CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS

Size: px
Start display at page:

Download "CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS"

Transcription

1 CHAPTER SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS The two main concepts involved here are the condition (of a problem) and the stability (of an algorithm). Both of these concepts deal with the effects of small changes (perturbations) in the data. In this regard, the text uses the term "sensitivity" of a linear system to refer to how its solution is affected by small changes in the data. Some notation regarding floating-point arithmetic: b denotes the base of the number system k denotes the floating-point precision (the number of significant digits in the mantissa or fractional part of a floating-point number) nonzero floating-point numbers are always stored in a normalized form: e ± 0. d d L d k b, where d and each d i is a base b digit (0 d i b for i k ). The floating-point representation fl (x) of a real number x is obtained by either chopping or rounding its (infinite) base b expansion to k significant digits (and adjusting the exponent so that it is normalized). For example, if b = 0, k = 4 and x = /, then 0 and ( x) fl = + with chopping arithmetic ( x) fl = + with rounding arithmetic. The following material is from my CSc 49A notes. 64

2 FLOATING-POINT ARITHMETIC -- a simulation of real arithmetic -- Notation: we ll use the symbol f l. For example, if x denotes a real number, then fl (x) denotes its floating-point representation. Similarly, if a and b are floatingpoint numbers, then fl ( a + b), a b), a b), a / b) denote the floating-point sum, difference, product and quotient, respectively, of a and b. The implementation of these floating-point operations (in either software or hardware) depends on several factors, and includes, for example, a choice regarding -- rounding or chopping -- the number of significant digits used for floating-point addition and subtraction. For simplicity, we ll consider only idealized floating-point arithmetic, which is defined as follows. Let denote any one of the basic arithmetic operations + /, and let x and y denote floating-point numbers. f l ( x y) is obtained by performing exact arithmetic on x and y, and then rounding or chopping this result to k significant digits. Note : although no actual digital computers or calculators implement floating-point arithmetic this way (it s too expensive, as it requires a very long accumulator for doing addition and subtraction), idealized floating-point arithmetic -- behaves very much like any actual implementation -- is very simple to do in hand s, and -- has accuracy almost identical to that of any actual implementation. Note. If f l is applied to an arithmetic expression containing more than one arithmetic operation, then each of the arithmetic operations must be replaced by its corresponding floating-point operation. For example, and fl ( x + y z) means x + y) z) fl ( xy + z / cos( x)) means x y) + z / cos( x))). Each l f operation is computed according to the rules of idealized floating-point arithmetic, that is, the exact value of the result is rounded or chopped to k significant 65

3 digits before proceeding with the rest of the. Note that we ll compute x fl (cos x), fl ( x), e ) and so on this way. Note : with idealized floating-point arithmetic, the maximum relative error in f l ( x y) is the same as the maximum relative error in converting a real number z to floating-point form. Thus, for a single floating-point + /, the relative error is very small: it is < b k (with chopping) or < b k (with rounding). However, the relative error in a floating-point might be large if more than one floating-point operation is performed. For example, compute f l ( x + y + z) when x = , y = , z = using base b =0, precision k =4, rounding idealized floating-point arithmetic. 0 fl ( x + y) = since x + y = fl ( x + y + z) = since.. = Since the exact value x + y + z = , the relative error is = 0. or %. Note, however, that this large relative error can be avoided by changing the order in which these numbers are added together. Consider the evaluation of We obtain f l ( x + z + y) = x + z) + y). fl ( x + z) = x + z) + y) = or since which has a relative error of only or 0.08% = , 66

4 ERRORS AND FLOATING-POINT ARITHMETIC Example. Using b = 0, k = 4 chopping floating-point arithmetic, evaluate for x =.76, y = , z =.67. w = 000 x x y z x y) = x y) z) = x) = w) = Exact w = / ) = ,5. So fl (w ) has no correct significant digits. 6 Example. Approximate e x for x = 5.5 using b = 0, k = 5 rounding floating-point arithmetic and the Taylor polynomial approximation (expanded about x 0 = 0) e x 4 n x x x x + x L +.!! 4! n! The floating-point results in the summation of the following terms: 67

5 e and so on. Using rounding floating-point arithmetic with b = 0 and k = 5, this sum equals (or ) after summing 5 terms (that is, n = 4), and no further terms change this sum (as they are all < 0 7 ). However, the exact value of e 5.5 is (to 6 significant digits), so 5.5 fl ( e ) has no correct significant digits. 68

6 CONDITION AND STABILITY In analyzing the effects of round-off error on an inaccurate computed solution, we want to distinguish whether the algorithm (the procedure for computing the solution) is at fault, or whether the problem is such that no algorithm can be expected to reasonably solve the problem. Concepts involved: stable/unstable algorithm well-conditioned/ill-conditioned problem Definition A problem whose (exact) solution can change greatly with small changes in the data defining the problem is called ill-conditioned. data {d i exact solution {r i defining a problem exact arithmetic perturbed problem, data { ˆ d i = {d i + ε i exact solution { ˆ r i with ε i d i small exact arithmetic If there exist small ε i such that { r ˆ i are not close to {r i, then the problem is ill-conditioned. ˆ i r i for all small i If { r { ε, then the problem is well-conditioned. Example : Consider the system of linear equations Hx = b : / / / / / 4 / / 4 / 5 x x x = / 6 /. 47 / 60 Using the exact { d i given above in the matrix H and the vector b, the exact solution is x =. However, if the entries of H and b are rounded to significant decimal digits to give the following perturbed problem H ˆ x ˆ = b ˆ : 69

7 xˆ 0.50 xˆ 0.00 xˆ = then the exact solution (to 5 significant digits) is.0895 ˆx = Thus, the problem of solving Hx = b is ill-conditioned. Note. The condition of a problem has nothing to do with floating-point arithmetic or round-off error; it is defined in terms of exact. However, if a problem is ill-conditioned, it will be difficult (or impossible) to solve accurately using floating-point arithmetic. Definition. An algorithm is said to be stable (for a class of problems) if it determines a computed solution (using floating-point arithmetic) that is close to the exact solution of some (small) perturbation of the given problem. given problem, specified by computed solution data {d i floating-point {r i perturbed problem, data exact solution {ˆ d i ={d i + ε i exact { r ˆ i with ε i d i small If there exist data d ˆ i d i (small ε i for all i) such that r ˆ i r i (for all i), then the algorithm is said to be stable. Meaning: the effect of the floating-point arithmetic (the round-off error) is no worse than the effect of slightly perturbing the given problem, and solving the perturbed problem exactly. 70

8 Note. If there exists no set of data { d ˆ i close to {d i such that algorithm is said to be unstable. rˆ r for all i, then the i i Stability analysis of the of a solution to the problem considered above in Example. If Gaussian elimination with partial pivoting (an algorithm considered in Chapter 6) is implemented in base 0, precision k =, chopping, floating-point arithmetic, and is used to solve the system of linear equations Hˆ xˆ = bˆ : xˆ xˆ xˆ = , then the computed solution is r ] T = [ , whereas the exact solution is T approximately x ˆ = [ ]. However, this is stable, since there exists a perturbed problem ( H ˆ + E)ˆ r = bˆ + e, for example, rˆ = rˆ.08507, 0.78 rˆ T whose exact solution r ˆ = [ ] is close to r. Since the size of the perturbations E and e is small, the of the computed solution r is stable. Analysis of Example. The problem of computing w = 000 x x y z for x = 0.76, y = , z = 0.67 is ill-conditioned; that is, the value of w is x, y, z. very sensitive to small changes in the data { For example, consider the perturbed problem having data x ˆ = 0.75, y ˆ = y and z ˆ = The perturbations are small (relative error) given that the floating-point precision is k = 4: x ˆ x x = , y ˆ y y = 0.0, z ˆ z z =

9 given problem, data { x, y, z w = 55,5.05 exact perturbed problem, data { xˆ, yˆ, zˆ w ˆ = 45,4.7 exact Since { x, yˆ, zˆ { x, y, z ˆ and w ˆ is not close to w, the problem is ill-conditioned. Note. This illustrates a general principle: division by a small, inaccurate number will create a large error. E.g., = 000 but In the above calculation of w, there is cancellation and a loss of significant digits in computing x y z using floating-point arithmetic. Thus fl ( x y z) is relatively small and may be inaccurate, implying that the computed w is likely inaccurate. Stability analysis: The algorithm for computing w simply refers to the floating-point fl ( 000 x) / x y) z) ) To show that this algorithm is stable, one needs to find perturbed data { x, yˆ, zˆ ˆ so that the exact solution of this perturbed problem is close to the computed solution of the given problem. 7

10 given problem, computed solution data { x, y, z floating-point w = 9,000 perturbed problem, with data x ˆ = x exact solution y ˆ = y exact w ˆ = 9,000 z ˆ = ˆ ˆ, ˆ ˆ (in fact w ˆ = w in this case), the algorithm is stable. Since { x, y z { x, y, z and w w Note from this example that a stable algorithm does not guarantee an accurate computed solution. If the problem is well-conditioned, then a stable algorithm will produce an accurate computed solution, but not necessarily if the problem is ill-conditioned. 000x Note also that a better algorithm (for this particular data) is to evaluate fl. ( x z) y This gives the best possible computed solution. However, since the problem is illconditioned, if your data is not exact, then the computed solution will likely be very inaccurate. Analysis of Example. This is an example of what might be called catastrophic cancellation. The answer is computed as a sum of terms such as 8.9, -4.94, etc. that are accurate to at most decimal places (approximately 0.00). But the correct value of e 5.5 is Thus, the computed value of is essentially a sum of round-off errors! The (correct) significant digits in most of the numbers added together cancel out. 7

11 Condition data. The problem is well-conditioned; that is, it is not sensitive to small changes in the e 5.5+ ε = e = e e ε ε + ε + ε L. So for all ε such that ε / 5. 5 is small, since the ε and higher order terms in ε are much smaller than ε, we have e ε e 5.5 ( + ε ), implying that the relative error e 5.5 e 5.5+ε e 5.5 ε is small. Stability The algorithm used to compute e 5.5 is unstable: given problem, data x = 5.5 floating-point perturbed problem, solution will be x ˆ = ε exact near e with ε /5.5 small for all small ε. Explanation for this: cannot find small ε so that e ε.0066 because e x is a continuous function and e = e = That is, if e ε.0066, then ε , but this is not a small perturbation of

12 Note. A stable algorithm for computing e 5.5 (and, in general, for computing e x for x < 0 ): e 5.5 = e 5.5 = (5.5) + (5.5) E.g., using b = 0, k = 5 floating-point arithmetic, this (using 8 terms of the Taylor polynomial approximation) gives a computed solution of (which is very accurate). 75

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY

Computing Basics. 1 Sources of Error LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY Computing Basics 1 Sources of Error Numerical solutions to problems differ from their analytical counterparts. Why? The reason for the difference is

More information

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

Mathematical preliminaries and error analysis

Mathematical preliminaries and error analysis Mathematical preliminaries and error analysis Tsung-Ming Huang Department of Mathematics National Taiwan Normal University, Taiwan August 28, 2011 Outline 1 Round-off errors and computer arithmetic IEEE

More information

Errors in Computation

Errors in Computation Theory of Errors Content Errors in computation Absolute Error Relative Error Roundoff Errors Truncation Errors Floating Point Numbers Normalized Floating Point Numbers Roundoff Error in Floating Point

More information

2.1.1 Fixed-Point (or Integer) Arithmetic

2.1.1 Fixed-Point (or Integer) Arithmetic x = approximation to true value x error = x x, relative error = x x. x 2.1.1 Fixed-Point (or Integer) Arithmetic A base 2 (base 10) fixed-point number has a fixed number of binary (decimal) places. 1.

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Accuracy versus precision

Accuracy versus precision Accuracy versus precision Accuracy is a consistent error from the true value, but not necessarily a good or precise error Precision is a consistent result within a small error, but not necessarily anywhere

More information

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic September 28, 2018 Lecture 1 September 28, 2018 1 / 25 Floating point arithmetic Computers use finite strings of binary digits to represent

More information

Outline. 1 Scientific Computing. 2 Approximations. 3 Computer Arithmetic. Scientific Computing Approximations Computer Arithmetic

Outline. 1 Scientific Computing. 2 Approximations. 3 Computer Arithmetic. Scientific Computing Approximations Computer Arithmetic Outline 1 2 3 Michael T. Heath 2 / 46 Introduction Computational Problems General Strategy What is scientific computing? Design and analysis of algorithms for numerically solving mathematical problems

More information

Numerical Computing: An Introduction

Numerical Computing: An Introduction Numerical Computing: An Introduction Gyula Horváth Horvath@inf.u-szeged.hu Tom Verhoeff T.Verhoeff@TUE.NL University of Szeged Hungary Eindhoven University of Technology The Netherlands Numerical Computing

More information

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1 Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. What is scientific computing?

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. What is scientific computing? Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Scientific Computing What is scientific computing? Design and analysis of algorithms for solving

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 1 Scientific Computing Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

ME 261: Numerical Analysis. ME 261: Numerical Analysis

ME 261: Numerical Analysis. ME 261: Numerical Analysis ME 261: Numerical Analysis 3. credit hours Prereq.: ME 163/ME 171 Course content Approximations and error types Roots of polynomials and transcendental equations Determinants and matrices Solution of linear

More information

Introduction to floating point arithmetic

Introduction to floating point arithmetic Introduction to floating point arithmetic Matthias Petschow and Paolo Bientinesi AICES, RWTH Aachen petschow@aices.rwth-aachen.de October 24th, 2013 Aachen, Germany Matthias Petschow (AICES, RWTH Aachen)

More information

Chapter 3. Errors and numerical stability

Chapter 3. Errors and numerical stability Chapter 3 Errors and numerical stability 1 Representation of numbers Binary system : micro-transistor in state off 0 on 1 Smallest amount of stored data bit Object in memory chain of 1 and 0 10011000110101001111010010100010

More information

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy. Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

More information

Introduction to Numerical Computing

Introduction to Numerical Computing Statistics 580 Introduction to Numerical Computing Number Systems In the decimal system we use the 10 numeric symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. The relative position of each symbol

More information

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems

Hani Mehrpouyan, California State University, Bakersfield. Signals and Systems Hani Mehrpouyan, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 3 (Error and Computer Arithmetic) April 8 th, 2013 The material in these lectures is

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 2 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 15 5633-Numerical Methods Organisational Assignment

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2015 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4.

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. Chapter 4: Roundoff and Truncation Errors Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. 1 Outline Errors Accuracy and Precision

More information

3.1 DATA REPRESENTATION (PART C)

3.1 DATA REPRESENTATION (PART C) 3.1 DATA REPRESENTATION (PART C) 3.1.3 REAL NUMBERS AND NORMALISED FLOATING-POINT REPRESENTATION In decimal notation, the number 23.456 can be written as 0.23456 x 10 2. This means that in decimal notation,

More information

Exponential Numbers ID1050 Quantitative & Qualitative Reasoning

Exponential Numbers ID1050 Quantitative & Qualitative Reasoning Exponential Numbers ID1050 Quantitative & Qualitative Reasoning In what ways can you have $2000? Just like fractions, you can have a number in some denomination Number Denomination Mantissa Power of 10

More information

Computational Mathematics: Models, Methods and Analysis. Zhilin Li

Computational Mathematics: Models, Methods and Analysis. Zhilin Li Computational Mathematics: Models, Methods and Analysis Zhilin Li Chapter 1 Introduction Why is this course important (motivations)? What is the role of this class in the problem solving process using

More information

Lecture 03 Approximations, Errors and Their Analysis

Lecture 03 Approximations, Errors and Their Analysis AM702 Applied Computational Methods c ecture 03 Approximations, rrors and heir Analysis Approximations and rrors c Approximation is unavoidable in mathematical modeling the real world phenomena Approximation

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

Programming Project #2: Solving Quadratic Equations Date Due: Monday 25 September 2017

Programming Project #2: Solving Quadratic Equations Date Due: Monday 25 September 2017 CISC 5300 Programming in C++ Fall, 2017 Programming Project #2: Solving Quadratic Equations Date Due: Monday 25 September 2017 Write a program that prompts the user to enter the coefficients of a quadratic

More information

Chapter 4 Section 2 Operations on Decimals

Chapter 4 Section 2 Operations on Decimals Chapter 4 Section 2 Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers.

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

Binary floating point encodings

Binary floating point encodings Week 1: Wednesday, Jan 25 Binary floating point encodings Binary floating point arithmetic is essentially scientific notation. Where in decimal scientific notation we write in floating point, we write

More information

Computational Economics and Finance

Computational Economics and Finance Computational Economics and Finance Part I: Elementary Concepts of Numerical Analysis Spring 2016 Outline Computer arithmetic Error analysis: Sources of error Error propagation Controlling the error Rates

More information

Module 12 Floating-Point Considerations

Module 12 Floating-Point Considerations GPU Teaching Kit Accelerated Computing Module 12 Floating-Point Considerations Lecture 12.1 - Floating-Point Precision and Accuracy Objective To understand the fundamentals of floating-point representation

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

Finite arithmetic and error analysis

Finite arithmetic and error analysis Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

More information

6.1 Evaluate Roots and Rational Exponents

6.1 Evaluate Roots and Rational Exponents VOCABULARY:. Evaluate Roots and Rational Exponents Radical: We know radicals as square roots. But really, radicals can be used to express any root: 0 8, 8, Index: The index tells us exactly what type of

More information

Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers 1/2. The Real Line Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

More information

MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves

MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves MA 323 Geometric Modelling Course Notes: Day 10 Higher Order Polynomial Curves David L. Finn December 14th, 2004 Yesterday, we introduced quintic Hermite curves as a higher order variant of cubic Hermite

More information

Floating Point Representation. CS Summer 2008 Jonathan Kaldor

Floating Point Representation. CS Summer 2008 Jonathan Kaldor Floating Point Representation CS3220 - Summer 2008 Jonathan Kaldor Floating Point Numbers Infinite supply of real numbers Requires infinite space to represent certain numbers We need to be able to represent

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

Numerical Analysis I

Numerical Analysis I Numerical Analysis I M.R. O Donohoe References: S.D. Conte & C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third edition, 1981. McGraw-Hill. L.F. Shampine, R.C. Allen, Jr & S. Pruess,

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.4 Rational Expressions Copyright Cengage Learning. All rights reserved. Objectives The Domain of an Algebraic Expression Simplifying Rational

More information

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.

Computer Arithmetic. 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3. ECS231 Handout Computer Arithmetic I: Floating-point numbers and representations 1. Floating-point representation of numbers (scientific notation) has four components, for example, 3.1416 10 1 sign significandbase

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

Homework 1 Introduction to Computational Finance Spring 2019

Homework 1 Introduction to Computational Finance Spring 2019 Homework 1 Introduction to Computational Finance Spring 2019 Solutions due Monday, 2/4/19 Answers to the homework problems and programming tasks should be sent via FSU s dropbox https://dropbox.fsu.edu

More information

COS 323: Computing for the Physical and Social Sciences

COS 323: Computing for the Physical and Social Sciences COS 323: Computing for the Physical and Social Sciences COS 323 People: Szymon Rusinkiewicz Sandra Batista Victoria Yao Course webpage: http://www.cs.princeton.edu/cos323 What s This Course About? Numerical

More information

Lesson 3: Solving Equations; Floating-point Computation

Lesson 3: Solving Equations; Floating-point Computation Lesson 3: Solving Equations; Floating-point Computation restart; A hard equation Last time we were looking at this equation. eq := * sin() = Pi/2; (1.1) Maple didn't know the solutions. solve(eq,,allsolutions);

More information

What Every Computer Scientist Should Know About Floating Point Arithmetic

What Every Computer Scientist Should Know About Floating Point Arithmetic What Every Computer Scientist Should Know About Floating Point Arithmetic E Note This document is an edited reprint of the paper What Every Computer Scientist Should Know About Floating-Point Arithmetic,

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic ECS30 Winter 207 January 27, 207 Floating point numbers Floating-point representation of numbers (scientific notation) has four components, for example, 3.46 0 sign significand

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

Numerical Solutions of Differential Equations (1)

Numerical Solutions of Differential Equations (1) Numerical Solutions of Differential Equations (1) Euler method Sources of error Truncation Round-off error Error balance in numerical integration Euler Method Many differential equations don't have an

More information

BITWISE OPERATORS. There are a number of ways to manipulate binary values. Just as you can with

BITWISE OPERATORS. There are a number of ways to manipulate binary values. Just as you can with BITWISE OPERATORS There are a number of ways to manipulate binary values. Just as you can with decimal numbers, you can perform standard mathematical operations - addition, subtraction, multiplication,

More information

Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

More information

CGF Lecture 2 Numbers

CGF Lecture 2 Numbers CGF Lecture 2 Numbers Numbers A number is an abstract entity used originally to describe quantity. i.e. 80 Students etc The most familiar numbers are the natural numbers {0, 1, 2,...} or {1, 2, 3,...},

More information

COS 323: Computing for the Physical and Social Sciences

COS 323: Computing for the Physical and Social Sciences COS 323: Computing for the Physical and Social Sciences COS 323 Professor: Szymon Rusinkiewicz TAs: Mark Browning Fisher Yu Victoria Yao Course webpage http://www.cs.princeton.edu/~cos323/ What s This

More information

Mark Important Points in Margin. Significant Figures. Determine which digits in a number are significant.

Mark Important Points in Margin. Significant Figures. Determine which digits in a number are significant. Knowledge/Understanding: How and why measurements are rounded. Date: How rounding and significant figures relate to precision and uncertainty. When significant figures do not apply. Skills: Determine which

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

Rev Name Date. . Round-off error is the answer to the question How wrong is the rounded answer?

Rev Name Date. . Round-off error is the answer to the question How wrong is the rounded answer? Name Date TI-84+ GC 7 Avoiding Round-off Error in Multiple Calculations Objectives: Recall the meaning of exact and approximate Observe round-off error and learn to avoid it Perform calculations using

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic Raymond J. Spiteri Lecture Notes for CMPT 898: Numerical Software University of Saskatchewan January 9, 2013 Objectives Floating-point numbers Floating-point arithmetic Analysis

More information

Multiplying and Dividing Rational Expressions

Multiplying and Dividing Rational Expressions Page 1 of 14 Multiplying and Dividing Rational Expressions Attendance Problems. Simplify each expression. Assume all variables are nonzero. x 6 y 2 1. x 5 x 2 2. y 3 y 3 3. 4. x 2 y 5 Factor each expression.

More information

Summer Review for Students entering Algebra

Summer Review for Students entering Algebra Class: Date: Summer Review for Students entering Algebra 08 Multiple Choice Identify the choice that best completes the statement or answers the question. SHOW ALL WORK ON THIS PAPER OR ON ADDITIONAL PAPER..

More information

1.3 Floating Point Form

1.3 Floating Point Form Section 1.3 Floating Point Form 29 1.3 Floating Point Form Floating point numbers are used by computers to approximate real numbers. On the surface, the question is a simple one. There are an infinite

More information

What Every Computer Scientist Should Know About Floating-Point Arithmetic

What Every Computer Scientist Should Know About Floating-Point Arithmetic Page 1 of 87 Numerical Computation Guide Appendix D What Every Computer Scientist Should Know About Floating- Point Arithmetic Note This appendix is an edited reprint of the paper What Every Computer Scientist

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

MA 1128: Lecture 02 1/22/2018

MA 1128: Lecture 02 1/22/2018 MA 1128: Lecture 02 1/22/2018 Exponents Scientific Notation 1 Exponents Exponents are used to indicate how many copies of a number are to be multiplied together. For example, I like to deal with the signs

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B)

COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B) Computer Arithmetic Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce results necessary to give solution for the computation problems. The Addition,

More information

Weakly Relational Domains for Floating-Point Computation Analysis

Weakly Relational Domains for Floating-Point Computation Analysis Weakly Relational Domains for Floating-Point Computation Analysis Eric Goubault, Sylvie Putot CEA Saclay, F91191 Gif-sur-Yvette Cedex, France {eric.goubault,sylvie.putot}@cea.fr 1 Introduction We present

More information

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester.

AM205: lecture 2. 1 These have been shifted to MD 323 for the rest of the semester. AM205: lecture 2 Luna and Gary will hold a Python tutorial on Wednesday in 60 Oxford Street, Room 330 Assignment 1 will be posted this week Chris will hold office hours on Thursday (1:30pm 3:30pm, Pierce

More information

Numerical Methods I Numerical Computing

Numerical Methods I Numerical Computing Numerical Methods I Numerical Computing Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 September 9th, 2010 A. Donev (Courant Institute)

More information

Error in Numerical Methods

Error in Numerical Methods Error in Numerical Methods By Brian D. Storey This section will describe two types of error that are common in numerical calculations: roundoff and truncation error. Roundoff error is due to the fact that

More information

Floating Point Considerations

Floating Point Considerations Chapter 6 Floating Point Considerations In the early days of computing, floating point arithmetic capability was found only in mainframes and supercomputers. Although many microprocessors designed in the

More information

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7 Classwork Exercises 1 5 1. Use long division to determine the decimal expansion of. 2. Use long division to determine the decimal expansion of. 3. Use long division to determine the decimal expansion of.

More information

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects:

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects: Numeral Systems -Numeral System -Positional systems -Decimal -Binary -Octal Subjects: Introduction A numeral system (or system of numeration) is a writing system for expressing numbers, that is a mathematical

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Numerics Motivation Modeling process (JLW) To construct a model we assemble and synthesize data and other information to formulate a conceptual model of the situation. The model is conditioned on the science

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

More information

Basics of Computation. PHY 604:Computational Methods in Physics and Astrophysics II

Basics of Computation. PHY 604:Computational Methods in Physics and Astrophysics II Basics of Computation Basics of Computation Computers store information and allow us to operate on it. That's basically it. Computers have finite memory, so it is not possible to store the infinite range

More information

Signed umbers. Sign/Magnitude otation

Signed umbers. Sign/Magnitude otation Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

More information

Decimals. Chapter Five

Decimals. Chapter Five Chapter Five Decimals 5.1 Introductions to Decimals 5.2 Adding & Subtracting Decimals 5.3 Multiplying Decimals & Circumference of a Circle 5.4 Dividing Decimals 5.5 Fractions, Decimals, & Order of Operations

More information