EEM336 Microprocessors I. The Microprocessor and Its Architecture

Size: px
Start display at page:

Download "EEM336 Microprocessors I. The Microprocessor and Its Architecture"

Transcription

1 EEM336 Microprocessors I The Microprocessor and Its Architecture

2 Introduction This chapter presents the microprocessor as a programmable device by first looking at its internal programming model and then how its memory space is addressed. The architecture of Intel microprocessors is presented, as are the ways that the family members address the memory system. Addressing modes for this powerful family of microprocessors are described for the real, protected, and flat modes of operation. 2

3 Chapter Objectives Upon completion of this chapter, you will be able to: Explain basic structure of Intel 8086 microprocessor, programming structure and software development flow Describe function and purpose of each program-visible register in the 8086-Core2 microprocessors, including 64-bit extensions. Detail the flag register and the purpose of each flag bit. 3

4 Chapter Objectives Upon completion of this chapter, you will be able to: (cont.) Describe how memory is accessed using real mode memory-addressing techniques. Describe how memory is accessed using protected mode memory-addressing techniques. Describe how memory is accessed using the 64-bit flat memory model. 4

5 PROGRAMMING STRUCTURE The lowest-level programming language is the Machine language which is the only one understood by computers. While easily understood by computers, machine languages are almost impossible for humans to use because they consist entirely of numbers (e.g., 1s and 0s). 5

6 PROGRAMMING STRUCTURE Programmers, therefore, use either a highlevel programming language or an assembly language. An assembly language contains the same instructions as a machine language, but the instructions and variables have names instead of being just numbers. 6

7 PROGRAMMING STRUCTURE Every CPU has its own unique machine language. Programs must be rewritten or recompiled to run on different types of computers. High-level languages are, however, platform independent. They can run on different types of computers. 7

8 PROGRAMMING STRUCTURE 8

9 SOFTWARE DEVELOPMENT FLOW 9

10 SOFTWARE DEVELOPMENT FLOW The following list describes sample tools that are used for software development. The compiler (e.g., C, C++, C#) translates source code into assembly language source code. The assembler translates assembly language source files into machine language (object files). Source files contain numbers corresponding to instructions. 10

11 SOFTWARE DEVELOPMENT FLOW The linker combines object files created by the assembler into a single executable object module. As it creates the executable module, it binds symbols to memory locations and resolves all references to those symbols. It also accepts library members and output modules created by a previous linker run. The cross-reference lister uses object files to produce a cross-reference listing showing variable and symbols, their definitions, memory locations and their references in the linked source files. 11

12 Inside Intel 8086 The 8086 is a 16-bit microprocessor chip designed by Intel in 1978, which gave rise to the x86 architecture. Intel 8088, released in 1979, was essentially the same chip, but with an external 8-bit data bus (allowing the use of cheaper and fewer supporting logic chips), and is notable as the processor used in the original IBM PC. 12

13 Inside Intel Pin Configuration 13

14 Inside Intel 8086 All internal registers as well as internal and external data buses of the 8086 are 16 bits wide, firmly establishing an actual "16-bit microprocessor". Clock rate of the first edition of 8086 was 5 MHz. Later, 8 and 10 MHz versions were also produced. A 20-bit external address bus gives a 1 MB (segmented) physical address space. 16-bit I/O addresses give 64 KB of separate I/O space. 14

15 Inside Intel is internally divided into two separate functional units. 1. Bus Interface Unit (BIU) 2. Execution Unit (EU). This concept of dividing work between two processors and processing it simultaneously (parallel processing) speeds up the execution. 15

16 Inside Intel 8086 BUS INTERFACE UNIT The BIU sends out address, fetches instruction from memory, reads data from ports and memory and writes data to ports and memory. In other words the BIU handles all transfers of data and addresses on the buses for the execution unit. 16

17 Inside Intel 8086 INSTRUCTION QUEUE To speed up the program execution BIU fetches as many as 6 instruction bytes ahead of the memory. The pre fetch instruction bytes are held in Instruction Queue.The BIU can be fetching instruction bytes while EU is decoding or executing an instruction,which does not require the use of buses. When the EU is ready for its next instruction it simply reads the instruction from the queue in the BIU. This pre fetch and Queue scheme greatly speeds up processing. Fetching the next instruction while the current instruction executes is called Pipelining. 17

18 Inside Intel 8086 EXECUTION UNIT The EU of the 8086 tells the BIU, where to fetch instructions or data from, decodes instruction and executes instructions. The EU contains a 16 bit ALU which can add, subtract, AND, OR, XOR, increment, decrement, compliment or shift binary numbers. 18

19 Inside Intel

20 INTERNAL MICROPROCESSOR ARCHITECTURE Before a program is written or instruction investigated, internal configuration of the microprocessor must be known. In a multiple core microprocessor each core contains the same programming model. Each core runs a separate task or thread simultaneously. 20

21 The Programming Model 8086 through Core2 considered program visible. particular registers are used during programming and are specified by the instructions Other registers considered to be program invisible. not addressable directly during applications programming 21

22 80286 and above contain program-invisible registers to control and operate protected memory. and other features of the microprocessor through Core2 microprocessors contain full 32-bit internal architectures through the are fully upwardcompatible to the through Core2. Figure 2 1 illustrates the programming model 8086 through Core2 microprocessor. including the 64-bit extensions 22

23 Figure 2 1 The programming model of the 8086 through the Core2 microprocessor including the 64-bit extensions. 23

24 Multipurpose Registers RAX - a 64-bit register (RAX), a 32-bit register (accumulator) (EAX), a 16-bit register (AX), or as either of two 8-bit registers (AH and AL). The accumulator is used for instructions such as multiplication, division, and some of the adjustment instructions. Intel plans to expand the address bus to 52 bits to address 4P (peta) bytes of memory. 24

25 RBX, addressable as RBX, EBX, BX, BH, BL. BX register (base index) sometimes holds offset address of a location in the memory system in all versions of the microprocessor RCX, as RCX, ECX, CX, CH, or CL. a (count) general-purpose register that also holds the count for various instructions RDX, as RDX, EDX, DX, DH, or DL. a (data) general-purpose register holds a part of the result from a multiplication or part of dividend before a division 25

26 RBP, as RBP, EBP, or BP. points to a memory (base pointer) location for memory data transfers RDI addressable as RDI, EDI, or DI. often addresses (destination index) string destination data for the string instructions RSI used as RSI, ESI, or SI. the (source index) register addresses source string data for the string instructions like RDI, RSI also functions as a generalpurpose register 26

27 R8 - R15 found in the Pentium 4 and Core2 if 64-bit extensions are enabled. data are addressed as 64-, 32-, 16-, or 8-bit sizes and are of general purpose Most applications will not use these registers until 64-bit processors are common. the 8-bit portion is the rightmost 8-bit only bits 8 to 15 are not directly addressable as a byte 27

28 Special-Purpose Registers Include RIP, RSP, and RFLAGS segment registers include CS, DS, ES, SS, FS, and GS RIP addresses the next instruction in a section of memory. defined as (instruction pointer) a code segment RSP addresses an area of memory called the stack. the (stack pointer) stores data through this pointer 28

29 RFLAGS indicate the condition of the microprocessor and control its operation. Figure 2 2 shows the flag registers of all versions of the microprocessor. Flags are upward-compatible from the 8086/8088 through Core2. The rightmost five and the overflow flag are changed by most arithmetic and logic operations. although data transfers do not affect them 29

30 Figure 2 2 The EFLAG and FLAG register counts for the entire 8086 and Pentium microprocessor family. Flags never change for any data transfer or program control operation. Some of the flags are also used to control features found in the microprocessor. 30

31 Flag bits, with a brief description of function. C (carry) holds the carry after addition or borrow after subtraction. also indicates error conditions P (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity. if a number contains three binary one bits, it has odd parity if a number contains no one bits, it has even parity 31

32 List of Each Flag bit, with a brief description of function. C (carry) holds the carry after addition or borrow after subtraction. also indicates error conditions P (parity) is the count of ones in a number expressed as even or odd. Logic 0 for odd parity; logic 1 for even parity. if a number contains three binary one bits, it has odd parity; If a number contains no one bits, it has even parity 32

33 A (auxiliary carry) holds the carry (half-carry) after addition or the borrow after subtraction between bit positions 3 and 4 of the result. Z (zero) shows that the result of an arithmetic or logic operation is zero. S (sign) flag holds the arithmetic sign of the result after an arithmetic or logic instruction executes. T (trap) The trap flag enables trapping through an on-chip debugging feature. 33

34 I (interrupt) controls operation of the INTR (interrupt request) input pin. D (direction) selects increment or decrement mode for the DI and/or SI registers. O (overflow) occurs when signed numbers are added or subtracted. an overflow indicates the result has exceeded the capacity of the machine 34

35 IOPL used in protected mode operation to select the privilege level for I/O devices. NT (nested task) flag indicates the current task is nested within another task in protected mode operation. RF (resume) used with debugging to control resumption of execution after the next instruction. VM (virtual mode) flag bit selects virtual mode operation in a protected mode system. 35

36 AC, (alignment check) flag bit activates if a word or doubleword is addressed on a nonword or non-doubleword boundary. VIF is a copy of the interrupt flag bit available to the Pentium 4 (virtual interrupt) VIP (virtual) provides information about a virtual mode interrupt for (interrupt pending) Pentium. used in multitasking environments to provide virtual interrupt flags 36

37 ID (identification) flag indicates that the Pentium microprocessors support the CPUID instruction. CPUID instruction provides the system with information about the Pentium microprocessor 37

38 Segment Registers Generate memory addresses when combined with other registers in the microprocessor. Four or six segment registers in various versions of the microprocessor. A segment register functions differently in real mode than in protected mode. Following is a list of each segment register, along with its function in the system. 38

39 CS (code) segment holds code (programs and procedures) used by the microprocessor. DS (data) contains most data used by a program. Data are accessed by an offset address or contents of other registers that hold the offset address ES (extra) an additional data segment used by some instructions to hold destination data. 39

40 SS (stack) defines the area of memory used for the stack. stack entry point is determined by the stack segment and stack pointer registers the BP register also addresses data within the stack segment 40

41 FS and GS segments are supplemental segment registers available in Core2 microprocessors. allow two additional memory segments for access by programs Windows uses these segments for internal operations, but no definition of their usage is available. 41

42 REAL MODE MEMORY ADDRESSING and above operate in either the real or protected mode. Real mode operation allows addressing of only the first 1M byte of memory space even in Pentium 4 or Core2 microprocessor. the first 1M byte of memory is called the real memory, conventional memory, or DOS memory system 42

43 Segments and Offsets All real mode memory addresses must consist of a segment address plus an offset address. segment address defines the beginning address of any 64K-byte memory segment offset address selects any location within the 64K byte memory segment Figure 2 3 shows how the segment plus offset addressing scheme selects a memory location. 43

44 Figure 2 3 The real mode memory-addressing scheme, using a segment address plus an offset. this shows a memory segment beginning at 10000H, ending at location IFFFFH 64K bytes in length also shows how an offset address, called a displacement, of F000H selects location 1F000H in the memory 44

45 Once the beginning address is known, the ending address is found by adding FFFFH. because a real mode segment of memory is 64K in length The offset address is always added to the segment starting address to locate the data. Segment and offset address is sometimes written as 1000:2000. a segment address of 1000H; an offset of 2000H 45

46 Default Segment and Offset Registers The microprocessor has rules that apply to segments whenever memory is addressed. these define the segment and offset register combination The code segment register defines the start of the code segment. The instruction pointer locates the next instruction within the code segment. 46

47 Another of the default combinations is the stack. stack data are referenced through the stack segment at the memory location addressed by either the stack pointer (SP/ESP) or the pointer (BP/EBP) Figure 2 4 shows a system that contains four memory segments. a memory segment can touch or overlap if 64K bytes of memory are not required for a segment 47

48 Figure 2 4 A memory system showing the placement of four memory segments. think of segments as windows that can be moved over any area of memory to access data or code a program can have more than four or six segments, but only access four or six segments at a time 48

49 Figure 2 5 An application program containing a code, data, and stack segment loaded into a DOS system memory. a program placed in memory by DOS is loaded in the TPA at the first available area of memory above drivers and other TPA programs area is indicated by a freepointer maintained by DOS program loading is handled automatically by the program loader within DOS 49

50 Segment and Offset Addressing Scheme Allows Relocation Segment plus offset addressing allows DOS programs to be relocated in memory. A relocatable program is one that can be placed into any area of memory and executed without change. Relocatable data are data that can be placed in any area of memory and used without any change to the program. 50

51 Because memory is addressed within a segment by an offset address, the memory segment can be moved to any place in the memory system without changing any of the offset addresses. Only the contents of the segment register must be changed to address the program in the new area of memory. Windows programs are written assuming that the first 2G of memory are available for code and data. 51

52 INTRO TO PROTECTED MODE MEMORY ADDRESSING Allows access to data and programs located within & above the first 1M byte of memory. Protected mode is where Windows operates. In place of a segment address, the segment register contains a selector that selects a descriptor from a descriptor table. The descriptor describes the memory segment s location, length, and access rights. 52

53 Selectors and Descriptors The descriptor is located in the segment register & describes the location, length, and access rights of the segment of memory. it selects one of 8192 descriptors from one of two tables of descriptors In protected mode, this segment number can address any memory location in the system for the code segment. Indirectly, the register still selects a memory segment, but not directly as in real mode. 53

54 Flat Mode Memory A flat mode memory system is one in which there is no segmentation. does not use a segment register to address a location in the memory First byte address is at H; the last location is at FF FFFF FFFFH. address is 40-bits The segment register still selects the privilege level of the software. 54

55 Real mode system is not available if the processor operates in the 64-bit mode. Protection and paging are allowed in the 64- bit mode. The CS register is still used in the protected mode operation in the 64-bit mode. Most programs today are operated in the IA32 compatible mode. current software operates properly, but this will change in a few years as memory becomes larger and most people have 64-bit computers 55

56 Figure 2 15 The 64-bit flat mode memory model. 56

57 The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition Barry B. Brey Copyright 2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. 57

Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee

Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee Lecture (02) The Microprocessor and Its Architecture By: Dr. Ahmed ElShafee ١ INTERNAL MICROPROCESSOR ARCHITECTURE Before a program is written or instruction investigated, internal configuration of the

More information

Chapter 2: The Microprocessor and its Architecture

Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Introduction This chapter presents the microprocessor

More information

6/17/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/17/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Chapter 2: The Microprocessor and its Architecture Introduction This chapter presents the microprocessor

More information

EC-333 Microprocessor and Interfacing Techniques

EC-333 Microprocessor and Interfacing Techniques EC-333 Microprocessor and Interfacing Techniques Lecture 3 The Microprocessor and its Architecture Dr Hashim Ali Fall - 2018 Department of Computer Science and Engineering HITEC University Taxila Slides

More information

Microprocessor (COM 9323)

Microprocessor (COM 9323) Microprocessor (COM 9323) Lecture 3: The Microprocessor and Its Architecture Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt Feb 24 th, 2016 1 Text Book/References* Textbook: The Intel

More information

The Microprocessor and its Architecture

The Microprocessor and its Architecture The Microprocessor and its Architecture Contents Internal architecture of the Microprocessor: The programmer s model, i.e. The registers model The processor model (organization) Real mode memory addressing

More information

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model

SYSC3601 Microprocessor Systems. Unit 2: The Intel 8086 Architecture and Programming Model SYSC3601 Microprocessor Systems Unit 2: The Intel 8086 Architecture and Programming Model Topics/Reading SYSC3601 2 Microprocessor Systems 1. Registers and internal architecture (Ch 2) 2. Address generation

More information

UNIT 2 PROCESSORS ORGANIZATION CONT.

UNIT 2 PROCESSORS ORGANIZATION CONT. UNIT 2 PROCESSORS ORGANIZATION CONT. Types of Operand Addresses Numbers Integer/floating point Characters ASCII etc. Logical Data Bits or flags x86 Data Types Operands in 8 bit -Byte 16 bit- word 32 bit-

More information

8086 INTERNAL ARCHITECTURE

8086 INTERNAL ARCHITECTURE 8086 INTERNAL ARCHITECTURE Segment 2 Intel 8086 Microprocessor The 8086 CPU is divided into two independent functional parts: a) The Bus interface unit (BIU) b) Execution Unit (EU) Dividing the work between

More information

Basic Execution Environment

Basic Execution Environment Basic Execution Environment 3 CHAPTER 3 BASIC EXECUTION ENVIRONMENT This chapter describes the basic execution environment of an Intel Architecture processor as seen by assembly-language programmers.

More information

Intel 8086 MICROPROCESSOR. By Y V S Murthy

Intel 8086 MICROPROCESSOR. By Y V S Murthy Intel 8086 MICROPROCESSOR By Y V S Murthy 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14,

More information

Intel 8086 MICROPROCESSOR ARCHITECTURE

Intel 8086 MICROPROCESSOR ARCHITECTURE Intel 8086 MICROPROCESSOR ARCHITECTURE 1 Features It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 2 20 memory locations (1 MB). It can support up to 64K I/O ports. It provides 14, 16

More information

EEM336 Microprocessors I. Addressing Modes

EEM336 Microprocessors I. Addressing Modes EEM336 Microprocessors I Addressing Modes Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This

More information

Hardware and Software Architecture. Chapter 2

Hardware and Software Architecture. Chapter 2 Hardware and Software Architecture Chapter 2 1 Basic Components The x86 processor communicates with main memory and I/O devices via buses Data bus for transferring data Address bus for the address of a

More information

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM

EXPERIMENT WRITE UP. LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM EXPERIMENT WRITE UP AIM: Assembly language program for 16 bit BCD addition LEARNING OBJECTIVES: 1. Get hands on experience with Assembly Language Programming 2. Write and debug programs in TASM/MASM TOOLS/SOFTWARE

More information

Assembler Programming. Lecture 2

Assembler Programming. Lecture 2 Assembler Programming Lecture 2 Lecture 2 8086 family architecture. From 8086 to Pentium4. Registers, flags, memory organization. Logical, physical, effective address. Addressing modes. Processor Processor

More information

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to:

6/20/2011. Introduction. Chapter Objectives Upon completion of this chapter, you will be able to: Introduction Efficient software development for the microprocessor requires a complete familiarity with the addressing modes employed by each instruction. This chapter explains the operation of the stack

More information

icroprocessor istory of Microprocessor ntel 8086:

icroprocessor istory of Microprocessor ntel 8086: Microprocessor A microprocessor is an electronic device which computes on the given input similar to CPU of a computer. It is made by fabricating millions (or billions) of transistors on a single chip.

More information

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU)

Computer Processors. Part 2. Components of a Processor. Execution Unit The ALU. Execution Unit. The Brains of the Box. Processors. Execution Unit (EU) Part 2 Computer Processors Processors The Brains of the Box Computer Processors Components of a Processor The Central Processing Unit (CPU) is the most complex part of a computer In fact, it is the computer

More information

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN

MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN MICROPROCESSOR PROGRAMMING AND SYSTEM DESIGN ROAD MAP SDK-86 Intel 8086 Features 8086 Block Diagram 8086 Architecture Bus Interface Unit Execution Unit 8086 Architecture 8086 Programmer s Model Flag Register

More information

Assembly Language Each statement in an assembly language program consists of four parts or fields.

Assembly Language Each statement in an assembly language program consists of four parts or fields. Chapter 3: Addressing Modes Assembly Language Each statement in an assembly language program consists of four parts or fields. The leftmost field is called the label. - used to identify the name of a memory

More information

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics

Moodle WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Moodle 4 WILLINGDON COLLEGE SANGLI (B. SC.-II) Digital Electronics Advanced Microprocessors and Introduction to Microcontroller Moodle developed By Dr. S. R. Kumbhar Department of Electronics Willingdon

More information

CS 16: Assembly Language Programming for the IBM PC and Compatibles

CS 16: Assembly Language Programming for the IBM PC and Compatibles CS 16: Assembly Language Programming for the IBM PC and Compatibles Discuss the general concepts Look at IA-32 processor architecture and memory management Dive into 64-bit processors Explore the components

More information

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit

Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit Lecture 5:8086 Outline: 1. introduction 2. execution unit 3. bus interface unit 1 1. introduction The internal function of 8086 processor are partitioned logically into processing units,bus Interface Unit(BIU)

More information

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions.

Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. 8086 Microprocessor Microprocessor Program controlled semiconductor device (IC) which fetches (from memory), decodes and executes instructions. It is used as CPU (Central Processing Unit) in computers.

More information

MICROPROCESSOR MICROPROCESSOR ARCHITECTURE. Prof. P. C. Patil UOP S.E.COMP (SEM-II)

MICROPROCESSOR MICROPROCESSOR ARCHITECTURE. Prof. P. C. Patil UOP S.E.COMP (SEM-II) MICROPROCESSOR UOP S.E.COMP (SEM-II) 80386 MICROPROCESSOR ARCHITECTURE Prof. P. C. Patil Department of Computer Engg Sandip Institute of Engineering & Management Nashik pc.patil@siem.org.in 1 Introduction

More information

Advanced Microprocessors

Advanced Microprocessors Advanced Microprocessors Notes #2 Software Architecture & Instruction Set Architecture Part 1 EE 467/567 Winter 2012 by Avinash Kodi SWA.1 Background Materials Textbook: 2.1, 2.2, 3.1 Other: IA-32 Intel

More information

9/25/ Software & Hardware Architecture

9/25/ Software & Hardware Architecture 8086 Software & Hardware Architecture 1 INTRODUCTION It is a multipurpose programmable clock drive register based integrated electronic device, that reads binary instructions from a storage device called

More information

CC411: Introduction To Microprocessors

CC411: Introduction To Microprocessors CC411: Introduction To Microprocessors OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

Internal architecture of 8086

Internal architecture of 8086 Case Study: Intel Processors Internal architecture of 8086 Slide 1 Case Study: Intel Processors FEATURES OF 8086 It is a 16-bit μp. 8086 has a 20 bit address bus can access up to 220 memory locations (1

More information

A Presentation created By Ramesh.K Press Ctrl+l for full screen view

A Presentation created By Ramesh.K Press Ctrl+l for full screen view Press Ctrl+l for full screen view A Presentation created By Ramesh.K rameshpkd@gmail.com Press Ctrl+l for full screen view A Microprocessor sor is a multipurpose, programmable logic device that reads binary

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures Computer Systems: Section 4.1 Suppose you built a computer What Building Blocks would you use? Arithmetic Logic Unit (ALU) OP1 OP2 OPERATION ALU RES ALU + Registers R0: 0x0000

More information

Introduction to IA-32. Jo, Heeseung

Introduction to IA-32. Jo, Heeseung Introduction to IA-32 Jo, Heeseung IA-32 Processors Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

INTRODUCTION TO IA-32. Jo, Heeseung

INTRODUCTION TO IA-32. Jo, Heeseung INTRODUCTION TO IA-32 Jo, Heeseung IA-32 PROCESSORS Evolutionary design Starting in 1978 with 8086 Added more features as time goes on Still support old features, although obsolete Totally dominate computer

More information

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013)

SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) SRI VENKATESWARA COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF ECE EC6504 MICROPROCESSOR AND MICROCONTROLLER (REGULATION 2013) UNIT I THE 8086 MICROPROCESSOR PART A (2 MARKS) 1. What are the functional

More information

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,...

We can study computer architectures by starting with the basic building blocks. Adders, decoders, multiplexors, flip-flops, registers,... COMPUTER ARCHITECTURE II: MICROPROCESSOR PROGRAMMING We can study computer architectures by starting with the basic building blocks Transistors and logic gates To build more complex circuits Adders, decoders,

More information

Addressing Modes on the x86

Addressing Modes on the x86 Addressing Modes on the x86 register addressing mode mov ax, ax, mov ax, bx mov ax, cx mov ax, dx constant addressing mode mov ax, 25 mov bx, 195 mov cx, 2056 mov dx, 1000 accessing data in memory There

More information

16-Bit Intel Processor Architecture

16-Bit Intel Processor Architecture IBM-PC Organization 16-Bit Intel Processor Architecture A-16 bit microprocessor can operate on 16 bits of data at a time. 8086/8088 have the simplest structure 8086/8088 have the same instruction set,

More information

Introduction to Microprocessor

Introduction to Microprocessor Introduction to Microprocessor The microprocessor is a general purpose programmable logic device. It is the brain of the computer and it performs all the computational tasks, calculations data processing

More information

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit

Assembly Language for Intel-Based Computers, 4 th Edition. Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Assembly Language for Intel-Based Computers, 4 th Edition Kip R. Irvine Chapter 2: IA-32 Processor Architecture Included elements of the IA-64 bit Slides prepared by Kip R. Irvine Revision date: 09/25/2002

More information

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil

Microprocessor. By Mrs. R.P.Chaudhari Mrs.P.S.Patil Microprocessor By Mrs. R.P.Chaudhari Mrs.P.S.Patil Chapter 1 Basics of Microprocessor CO-Draw Architecture Of 8085 Salient Features of 8085 It is a 8 bit microprocessor. It is manufactured with N-MOS technology.

More information

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers.

Lecture 5: Computer Organization Instruction Execution. Computer Organization Block Diagram. Components. General Purpose Registers. Lecture 5: Computer Organization Instruction Execution Computer Organization Addressing Buses Fetch-Execute Cycle Computer Organization CPU Control Unit U Input Output Memory Components Control Unit fetches

More information

MICROPROCESSOR MICROPROCESSOR ARCHITECTURE. Prof. P. C. Patil UOP S.E.COMP (SEM-II)

MICROPROCESSOR MICROPROCESSOR ARCHITECTURE. Prof. P. C. Patil UOP S.E.COMP (SEM-II) MICROPROCESSOR UOP S.E.COMP (SEM-II) 80386 MICROPROCESSOR ARCHITECTURE Prof. P. C. Patil Department of Computer Engg Sandip Institute of Engineering & Management Nashik pc.patil@siem.org.in 1 Introduction

More information

ADVANCE MICROPROCESSOR & INTERFACING

ADVANCE MICROPROCESSOR & INTERFACING VENUS INTERNATIONAL COLLEGE OF TECHNOLOGY Gandhinagar Department of Computer Enggineering ADVANCE MICROPROCESSOR & INTERFACING Name : Enroll no. : Class Year : 2014-15 : 5 th SEM C.E. VENUS INTERNATIONAL

More information

INTRODUCTION TO MICROPROCESSORS

INTRODUCTION TO MICROPROCESSORS INTRODUCTION TO MICROPROCESSORS Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu January 7, 2016 Richa Upadhyay Prabhu (MPSTME) INTRODUCTION January 7, 2016 1 / 63 Course Design Prerequisite:

More information

Code segment Stack segment

Code segment Stack segment Registers Most of the registers contain data/instruction offsets within 64 KB memory segment. There are four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

More information

CHAPTER 3 BASIC EXECUTION ENVIRONMENT

CHAPTER 3 BASIC EXECUTION ENVIRONMENT CHAPTER 3 BASIC EXECUTION ENVIRONMENT This chapter describes the basic execution environment of an Intel 64 or I A-32 processor as seen by assemblylanguage programmers. It describes how the processor executes

More information

Chapter 3: Addressing Modes

Chapter 3: Addressing Modes Chapter 3: Addressing Modes Chapter 3 Addressing Modes Note: Adapted from (Author Slides) Instructor: Prof. Dr. Khalid A. Darabkh 2 Introduction Efficient software development for the microprocessor requires

More information

Registers. Ray Seyfarth. September 8, Bit Intel Assembly Language c 2011 Ray Seyfarth

Registers. Ray Seyfarth. September 8, Bit Intel Assembly Language c 2011 Ray Seyfarth Registers Ray Seyfarth September 8, 2011 Outline 1 Register basics 2 Moving a constant into a register 3 Moving a value from memory into a register 4 Moving values from a register into memory 5 Moving

More information

Architecture of 8086 Microprocessor

Architecture of 8086 Microprocessor MCQ on Microprocessor and Interfacing Technique S.E.Compure (Sem-II) UNIT 1 Architecture of 8086 Microprocessor 1 marks Questions 1. Which is first microprocessor? (a) 8008 (b) 8085 (c) 8086 (d) 4004 2.

More information

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy

Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Basic characteristics & features of 8086 Microprocessor Dr. M. Hebaishy Digital Logic Design Ch1-1 8086 Microprocessor Features: The 8086 microprocessor is a 16 bit microprocessor. The term 16 bit means

More information

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam

Assembly Language. Lecture 2 - x86 Processor Architecture. Ahmed Sallam Assembly Language Lecture 2 - x86 Processor Architecture Ahmed Sallam Introduction to the course Outcomes of Lecture 1 Always check the course website Don t forget the deadline rule!! Motivations for studying

More information

Module 3 Instruction Set Architecture (ISA)

Module 3 Instruction Set Architecture (ISA) Module 3 Instruction Set Architecture (ISA) I S A L E V E L E L E M E N T S O F I N S T R U C T I O N S I N S T R U C T I O N S T Y P E S N U M B E R O F A D D R E S S E S R E G I S T E R S T Y P E S O

More information

Lecture 15 Intel Manual, Vol. 1, Chapter 3. Fri, Mar 6, Hampden-Sydney College. The x86 Architecture. Robb T. Koether. Overview of the x86

Lecture 15 Intel Manual, Vol. 1, Chapter 3. Fri, Mar 6, Hampden-Sydney College. The x86 Architecture. Robb T. Koether. Overview of the x86 Lecture 15 Intel Manual, Vol. 1, Chapter 3 Hampden-Sydney College Fri, Mar 6, 2009 Outline 1 2 Overview See the reference IA-32 Intel Software Developer s Manual Volume 1: Basic, Chapter 3. Instructions

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

Assembly Language for x86 Processors 7 th Edition. Chapter 2: x86 Processor Architecture

Assembly Language for x86 Processors 7 th Edition. Chapter 2: x86 Processor Architecture Assembly Language for x86 Processors 7 th Edition Kip Irvine Chapter 2: x86 Processor Architecture Slides prepared by the author Revision date: 1/15/2014 (c) Pearson Education, 2015. All rights reserved.

More information

Complex Instruction Set Computer (CISC)

Complex Instruction Set Computer (CISC) Introduction ti to IA-32 IA-32 Processors Evolutionary design Starting in 1978 with 886 Added more features as time goes on Still support old features, although obsolete Totally dominate computer market

More information

EEM336 Microprocessors I. Data Movement Instructions

EEM336 Microprocessors I. Data Movement Instructions EEM336 Microprocessors I Data Movement Instructions Introduction This chapter concentrates on common data movement instructions. 2 Chapter Objectives Upon completion of this chapter, you will be able to:

More information

Assembly Language. Lecture 2 x86 Processor Architecture

Assembly Language. Lecture 2 x86 Processor Architecture Assembly Language Lecture 2 x86 Processor Architecture Ahmed Sallam Slides based on original lecture slides by Dr. Mahmoud Elgayyar Introduction to the course Outcomes of Lecture 1 Always check the course

More information

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 1: Assembly Language Terms & Directives

US06CCSC04: Introduction to Microprocessors and Assembly Language UNIT 1: Assembly Language Terms & Directives Introduction: US06CCSC04: Introduction to Microprocessors and A microprocessor is the chip containing some control and logic circuits that is capable of a making arithmetic and logical decision based on

More information

The Instruction Set. Chapter 5

The Instruction Set. Chapter 5 The Instruction Set Architecture Level(ISA) Chapter 5 1 ISA Level The ISA level l is the interface between the compilers and the hardware. (ISA level code is what a compiler outputs) 2 Memory Models An

More information

The x86 Architecture

The x86 Architecture The x86 Architecture Lecture 24 Intel Manual, Vol. 1, Chapter 3 Robb T. Koether Hampden-Sydney College Fri, Mar 20, 2015 Robb T. Koether (Hampden-Sydney College) The x86 Architecture Fri, Mar 20, 2015

More information

Processor Structure and Function

Processor Structure and Function WEEK 4 + Chapter 14 Processor Structure and Function + Processor Organization Processor Requirements: Fetch instruction The processor reads an instruction from memory (register, cache, main memory) Interpret

More information

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture

ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture ADVANCED PROCESSOR ARCHITECTURES AND MEMORY ORGANISATION Lesson-11: 80x86 Architecture 1 The 80x86 architecture processors popular since its application in IBM PC (personal computer). 2 First Four generations

More information

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved.

William Stallings Computer Organization and Architecture 10 th Edition Pearson Education, Inc., Hoboken, NJ. All rights reserved. + William Stallings Computer Organization and Architecture 10 th Edition 2016 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 2 + Chapter 14 Processor Structure and Function + Processor Organization

More information

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language

Assembly Language. Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology. Overview of Assembly Language 4345 Assembly Language Assembly Language Dr. Esam Al_Qaralleh CE Department Princess Sumaya University for Technology Assembly Language 3-1 Overview of Assembly Language Advantages: Faster as compared

More information

Chapter 2 COMPUTER SYSTEM HARDWARE

Chapter 2 COMPUTER SYSTEM HARDWARE Chapter 2 COMPUTER SYSTEM HARDWARE A digital computer system consists of hardware and software. The hardware consists of the physical components of the system, whereas the software is the collection of

More information

IA32 Intel 32-bit Architecture

IA32 Intel 32-bit Architecture 1 2 IA32 Intel 32-bit Architecture Intel 32-bit Architecture (IA32) 32-bit machine CISC: 32-bit internal and external data bus 32-bit external address bus 8086 general registers extended to 32 bit width

More information

MICROPROCESSOR TECHNOLOGY

MICROPROCESSOR TECHNOLOGY MICROPROCESSOR TECHNOLOGY Assis. Prof. Hossam El-Din Moustafa Lecture 5 Ch.2 A Top-Level View of Computer Function (Cont.) 24-Feb-15 1 CPU (CISC & RISC) Intel CISC, Motorola RISC CISC (Complex Instruction

More information

eaymanelshenawy.wordpress.com

eaymanelshenawy.wordpress.com Lectures on Memory Interface Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. Al-Azhar University Email : eaymanelshenawy@yahoo.com eaymanelshenawy.wordpress.com Lecture

More information

Assembly I: Basic Operations. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly I: Basic Operations. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly I: Basic Operations Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Basic Execution Environment RAX RBX RCX RDX RSI RDI RBP RSP R8 R9 R10

More information

Unit 08 Advanced Microprocessor

Unit 08 Advanced Microprocessor Unit 08 Advanced Microprocessor 1. Features of 80386 The 80386 microprocessor is an enhanced version of the 80286 microprocessor Memory-management unit is enhanced to provide memory paging. The 80386 also

More information

Instruction Set Architecture (ISA) Data Types

Instruction Set Architecture (ISA) Data Types Instruction Set Architecture (ISA) Data Types Computer Systems: Section 4.1 Suppose you built a computer What Building Blocks would you use? Arithmetic Logic Unit (ALU) OP1 OP2 OPERATION ALU RES Full Adder

More information

Low Level Programming Lecture 2. International Faculty of Engineerig, Technical University of Łódź

Low Level Programming Lecture 2. International Faculty of Engineerig, Technical University of Łódź Low Level Programming Lecture 2 Intel processors' architecture reminder Fig. 1. IA32 Registers IA general purpose registers EAX- accumulator, usually used to store results of integer arithmetical or binary

More information

IA-32 Architecture COE 205. Computer Organization and Assembly Language. Computer Engineering Department

IA-32 Architecture COE 205. Computer Organization and Assembly Language. Computer Engineering Department IA-32 Architecture COE 205 Computer Organization and Assembly Language Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Basic Computer Organization Intel

More information

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات

Microcomputer Architecture..Second Year (Sem.2).Lecture(2) مدرس المادة : م. سندس العزاوي... قسم / الحاسبات 1) Input/output In computing, input/output or I/O, is the communication between an information processing system (such as a computer) and the outside world, possibly a human or another information processing

More information

The von Neumann Machine

The von Neumann Machine The von Neumann Machine 1 1945: John von Neumann Wrote a report on the stored program concept, known as the First Draft of a Report on EDVAC also Alan Turing Konrad Zuse Eckert & Mauchly The basic structure

More information

MICROPROCESSORS. (Common to CSE & ISE) SYLLABUS PART A

MICROPROCESSORS. (Common to CSE & ISE) SYLLABUS PART A MICROPROCESSORS (Common to CSE & ISE) SYLLABUS Subject Code: Hours/Week : 05 Total Hours : 52 PART A UNIT 1 I.A. Marks : 25 Exam Hours: 03 Exam Marks: 100 [ 7 Hours ] Introduction, Microprocessor Architecture

More information

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad

VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Shamshabad, Hyderabad Introduction to MS-DOS Debugger DEBUG In this laboratory, we will use DEBUG program and learn how to: 1. Examine and modify the contents of the 8086 s internal registers, and dedicated parts of the memory

More information

Introduction to Machine/Assembler Language

Introduction to Machine/Assembler Language COMP 40: Machine Structure and Assembly Language Programming Fall 2017 Introduction to Machine/Assembler Language Noah Mendelsohn Tufts University Email: noah@cs.tufts.edu Web: http://www.cs.tufts.edu/~noah

More information

ELE 3230 Microprocessors and Computer Systems

ELE 3230 Microprocessors and Computer Systems ELE 3230 Microprocessors and Computer Systems Chapter 4 8088 System Architecture (*Hall:ch2; Brey:ch1; Triebel:ch2) ELE 3230 - Chapter 4 1 Historical Background 1969/70 Intel 4004, first Microprocessor

More information

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India.

Unit I Introduction. Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad , India. Unit I Introduction Department of Electronics and Communication Engineering VARDHAMAN COLLEGE OF ENGINEERING Shamshabad, Hyderabad 501218, India. Pre-requisites Digital Logic Design (A1404) Computer Architecture

More information

Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD /12/2014 Slide 1

Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD /12/2014 Slide 1 Dr. Ramesh K. Karne Department of Computer and Information Sciences, Towson University, Towson, MD 21252 rkarne@towson.edu 11/12/2014 Slide 1 Intel x86 Aseembly Language Assembly Language Assembly Language

More information

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313)

Marking Scheme. Examination Paper Department of CE. Module: Microprocessors (630313) Philadelphia University Faculty of Engineering Marking Scheme Examination Paper Department of CE Module: Microprocessors (630313) Final Exam Second Semester Date: 02/06/2018 Section 1 Weighting 40% of

More information

The Pentium Processor

The Pentium Processor The Pentium Processor Chapter 7 S. Dandamudi Outline Pentium family history Pentium processor details Pentium registers Data Pointer and index Control Segment Real mode memory architecture Protected mode

More information

Instruction Set Architectures

Instruction Set Architectures Instruction Set Architectures! ISAs! Brief history of processors and architectures! C, assembly, machine code! Assembly basics: registers, operands, move instructions 1 What should the HW/SW interface

More information

Assembly Language Programming Introduction

Assembly Language Programming Introduction Assembly Language Programming Introduction October 10, 2017 Motto: R7 is used by the processor as its program counter (PC). It is recommended that R7 not be used as a stack pointer. Source: PDP-11 04/34/45/55

More information

EEM336 Microprocessors I. Arithmetic and Logic Instructions

EEM336 Microprocessors I. Arithmetic and Logic Instructions EEM336 Microprocessors I Arithmetic and Logic Instructions Introduction We examine the arithmetic and logic instructions. The arithmetic instructions include addition, subtraction, multiplication, division,

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 4

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 4 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 4 LAST TIME Enhanced our processor design in several ways Added branching support Allows programs where work is proportional to the input values

More information

The von Neumann Machine

The von Neumann Machine The von Neumann Machine 1 1945: John von Neumann Wrote a report on the stored program concept, known as the First Draft of a Report on EDVAC also Alan Turing Konrad Zuse Eckert & Mauchly The basic structure

More information

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor?

UNIT-I. 1.Draw and explain the Architecture of a 8085 Microprocessor? UNIT-I INTRODUCTION TO MICROPROCESSOR A common way of categorizing microprocessors is by the no. of bits that their ALU can work with at a time. (i) The first commercially available microprocessor was

More information

Binghamton University. CS-220 Spring x86 Assembler. Computer Systems: Sections

Binghamton University. CS-220 Spring x86 Assembler. Computer Systems: Sections x86 Assembler Computer Systems: Sections 3.1-3.5 Disclaimer I am not an x86 assembler expert. I have never written an x86 assembler program. (I am proficient in IBM S/360 Assembler and LC3 Assembler.)

More information

Week 2 The 80x86 Microprocessor Architecture

Week 2 The 80x86 Microprocessor Architecture Week 2 The 80x86 Microprocessor Architecture OBJECTIVES this chapter enables the student to: Describe the Intel family of microprocessors from 8085 to Pentium. In terms of bus size, physical memory & special

More information

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents.

UMBC. A register, an immediate or a memory address holding the values on. Stores a symbolic name for the memory location that it represents. Intel Assembly Format of an assembly instruction: LABEL OPCODE OPERANDS COMMENT DATA1 db 00001000b ;Define DATA1 as decimal 8 START: mov eax, ebx ;Copy ebx to eax LABEL: Stores a symbolic name for the

More information

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY

SPRING TERM BM 310E MICROPROCESSORS LABORATORY PRELIMINARY STUDY BACKGROUND 8086 CPU has 8 general purpose registers listed below: AX - the accumulator register (divided into AH / AL): 1. Generates shortest machine code 2. Arithmetic, logic and data transfer 3. One

More information

Memory Models. Registers

Memory Models. Registers Memory Models Most machines have a single linear address space at the ISA level, extending from address 0 up to some maximum, often 2 32 1 bytes or 2 64 1 bytes. Some machines have separate address spaces

More information

RISC I from Berkeley. 44k Transistors 1Mhz 77mm^2

RISC I from Berkeley. 44k Transistors 1Mhz 77mm^2 The Case for RISC RISC I from Berkeley 44k Transistors 1Mhz 77mm^2 2 MIPS: A Classic RISC ISA Instructions 4 bytes (32 bits) 4-byte aligned Instructions operate on memory and registers Memory Data types

More information

A4 Sample Solution Ch3

A4 Sample Solution Ch3 A4 Sample Solution Ch3 2. AL, AH, BL, BH,CL,CH,DLl, DH 3. AX, BX, CX, DX, SP, BP, SI, DI, CS, DS, ES, SS, FS, GS 4. EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI 5. RAX, RBX, RCX, RDX, RSP, RBP, RSI, RDI and

More information

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors

UNIT II OVERVIEW MICROPROCESSORS AND MICROCONTROLLERS MATERIAL. Introduction to 8086 microprocessors. Architecture of 8086 processors OVERVIEW UNIT II Introduction to 8086 microprocessors Architecture of 8086 processors Register Organization of 8086 Memory Segmentation of 8086 Pin Diagram of 8086 Timing Diagrams for 8086 Interrupts of

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 3 nd Edition by Bryant and O'Hallaron

More information