, MemWr, npc_sel = +4 beq if (R[rs] == R[rt]) then PC PC + sign_ext(imm6)] else PC PC + 4 npc_sel = br, ALUctr = SUB 3

4 Summary of the Control Signals (2/2) Computer Science 6C Spring 27 See func We Don t Care :-) Appendix A op add sub ori lw sw beq jump RegDst ALUSrc MemtoReg RegWrite MemWrite npcsel Jump ExtOp ALUctr<2:> x Add x Subtract Or Add x x Add x x x Subtract x x x? x x R-type op rs rt rd shamt funct add, sub I-type op rs rt immediate ori, lw, sw, beq J-type op target address jump 4

5 Boolean Expressions for Controller Computer Science 6C Spring 27 RegDst = add + sub ALUSrc = ori + lw + sw MemtoReg = lw RegWrite = add + sub + ori + lw MemWrite = sw npcsel = beq Jump = jump ExtOp = lw + sw ALUctr[] = sub + beq (assume ALUctr is ADD, SUB, OR) ALUctr[] = or Where: rtype = ~op 5 ~op 4 ~op 3 ~op 2 ~op ~op, ori = ~op 5 ~op 4 op 3 op 2 ~op op lw = op 5 ~op 4 ~op 3 ~op 2 op op sw = op 5 ~op 4 op 3 ~op 2 op op beq = ~op 5 ~op 4 ~op 3 op 2 ~op ~op jump = ~op 5 ~op 4 ~op 3 ~op 2 op ~op How do we implement this in gates? add = rtype func 5 ~func 4 ~func 3 ~func 2 ~func ~func sub = rtype func 5 ~func 4 ~func 3 ~func 2 func ~func 5

6 Controller Implementation Computer Science 6C Spring 27 opcode func AND logic add sub ori lw sw beq jump OR logic RegDst ALUSrc MemtoReg RegWrite MemWrite npcsel Jump ExtOp ALUctr[] ALUctr[] 6

7 P&H Figure 4.7 Computer Science 6C Spring 27 7

8 Summary: Single-cycle Processor Computer Science 6C Spring 27 Five steps to design a processor:. Analyze instruction set à datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements Processor Control Datapath Memory 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic Formulate Logic Equations Design Circuits Input Output 8

9 Single Cycle Performance Computer Science 6C Spring 27 Assume time for actions are ps for register read or write; 2ps for other events Instr Instr fetch Register read ALU op Memory access Register write Total time lw 2ps ps 2ps 2ps ps 8ps sw 2ps ps 2ps 2ps 7ps R-format 2ps ps 2ps ps 6ps beq 2ps ps 2ps 5ps What can we do to improve clock rate? Will this improve performance as well? Want increased clock rate to mean faster programs 9

10 Gotta Do Laundry Computer Science 6C Spring 27 Alice, Bob, Carol, and Dave A B C D each have one load of clothes to wash, dry, fold, and put away Washer takes 3 minutes Dryer takes 3 minutes Folder takes 3 minutes Stasher takes 3 minutes to put clothes into drawers

11 Sequential Laundry Computer Science 6C Spring 27 6 PM AM T a s k O r d e r A B C D Time Sequential laundry takes 8 hours for 4 loads

12 Pipelined Laundry Computer Science 6C Spring AM 6 PM T a s k O r d e r A B C D Time Pipelined laundry takes 3.5 hours for 4 loads! 2

13 Pipelining Lessons (/2) Computer Science 6C Spring 27 Pipelining doesn t help latency of single task, it helps throughput of entire workload Multiple tasks operating simultaneously and independently 6 PM using different resources Potential speedup = Number pipe stages Time to fill pipeline and time to drain it reduces speedup: 2.3x (8/3.5) v. 4x (8/2) in this example T a s k O r d e A B C D Time

14 Pipelining Lessons (2/2) Computer Science 6C Spring 27 Suppose new Washer takes 2 minutes, new Stasher takes 2 minutes. How much faster is pipeline? Pipeline rate limited by slowest pipeline stage Suppose Bob doesn't bother folding his laundry? Idle steps in the pipeline don't enable others to fold Unbalanced lengths and idle stages reduces speedup T a s k O r d e 6 PM A B C D Time

15 Execution Steps in MIPS Datapath Computer Science 6C Spring 27 ) IFtch/IF: Instruction Fetch & Increment PC 2) Dcd/ID: Instruction Decode & Read Registers 3) Exec/EX: Mem-ref: Calculate Address Arith-log: Perform ALU Operation 4) Mem: Load: Read Data from Memory Store: Write Data to Memory Memory is now synchronous 5) WB: Write Data Back to Register 5

16 Single Cycle Datapath Computer Science 6C Spring 27 PC instruction memory rd rs rt registers ALU Data memory +4 imm. Instruction Fetch 2. Decode/ 3. Execute 4. Memory Register Read 5. Write Back 6

17 Pipeline registers Computer Science 6C Spring 27 Need registers between stages To hold information produced in previous cycle PC instruction memory rd rs rt registers ALU Data memory +4 imm. Instruction Fetch 2. Decode/ 3. Execute 4. Memory Register Read 5. Write Back 7

18 More Detailed Pipeline Computer Science 6C Spring 27 8

19 IF for Load, Store, Computer Science 6C Spring 27 9

20 ID for Load, Store, Computer Science 6C Spring 27 2

21 EX for Load Computer Science 6C Spring 27 2

22 MEM for Load Computer Science 6C Spring 27 22

23 WB for Load Oops! Computer Science 6C Spring 27 Wrong register number! 23

24 Corrected Datapath for Load Computer Science 6C Spring 27 24

25 Pipelined Execution Representation Computer Science 6C Spring 27 Every instruction must take same number of steps, so some stages will idle e.g. MEM stage for any arithmetic instruction Time IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB IF ID EX MEM WB 25

26 Graphical Pipeline Diagrams Computer Science 6C Spring 27 Use datapath figure below to represent pipeline: PC MUX +4 instruction memory rd rs rt imm Register File ALU Data memory. Instruction Fetch 2. Decode/ Register Read IF ID EX Mem WB 3. Execute 4. Memory 5. Write Back ALU I$ Reg D$ Reg 26

27 Graphical Pipeline Representation Computer Science 6C Spring 27 RegFile: left half is write, right half is read Time (clock cycles) I n I$ Reg D$ Reg s Load t I$ Reg D$ Reg r Add O r d e r Store Sub Or ALU I$ ALU Reg I$ ALU Reg I$ D$ ALU Reg Reg D$ ALU Reg D$ Reg 27

28 Pipelining Performance (/3) Computer Science 6C Spring 27 Use T c ( time between completion of instructions ) to measure speedup Equality only achieved if stages are balanced (i.e. take the same amount of time) If not balanced, speedup is reduced Speedup due to increased throughput Latency for each instrucbon does not decrease 28

29 Pipelining Performance (2/3) Computer Science 6C Spring 27 Assume time for stages is ps for register read or write 2ps for other stages Instr Instr fetch Register read ALU op Memory access Register write Total time lw 2ps ps 2ps 2ps ps 8ps sw 2ps ps 2ps 2ps 7ps R-format 2ps ps 2ps ps 6ps beq 2ps ps 2ps 5ps What is pipelined clock rate? Compare pipelined datapath with single-cycle datapath 29

30 Pipelining Performance (3/3) Computer Science 6C Spring 27 Single-cycle T c = 8 ps f =.25GHz Pipelined T c = 2 ps f = 5GHz 3

31 Clicker/Peer Instruction Computer Science 6C Spring 27 Logic in some stages takes 2ps and in some ps. Clk-Q delay is 3ps and setup-time is 2ps. What is the maximum clock frequency at which a pipelined design can operate? A: GHz B: 5GHz C: 6.7GHz D: 4.35GHz E: 4GHz 3

32 Project 3... Computer Science 6C Spring 27 Project 3. will be released in a couple of hours In project 3, you will build a CPU in logisim. 3. is the ALU and register file 3.2 is putting together the control logic 32

33 We Grossly Simplified The Project... Why? Computer Science 6C Spring 27 Last semester and last year it was building effectively a full MIPS Now it is a much smaller architecture with narrower words: Why are we cheating you out of the experience? We use logisim for pedagogical reasons Almost all design these days uses "HDL" (High-Level Design Languages) like VHDL and Verilog In an HDL, doing a 32b, 32 register register file is no harder than doing a 6b, 8 register one But in logisim, it is at least 4x more work... And 4x more chance to make an error 33

34 Why Nick's Ph.D. Was An Incredibly Stupid Idea... Computer Science 6C Spring 27 My Ph.D. was on a highly pipelined FPGA architecture FPGA -> Field Programmable Gate Array: Basically programmable hardware The design was centered around being able to pipeline multiple independent tasks We will see on Wednesday how to handle "pipeline hazards" and "forwarding: add $s $s $s2 add $s3 $s $s4 This is critical to get real performance gains But my dissertation design didn't have this ability I also showed how you could use the existing registers in the FPGA to heavily pipeline it automatically 34

35 But pipelining is not free! Computer Science 6C Spring 27 Not only does pipelining not improve latency... It actually makes it worse! Two sources: Unbalanced pipeline stages The setup & clk->q time for the pipeline registers Pipelining only independent tasks also can't "forward" So independent task pipelining is only about reducing cost You can always just duplicate logic instead Latency is fundamental, independent task throughput can always be solved by throwing $$$ at the problem So I proved my Ph.D. design was no better than the conventional FPGA on throughput/$ and far far far worse on latency! 35

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

CS3350B Computer Architecture Winter Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2)

CS3350B Computer Architecture Winter Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) CS335B Computer Architecture Winter 25 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza www.csd.uwo.ca/courses/cs335b [Adapted from lectures on Computer Organization and Design,

More information

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control

CS 110 Computer Architecture Single-Cycle CPU Datapath & Control CS Computer Architecture Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2 CS 6C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath & Control Part 2 Instructors: Krste Asanovic & Vladimir Stojanovic hfp://inst.eecs.berkeley.edu/~cs6c/ Review:

More information

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI

Full Datapath. CSCI 402: Computer Architectures. The Processor (2) 3/21/19. Fengguang Song Department of Computer & Information Science IUPUI CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Full Datapath Branch Target Instruction Fetch Immediate 4 Today s Contents We have looked

More information

Lecture #17: CPU Design II Control

Lecture #17: CPU Design II Control Lecture #7: CPU Design II Control 25-7-9 Anatomy: 5 components of any Computer Personal Computer Computer Processor Control ( brain ) This week ( ) path ( brawn ) (where programs, data live when running)

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs6c UC Berkeley CS6C : Machine Structures The Internet is broken?! The Clean Slate team at Stanford wants to revamp the Internet, making it safer (from viruses), more reliable

More information

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content

CSCI 402: Computer Architectures. Fengguang Song Department of Computer & Information Science IUPUI. Today s Content 3/6/8 CSCI 42: Computer Architectures The Processor (2) Fengguang Song Department of Computer & Information Science IUPUI Today s Content We have looked at how to design a Data Path. 4.4, 4.5 We will design

More information

COMP303 Computer Architecture Lecture 9. Single Cycle Control

COMP303 Computer Architecture Lecture 9. Single Cycle Control COMP33 Computer Architecture Lecture 9 Single Cycle Control A Single Cycle Datapath We have everything except control signals (underlined) RegDst busw Today s lecture will look at how to generate the control

More information

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction CS 61C: Great Ideas in Computer Architecture MIPS CPU Datapath, Control Introduction Instructor: Alan Christopher 7/28/214 Summer 214 -- Lecture #2 1 Review of Last Lecture Critical path constrains clock

More information

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath

COMP303 - Computer Architecture Lecture 8. Designing a Single Cycle Datapath COMP33 - Computer Architecture Lecture 8 Designing a Single Cycle Datapath The Big Picture The Five Classic Components of a Computer Processor Input Control Memory Datapath Output The Big Picture: The

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs6c UC Berkeley CS6C : Machine Structures Lecture 26 Single-cycle CPU Control 27-3-2 Exhausted TA Ben Sussman www.icanhascheezburger.com Qutrits Bring Quantum Computers Closer:

More information

MIPS-Lite Single-Cycle Control

MIPS-Lite Single-Cycle Control MIPS-Lite Single-Cycle Control COE68: Computer Organization and Architecture Dr. Gul N. Khan http://www.ee.ryerson.ca/~gnkhan Electrical and Computer Engineering Ryerson University Overview Single cycle

More information

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath

The Big Picture: Where are We Now? EEM 486: Computer Architecture. Lecture 3. Designing a Single Cycle Datapath The Big Picture: Where are We Now? EEM 486: Computer Architecture Lecture 3 The Five Classic Components of a Computer Processor Input Control Memory Designing a Single Cycle path path Output Today s Topic:

More information

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath

361 datapath.1. Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath 361 datapath.1 Computer Architecture EECS 361 Lecture 8: Designing a Single Cycle Datapath Outline of Today s Lecture Introduction Where are we with respect to the BIG picture? Questions and Administrative

More information

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control

361 control.1. EECS 361 Computer Architecture Lecture 9: Designing Single Cycle Control 36 control. EECS 36 Computer Architecture Lecture 9: Designing Single Cycle Control Recap: The MIPS Subset ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm6 3 3 26 2 6 op rs rt rd

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #19 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker CS61C L19 CPU Design : Designing a Single-Cycle CPU

More information

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath

CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath CPE 442 single-cycle datapath.1 Outline of Today s Lecture Recap and Introduction Where are we with respect to the BIG picture?

More information

The Processor: Datapath & Control

The Processor: Datapath & Control Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Processor: Datapath & Control Processor Design Step 3 Assemble Datapath Meeting Requirements Build the

More information

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Datapath Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Components of a Computer Processor Control Enable? Read/Write

More information

CS 61C: Great Ideas in Computer Architecture Lecture 12: Single- Cycle CPU, Datapath & Control Part 2

CS 61C: Great Ideas in Computer Architecture Lecture 12: Single- Cycle CPU, Datapath & Control Part 2 CS 6C: Great Ideas in Computer Architecture Lecture 2: Single- Cycle CPU, Datapath & Control Part 2 Instructor: Sagar Karandikar sagark@eecs.berkeley.edu hbp://inst.eecs.berkeley.edu/~cs6c Midterm Results

More information

CS3350B Computer Architecture Quiz 3 March 15, 2018

CS3350B Computer Architecture Quiz 3 March 15, 2018 CS3350B Computer Architecture Quiz 3 March 15, 2018 Student ID number: Student Last Name: Question 1.1 1.2 1.3 2.1 2.2 2.3 Total Marks The quiz consists of two exercises. The expected duration is 30 minutes.

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information

CPU Design Steps. EECC550 - Shaaban

CPU Design Steps. EECC550 - Shaaban CPU Design Steps 1. Analyze instruction set operations using independent RTN => datapath requirements. 2. Select set of datapath components & establish clock methodology. 3. Assemble datapath meeting the

More information

CPU Organization (Design)

CPU Organization (Design) ISA Requirements CPU Organization (Design) Datapath Design: Capabilities & performance characteristics of principal Functional Units (FUs) needed by ISA instructions (e.g., Registers, ALU, Shifters, Logic

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 Guest Lecturer: Sagar Karandikar hfp://inst.eecs.berkeley.edu/~cs61c/ http://research.microsoft.com/apps/pubs/default.aspx?id=212001!

More information

Single Cycle CPU Design. Mehran Rezaei

Single Cycle CPU Design. Mehran Rezaei Single Cycle CPU Design Mehran Rezaei What does it mean? Instruction Fetch Instruction Memory clk pc 32 32 address add $t,$t,$t2 instruction Next Logic to generate the address of next instruction The Branch

More information

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath

ECE468 Computer Organization and Architecture. Designing a Single Cycle Datapath ECE468 Computer Organization and Architecture Designing a Single Cycle Datapath ECE468 datapath1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Input Datapath

More information

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control

EEM 486: Computer Architecture. Lecture 3. Designing Single Cycle Control EEM 48: Computer Architecture Lecture 3 Designing Single Cycle The Big Picture: Where are We Now? Processor Input path Output Lec 3.2 An Abstract View of the Implementation Ideal Address Net Address PC

More information

Major CPU Design Steps

Major CPU Design Steps Datapath Major CPU Design Steps. Analyze instruction set operations using independent RTN ISA => RTN => datapath requirements. This provides the the required datapath components and how they are connected

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 34 Single Cycle CPU Control I 24-4-16 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia 1.5 Quake?! NBC movie on May 3 rd. Truth stranger

More information

CS359: Computer Architecture. The Processor (A) Yanyan Shen Department of Computer Science and Engineering

CS359: Computer Architecture. The Processor (A) Yanyan Shen Department of Computer Science and Engineering CS359: Computer Architecture The Processor (A) Yanyan Shen Department of Computer Science and Engineering Eecuting R-type Instructions 7 Instructions ADD and subtract add rd, rs, rt sub rd, rs, rt OR Immediate:

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #17 Single Cycle CPU Datapath CPS today! 2005-10-31 There is one handout today at the front and back of the room! Lecturer PSOE, new dad

More information

University of California College of Engineering Computer Science Division -EECS. CS 152 Midterm I

University of California College of Engineering Computer Science Division -EECS. CS 152 Midterm I Name: University of California College of Engineering Computer Science Division -EECS Fall 996 D.E. Culler CS 52 Midterm I Your Name: ID Number: Discussion Section: You may bring one double-sided pages

More information

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations

ECE170 Computer Architecture. Single Cycle Control. Review: 3b: Add & Subtract. Review: 3e: Store Operations. Review: 3d: Load Operations ECE7 Computer Architecture Single Cycle Control Review: 3a: Overview of the Fetch Unit The common operations Fetch the : mem[] Update the program counter: Sequential Code: < + Branch and Jump: < something

More information

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath Outline EEL-473 Computer Architecture Designing a Single Cycle path Introduction The steps of designing a processor path and timing for register-register operations path for logical operations with immediates

More information

Lecture 6 Datapath and Controller

Lecture 6 Datapath and Controller Lecture 6 Datapath and Controller Peng Liu liupeng@zju.edu.cn Windows Editor and Word Processing UltraEdit, EditPlus Gvim Linux or Mac IOS Emacs vi or vim Word Processing(Windows, Linux, and Mac IOS) LaTex

More information

Computer Architecture. Lecture 6.1: Fundamentals of

Computer Architecture. Lecture 6.1: Fundamentals of CS3350B Computer Architecture Winter 2015 Lecture 6.1: Fundamentals of Instructional Level Parallelism Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and

More information

Designing a Multicycle Processor

Designing a Multicycle Processor Designing a Multicycle Processor Arquitectura de Computadoras Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN adiaz@cinvestav.mx Arquitectura de Computadoras Multicycle-

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 25 CPU Design: Designing a Single-cycle CPU Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia T-Mobile s Wi-Fi / Cell phone

More information

Midterm I March 3, 1999 CS152 Computer Architecture and Engineering

Midterm I March 3, 1999 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Spring 1999 John Kubiatowicz Midterm I March 3, 1999 CS152 Computer Architecture and Engineering Your Name: SID

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 19 CPU Design: The Single-Cycle II & Control !

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 19 CPU Design: The Single-Cycle II & Control ! inst.eecs.berkeley.edu/~cs6c CS6C : Machine Structures Lecture 9 CPU Design: The Single-Cycle II & Control 2-7-22!!!Instructor Paul Pearce! Dell may have shipped infected motherboards! Dell is warning

More information

Instructor: Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #18. Warehouse Scale Computer

Instructor: Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #18. Warehouse Scale Computer /29/3 CS 6C: Great Ideas in Computer Architecture Building Blocks for Datapaths Instructor: Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs6c/fa3 /27/3 Fall 23 - - Lecture #8 So5ware Parallel Requests Assigned

More information

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU

Review. N-bit adder-subtractor done using N 1- bit adders with XOR gates on input. Lecture #19 Designing a Single-Cycle CPU CS6C L9 CPU Design : Designing a Single-Cycle CPU () insteecsberkeleyedu/~cs6c CS6C : Machine Structures Lecture #9 Designing a Single-Cycle CPU 27-7-26 Scott Beamer Instructor AI Focuses on Poker Review

More information

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction

EECS150 - Digital Design Lecture 10- CPU Microarchitecture. Processor Microarchitecture Introduction EECS150 - Digital Design Lecture 10- CPU Microarchitecture Feb 18, 2010 John Wawrzynek Spring 2010 EECS150 - Lec10-cpu Page 1 Processor Microarchitecture Introduction Microarchitecture: how to implement

More information

How to design a controller to produce signals to control the datapath

How to design a controller to produce signals to control the datapath ECE48 Computer Organization and Architecture Designing Single Cycle How to design a controller to produce signals to control the datapath ECE48. 2--7 Recap: The MIPS Formats All MIPS instructions are bits

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability!

inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I ! Nasty new windows vulnerability! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 CPU Design: The Single-Cycle I CS61C L18 CPU Design: The Single-Cycle I (1)! 2010-07-21!!!Instructor Paul Pearce! Nasty new windows vulnerability!

More information

CSE 141 Computer Architecture Summer Session Lecture 3 ALU Part 2 Single Cycle CPU Part 1. Pramod V. Argade

CSE 141 Computer Architecture Summer Session Lecture 3 ALU Part 2 Single Cycle CPU Part 1. Pramod V. Argade CSE 141 Computer Architecture Summer Session 1 2004 Lecture 3 ALU Part 2 Single Cycle CPU Part 1 Pramod V. Argade Reading Assignment Announcements Chapter 5: The Processor: Datapath and Control, Sec. 5.3-5.4

More information

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner CPS104 Computer Organization and Programming Lecture 19: Pipelining Robert Wagner cps 104 Pipelining..1 RW Fall 2000 Lecture Overview A Pipelined Processor : Introduction to the concept of pipelined processor.

More information

CS 110 Computer Architecture Review Midterm II

CS 110 Computer Architecture Review Midterm II CS 11 Computer Architecture Review Midterm II http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C 1 Midterm II Date:

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer

EECS150 - Digital Design Lecture 9- CPU Microarchitecture. Watson: Jeopardy-playing Computer EECS150 - Digital Design Lecture 9- CPU Microarchitecture Feb 15, 2011 John Wawrzynek Spring 2011 EECS150 - Lec09-cpu Page 1 Watson: Jeopardy-playing Computer Watson is made up of a cluster of ninety IBM

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141 EECS 151/251A Fall 2017 Digital Design and Integrated Circuits Instructor: John Wawrzynek and Nicholas Weaver Lecture 13 Project Introduction You will design and optimize a RISC-V processor Phase 1: Design

More information

CS 152 Computer Architecture and Engineering. Lecture 10: Designing a Multicycle Processor

CS 152 Computer Architecture and Engineering. Lecture 10: Designing a Multicycle Processor CS 152 Computer Architecture and Engineering Lecture 1: Designing a Multicycle Processor October 1, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson) lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L path (1) insteecsberkeleyedu/~cs61c/su6 CS61C : Machine Structures Lecture # path natomy: 5 components of any Computer Personal Computer -7-25 This week Computer Processor ( brain ) path ( brawn

More information

CS152 Computer Architecture and Engineering Lecture 10: Designing a Single Cycle Control. Recap: The MIPS Instruction Formats

CS152 Computer Architecture and Engineering Lecture 10: Designing a Single Cycle Control. Recap: The MIPS Instruction Formats CS52 Computer Architecture and Engineering Lecture : Designing a Single Cycle February 7, 995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

Ch 5: Designing a Single Cycle Datapath

Ch 5: Designing a Single Cycle Datapath Ch 5: esigning a Single Cycle path Computer Systems Architecture CS 365 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Memory path Input Output Today s Topic:

More information

Processor (I) - datapath & control. Hwansoo Han

Processor (I) - datapath & control. Hwansoo Han Processor (I) - datapath & control Hwansoo Han Introduction CPU performance factors Instruction count - Determined by ISA and compiler CPI and Cycle time - Determined by CPU hardware We will examine two

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

Lecture 7 Pipelining. Peng Liu.

Lecture 7 Pipelining. Peng Liu. Lecture 7 Pipelining Peng Liu liupeng@zju.edu.cn 1 Review: The Single Cycle Processor 2 Review: Given Datapath,RTL -> Control Instruction Inst Memory Adr Op Fun Rt

More information

CPSC614: Computer Architecture

CPSC614: Computer Architecture CPSC614: Computer Architecture E.J. Kim Texas A&M University Computer Science & Engineering Department Assignment 1, Due Thursday Feb/9 Spring 2017 1. A certain benchmark contains 195,700 floating-point

More information

Recap: The MIPS Subset ADD and subtract EEL Computer Architecture shamt funct add rd, rs, rt Single-Cycle Control Logic sub rd, rs, rt

Recap: The MIPS Subset ADD and subtract EEL Computer Architecture shamt funct add rd, rs, rt Single-Cycle Control Logic sub rd, rs, rt Recap: The MIPS Subset EEL-47 - Computer Architecture Single-Cycle Logic ADD and subtract add rd, rs, rt sub rd, rs, rt OR Imm: ori rt, rs, imm 2 rs rt rd shamt t bits 5 bits 5 bits 5 bits 5 bits bits

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

The MIPS Processor Datapath

The MIPS Processor Datapath The MIPS Processor Datapath Module Outline MIPS datapath implementation Register File, Instruction memory, Data memory Instruction interpretation and execution. Combinational control Assignment: Datapath

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath Control Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath Control Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single- Cycle CPU Datapath Control Part 1 Instructors: Krste Asanovic & Vladimir Stojanovic hfp://inst.eecs.berkeley.edu/~cs61c/ Review

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

Lecture 12: Single-Cycle Control Unit. Spring 2018 Jason Tang

Lecture 12: Single-Cycle Control Unit. Spring 2018 Jason Tang Lecture 12: Single-Cycle Control Unit Spring 2018 Jason Tang 1 Topics Control unit design Single cycle processor Control unit circuit implementation 2 Computer Organization Computer Processor Memory Devices

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

Pipeline: Introduction

Pipeline: Introduction Pipeline: Introduction These slides are derived from: CSCE430/830 Computer Architecture course by Prof. Hong Jiang and Dave Patterson UCB Some figures and tables have been derived from : Computer System

More information

CS 61C Fall 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control)

CS 61C Fall 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) CS 61C Fall 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) 1) If this exam were a CPU, you d be halfway through the pipeline (Sp15 Final) We found that the instruction fetch and memory stages

More information

Chapter 4 The Processor 1. Chapter 4A. The Processor

Chapter 4 The Processor 1. Chapter 4A. The Processor Chapter 4 The Processor 1 Chapter 4A The Processor Chapter 4 The Processor 2 Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

Midterm I March 12, 2003 CS152 Computer Architecture and Engineering

Midterm I March 12, 2003 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2003 John Kubiatowicz Midterm I March 2, 2003 CS52 Computer Architecture and Engineering Your Name: SID Number:

More information

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions COP33 - Computer Architecture Lecture ulti-cycle Design & Exceptions Single Cycle Datapath We designed a processor that requires one cycle per instruction RegDst busw 32 Clk RegWr Rd ux imm6 Rt 5 5 Rs

More information

Final Exam Spring 2017

Final Exam Spring 2017 COE 3 / ICS 233 Computer Organization Final Exam Spring 27 Friday, May 9, 27 7:3 AM Computer Engineering Department College of Computer Sciences & Engineering King Fahd University of Petroleum & Minerals

More information

Midterm I October 6, 1999 CS152 Computer Architecture and Engineering

Midterm I October 6, 1999 CS152 Computer Architecture and Engineering University of California, Berkeley College of Engineering Computer Science Division EECS Fall 1999 John Kubiatowicz Midterm I October 6, 1999 CS152 Computer Architecture and Engineering Your Name: SID

More information

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control)

CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) CS 61C Summer 2016 Guerrilla Section 4: MIPS CPU (Datapath & Control) 1) If this exam were a CPU, you d be halfway through the pipeline (Sp15 Final) We found that the instruction fetch and memory stages

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

CS61c Final Review Fall Andy Carle 12/12/2004

CS61c Final Review Fall Andy Carle 12/12/2004 CS61c Final Review Fall 24 Andy Carle 12/12/24 Topics Before Midterm C& Malloc Memory Management MIPS Number Representation Floating Point CAL Topics Since Midterm Digital Logic Verilog State Machines

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

Pipeline design. Mehran Rezaei

Pipeline design. Mehran Rezaei Pipeline design Mehran Rezaei How Can We Improve the Performance? Exec Time = IC * CPI * CCT Optimization IC CPI CCT Source Level * Compiler * * ISA * * Organization * * Technology * With Pipelining We

More information

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20)

Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) Adding Support for jal to Single Cycle Datapath (For More Practice Exercise 5.20) The MIPS jump and link instruction, jal is used to support procedure calls by jumping to jump address (similar to j ) and

More information

Chapter 5 (a) Overview

Chapter 5 (a) Overview Chapter 5 (a) Overview (a) The principles of pipelining (a) A pipelined design of SRC (b) Pipeline hazards (b) Instruction-level parallelism (ILP) Superscalar processors Very Long Instruction Word (VLIW)

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single Cycle MIPS CPU

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single Cycle MIPS CPU CS 6C: Great Ideas in Computer Architecture (Machine Structures) Single Cycle MIPS CPU ructors: Randy H Katz David A PaGerson hgp://insteecsberkeleyedu/~cs6c/sp Spring 2 - - Lecture #8 Parallel Requests

More information

ECE 361 Computer Architecture Lecture 11: Designing a Multiple Cycle Controller. Review of a Multiple Cycle Implementation

ECE 361 Computer Architecture Lecture 11: Designing a Multiple Cycle Controller. Review of a Multiple Cycle Implementation ECE 6 Computer Architecture Lecture : Designing a Multiple Cycle ler 6 multicontroller. Review of a Multiple Cycle Implementation The root of the single cycle processor s problems: The cycle time has to

More information

Laboratory 5 Processor Datapath

Laboratory 5 Processor Datapath Laboratory 5 Processor Datapath Description of HW Instruction Set Architecture 16 bit data bus 8 bit address bus Starting address of every program = 0 (PC initialized to 0 by a reset to begin execution)

More information

361 multipath..1. EECS 361 Computer Architecture Lecture 10: Designing a Multiple Cycle Processor

361 multipath..1. EECS 361 Computer Architecture Lecture 10: Designing a Multiple Cycle Processor 36 multipath.. EECS 36 Computer Architecture Lecture : Designing a Multiple Cycle Processor Recap: A Single Cycle Datapath We have everything except control signals (underline) Today s lecture will show

More information

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August Lecture 8: Control COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Datapath and Control Datapath The collection of state elements, computation elements,

More information

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight

Page 1. Pipelining: Its Natural! Chapter 3. Pipelining. Pipelined Laundry Start work ASAP. Sequential Laundry A B C D. 6 PM Midnight Pipelining: Its Natural! Chapter 3 Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes A B C D Dryer takes 40 minutes Folder

More information

Guerrilla Session 3: MIPS CPU

Guerrilla Session 3: MIPS CPU CS61C Summer 2015 Guerrilla Session 3: MIPS CPU Problem 1: swai (Sp04 Final): We want to implement a new I- type instruction swai (store word then auto- increment). The operation performs the regular sw

More information

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath The MIPS Datapath 1 The Critical Path and Circuit Timing The critical path is the slowest path through the circuit For a synchronous circuit, the clock cycle must be longer than the critical path otherwise

More information

Computer Systems Architecture Spring 2016

Computer Systems Architecture Spring 2016 Computer Systems Architecture Spring 2016 Lecture 01: Introduction Shuai Wang Department of Computer Science and Technology Nanjing University [Adapted from Computer Architecture: A Quantitative Approach,

More information