Compiler Design Spring 2017

Size: px
Start display at page:

Download "Compiler Design Spring 2017"

Transcription

1 Compiler Design Spring Method invocation Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation 1

2 Admin issues There will be a recitation session today In CAB G 15:15 Discussion of Homework 4 (code generation) Feedback for HWP (design patterns) available Check your subversion repository Next lecture takes place next Thursday (May 4) 2

3 Outline Call-by-value Call-by-reference Call-by-result Call-by-name Profiling 3

4 4

5 7.5.2 Call-by-reference Caller passes address to callee Could be address of an object a field a local variable an array element Indicate with keyword or symbol if a parameter is passed by reference Call-by-value usually supported as well Each parameter can be handled differently Example void foo(ref type x) { } // definition foo(ref y) // call site 5

6 7.5.2 Call-by-reference (cont d) Caller must evaluate address of parameter(s) Pass address from caller to callee Usually uses space that holds parameter Callee de-references actual to get value at address or to update storage location at the address Two steps Retrieve effective address Use address to read/write parameter 6

7 Discussion Advantages of call-by-reference Callee can modify variables in caller s scope Efficient passing of large objects/arrays [Maybe] restrict callee access to caller s objects Disadvantages of call-by-reference Callee can modify variables in caller s scope May be able to access any location Bug in callee may have global effect Aliasing the norm 8

8 Disadvantages (continued) Possible overhead and/or difficulties in optimization void foo (ref int x, ref int y) { int z; x = x + z ; y = z + 1 ; = x... ; } One extra step for each access Cannot assume that x is unchanged Must prohibit calls like foo(k m, ref x) Or (maybe) generate temporary for k m in caller 9

9 7.5.3 Call-by-result Call-by-result is a combination of Call-by-value (inside the callee) and Call-by-reference (upon reaching the end of the callee) Callee copies the local value of a parameter (value inside the callee) back to the caller Parameter x is like a local variable initialized by caller void foo(result int x) Effect of call obtained by inspecting x after return 11

10 void bar (result int x, result int y) { int a, b; x = x + 1; a = 2; y = y 1; b = 4; x = x + a; } // somewhere int k = 1; int m = 2; bar (k, m) // k == 4, m == 1 12

11 Discussion void foo(result int x) Callee needs address of x To store result at the end Implement passing of parameter(s) like call-by-reference Cannot allow foo(a b) Do we need a return statement? Yes: indication that parameters have meaningful value(s) No: value(s) copied back to caller in any case 13

12 Implementation void foo(result int x) Access to x inside method foo() different from call-byreference Callee cannot modify caller s context Need to create a temporary, initialize temporary with parameter value Upon return copy value from temporary to caller 14

13 Implementation (cont d) void bar(result int x, result int y) Use temporary (say xt, yt) Body of bar: xt = x; yt = y; xt = xt + 1; a = 2; yt = yt 1; b = 4; xt = xt + a; x = xt; y = yt; 15

14 Observation Final result depends on order of copying results Consider int k = 1; bar (k, k) // k == 4 or k == 0 void bar (result int x, result int y) { int a, b; x = x + 1; a = 2; y = y 1; b = 4; x = x + a; } Should be decided by language reference manual Either from y 1 y n or y n y 1 16

15 Discussion Advantages of call-by-result Multiple return values for a function Disadvantages of call-by-result Implementation overhead Aliasing makes programs difficult to understand 17

16 7.5.4 Call-by-name Idea: textual substitution of the formal parameter by the actual parameter Hand-off a variable to callee Example void foo (name int x, name int k) { k = 2; x = 5; k = 3; x = 1; } 18

17 Example (continued) Call site int [] A = new int[10]; int j; foo (A [j * 2], j) With call-by-name, the call means foo(a [j * 2], j) Execution k = 2; j = 2; x = 5; A[j*2] = 5; // A[4] k = 3; j = 3; x = 1; A[j*2] = 1; // A[6] void foo (name int x, name int k) { k = 2; x = 5; k = 3; x = 1; } 19

18 Discussion Who wants that? How does the compiler implement call-by-name? 20

19 Option 1: interpreter Use just-in-time compiler Invoke compiler at each call site, for each invocation Compiler automatically captures actual parameters 21

20 Option 2: stub generation Ahead-of-time compiler produces (for each call-by-name parameter) a stub that generates the address of the parameter Callee invokes stub to access a call-by-name parameter For each parameter P i the stub EP i yields the address 22

21 Example, continued foo(a [j * 2], j) EP 2 Get address of j Put address into location L 2 Continue as in call-by-reference EP 1 Get address of j Get value, compute 2, put value into temporary location T Get address of A[T] Put address into location L 1 Continue as in call-by-reference 23

22 Discussion Difficult to implement In ahead-of-time framework Potentially expensive execution Many indirections Frequent compilations (in just-in-time framework) Destroys modularity Cannot deduce effect of method foo() by inspecting body of foo() 24

23 Comparison (Not really JavaLi) No need to implement But you should know concepts Example Uses global variables Could be in an instance int j; int [] B = new int[2]; 25

24 x is passed by void quest( int x){ j = 0; x = x + 2; B[j] = 10; j = 1; x = x + 2; } void main() { B[0] = 1; B[1] = 1; j = 0; quest(b[j]); } x = 1 j = 0 x = 3 value reference result name B[0]=10 B[0]=10 B[0]=10 B[0]=10 j = 1 x = 5 } 10 B[j] j = 0 j = 0 j = 0 B[0]=3 j = 1 j = 1 j = 1 B[0]=12 } xt = 3 xt = 5 }B[0]=xt B[0]=3 B[1]=3 }

25 7.5.5 Profiling Gather information about a program s runtime behavior Today: Where does a program spend its execution time? Where == in which method(s) Guides optimization effort by programmer Profiling performed by external tools By inspecting stack layout E.g., perf_events on Linux, pstack on Solaris Requires close coupling between profilers / compilers Stack layout must allow inspection Symbol information must be available (at well-known location) 31

26 callee caller caller s caller Temp k... Temp 0 Local m Local 0 old SP old FP Return address target (parameter y0) parameter y1 parameter yn Return value Temp q Local 0 old SP old FP Return address Activation records revisited Stack pointer (%rsp) Frame pointer (%rbp) Question 1: How to get return address? Question 2: Where does old FP point to? Question 3: Where does Return address point to? 33

27 If an external tool were to interrupt program looking at %rip (instruction pointer) identifies currently executing method E.g., for the call hierarchy m1() à m2() à m3() à m4() %rip identifies m4() Looking at %rbp (frame pointer) gives access to Return address in m4() s activation record Identifies caller of m4() (i.e., m3()) Frame pointer of m3() Looking at frame pointer of m3() gives access to Return address of m3() s activation record and so on 34

28 Gathering information Interrupt program at regular time intervals Inspect stack (walk the stack), record data Interrupt #1 m1() à m2() à m3() à m4() Interrupt #2 m1() à m2() à m3() à m5() Interrupt #3 m1() à m2() à m3() à m4() Interrupt #4 m6() à m7() à m8() à m9() 35

29 Presenting result Many different ways to present data to user (programmer) Option #1: Present number of samples m1 m2 m3 m4 m5 m6 m7 m8 m9 # of samples % of total 19% 19% 19% 13% 6% 6% 6% 6% 6% Problem: Not obvious that call chain m1() à m2() à m3() accounts for 75% of the execution time Other (better?) option: Flame graphs 36

30 Flame graphs Visualization that gives intuitive insight into call chains Many details missing: Lots of flat regions in Java part JVM JIT compilers do not maintain walkable stack activation records Frame pointer (%rbp) not maintained, used as general purpose register Also done by GCC (-fomit-frame-pointer) Temp k... Temp 0 callee Local m Local 0 old SP old FP Return address Frame pointer (%rbp) 37

31 Frame pointer support in the JVM Coupling JIT compilers / runtime system / profilers Change compilers to maintain the frame pointer Store program symbols at well-known location Where profiling tool can find them Available since Java 8u60 38

32 Flame graphs More on the topic Includes before/after graphs shown in the lecture 39

: Compiler Design

: Compiler Design 252-210: Compiler Design 7.2 Assignment statement 7.3 Condi2onal statement 7.4 Loops 7.5 Method invoca2on Thomas R. Gross Computer Science Department ETH Zurich, Switzerland Outline 7.1 Access to operands

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 Patterns (again) Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation Why? Remember questionnaire (from the beginning of the semester)? Question 7:

More information

System Software Assignment 1 Runtime Support for Procedures

System Software Assignment 1 Runtime Support for Procedures System Software Assignment 1 Runtime Support for Procedures Exercise 1: Nested procedures Some programming languages like Oberon and Pascal support nested procedures. 1. Find a run-time structure for such

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 8.0 Data-Flow Analysis Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation Admin issues There will be a code review session next week On Thursday

More information

LECTURE 19. Subroutines and Parameter Passing

LECTURE 19. Subroutines and Parameter Passing LECTURE 19 Subroutines and Parameter Passing ABSTRACTION Recall: Abstraction is the process by which we can hide larger or more complex code fragments behind a simple name. Data abstraction: hide data

More information

CS 314 Principles of Programming Languages. Lecture 13

CS 314 Principles of Programming Languages. Lecture 13 CS 314 Principles of Programming Languages Lecture 13 Zheng Zhang Department of Computer Science Rutgers University Wednesday 19 th October, 2016 Zheng Zhang 1 CS@Rutgers University Class Information Reminder:

More information

: Compiler Design

: Compiler Design 252-210: Compiler Design 7.5.* Actuals/formals correspondence Thomas R. Gross Computer Science Department ETH Zurich, Switzerland Actual- formal correspondence 7.5.1 Call- by- value Caller passes value

More information

Run-time Environments - 2

Run-time Environments - 2 Run-time Environments - 2 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 6.0 Runtime system and object layout Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation 1 Runtime system Some open issues from last time Handling

More information

Run-time Environments -Part 1

Run-time Environments -Part 1 Run-time Environments -Part 1 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Compiler Design Outline of the Lecture Part 1 What is run-time support?

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent instructions and conventions 2 Function Call Problems (1) Calling and returning

More information

CA Compiler Construction

CA Compiler Construction CA4003 - Compiler Construction David Sinclair When procedure A calls procedure B, we name procedure A the caller and procedure B the callee. A Runtime Environment, also called an Activation Record, is

More information

Compiler Design Spring 2018

Compiler Design Spring 2018 Compiler Design Spring 2018 Thomas R. Gross Computer Science Department ETH Zurich, Switzerland 1 Logistics Lecture Tuesdays: 10:15 11:55 Thursdays: 10:15 -- 11:55 In ETF E1 Recitation Announced later

More information

Calvin Lin The University of Texas at Austin

Calvin Lin The University of Texas at Austin Interprocedural Analysis Last time Introduction to alias analysis Today Interprocedural analysis March 4, 2015 Interprocedural Analysis 1 Motivation Procedural abstraction Cornerstone of programming Introduces

More information

Code Generation & Parameter Passing

Code Generation & Parameter Passing Code Generation & Parameter Passing Lecture Outline 1. Allocating temporaries in the activation record Let s optimize our code generator a bit 2. A deeper look into calling sequences Caller/Callee responsibilities

More information

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 4 Robert Grimm, New York University 1 Review Last week Control Structures Selection Loops 2 Outline Subprograms Calling Sequences Parameter Passing

More information

Programming Languages

Programming Languages Programming Languages Tevfik Koşar Lecture - XX April 4 th, 2006 1 Roadmap Subroutines Allocation Strategies Calling Sequences Parameter Passing Generic Subroutines Exception Handling Co-routines 2 1 Review

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls Princeton University Computer Science 217: Introduction to Programming Systems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent

More information

Run-time Environments - 3

Run-time Environments - 3 Run-time Environments - 3 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

Interprocedural Analysis. Motivation. Interprocedural Analysis. Function Calls and Pointers

Interprocedural Analysis. Motivation. Interprocedural Analysis. Function Calls and Pointers Interprocedural Analysis Motivation Last time Introduction to alias analysis Today Interprocedural analysis Procedural abstraction Cornerstone of programming Introduces barriers to analysis Example x =

More information

Memory Management and Run-Time Systems

Memory Management and Run-Time Systems TDDD55 Compilers and Interpreters TDDB44 Compiler Construction Memory Management and Run-Time Systems Part of the Attribute Grammar Material Presented at the Beginning of this Lecture Peter Fritzson IDA,

More information

CSE 504: Compiler Design. Runtime Environments

CSE 504: Compiler Design. Runtime Environments Runtime Environments Pradipta De pradipta.de@sunykorea.ac.kr Current Topic Procedure Abstractions Mechanisms to manage procedures and procedure calls from compiler s perspective Runtime Environment Choices

More information

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem:

CSE 504. Expression evaluation. Expression Evaluation, Runtime Environments. One possible semantics: Problem: Expression evaluation CSE 504 Order of evaluation For the abstract syntax tree + + 5 Expression Evaluation, Runtime Environments + + x 3 2 4 the equivalent expression is (x + 3) + (2 + 4) + 5 1 2 (. Contd

More information

Chapter 8 :: Subroutines and Control Abstraction. Final Test. Final Test Review Tomorrow

Chapter 8 :: Subroutines and Control Abstraction. Final Test. Final Test Review Tomorrow Chapter 8 :: Subroutines and Control Abstraction Programming Language Pragmatics Michael L. Scott Administrative Notes Final Test Thursday, August 3 2006 at 11:30am No lecture before or after the mid-term

More information

! Those values must be stored somewhere! Therefore, variables must somehow be bound. ! How?

! Those values must be stored somewhere! Therefore, variables must somehow be bound. ! How? A Binding Question! Variables are bound (dynamically) to values Subprogram Activation! Those values must be stored somewhere! Therefore, variables must somehow be bound to memory locations! How? Function

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Procedure calls and register saving conventions 1 Example Convert to assembly: while (save[i] == k) i += 1; i and k are in $s3 and $s5 and base of array save[]

More information

Implementing Subroutines. Outline [1]

Implementing Subroutines. Outline [1] Implementing Subroutines In Text: Chapter 9 Outline [1] General semantics of calls and returns Implementing simple subroutines Call Stack Implementing subroutines with stackdynamic local variables Nested

More information

Code Generation II. Code generation for OO languages. Object layout Dynamic dispatch. Parameter-passing mechanisms Allocating temporaries in the AR

Code Generation II. Code generation for OO languages. Object layout Dynamic dispatch. Parameter-passing mechanisms Allocating temporaries in the AR Code Generation II Code generation for OO languages Object layout Dynamic dispatch Parameter-passing mechanisms Allocating temporaries in the AR Object Layout OO implementation = Stuff from last lecture

More information

Principles of Programming Languages

Principles of Programming Languages Ting Zhang Iowa State University Computer Science Department Lecture Note 16 October 26, 2010 Control Abstraction: Subroutines 1 / 26 Outline 1 Subroutines 2 Parameter Passing 3 Generic Subroutines 2 /

More information

Compiling Techniques

Compiling Techniques Lecture 10: Introduction to 10 November 2015 Coursework: Block and Procedure Table of contents Introduction 1 Introduction Overview Java Virtual Machine Frames and Function Call 2 JVM Types and Mnemonics

More information

Chap. 8 :: Subroutines and Control Abstraction

Chap. 8 :: Subroutines and Control Abstraction Chap. 8 :: Subroutines and Control Abstraction Michael L. Scott Programming Language Theory 2015, kkman@sangji.ac.kr 1 Review Of Stack Layout Allocation strategies Static Code Globals Own variables Explicit

More information

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017 143A: Principles of Operating Systems Lecture 4: Calling conventions Anton Burtsev October, 2017 Recap from last time Stack and procedure calls What is stack? Stack It's just a region of memory Pointed

More information

Profilers and Debuggers. Introductory Material. One-Slide Summary

Profilers and Debuggers. Introductory Material. One-Slide Summary Profilers and Debuggers #1 Introductory Material First, who doesn t know assembly language? You ll get to answer all the assembly questions. Yes, really. Lecture Style: Sit on the table and pose questions.

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 15: Review and Functional Programming Zheng (Eddy) Zhang Rutgers University March 19, 2018 Class Information Midterm exam forum open in Sakai. HW4 and

More information

COL728 Minor2 Exam Compiler Design Sem II, Answer all 5 questions Max. Marks: 20

COL728 Minor2 Exam Compiler Design Sem II, Answer all 5 questions Max. Marks: 20 COL728 Minor2 Exam Compiler Design Sem II, 2017-18 Answer all 5 questions Max. Marks: 20 1. Short questions a. Give an example of a program that is not a legal program if we assume static scoping, but

More information

Announcements. Working on requirements this week Work on design, implementation. Types. Lecture 17 CS 169. Outline. Java Types

Announcements. Working on requirements this week Work on design, implementation. Types. Lecture 17 CS 169. Outline. Java Types Announcements Types Working on requirements this week Work on design, implementation Lecture 17 CS 169 Prof. Brewer CS 169 Lecture 16 1 Prof. Brewer CS 169 Lecture 16 2 Outline Type concepts Where do types

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2016 Lecture 4a Andrew Tolmach Portland State University 1994-2016 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Weeks 6&7: Procedures and Parameter Passing

Weeks 6&7: Procedures and Parameter Passing CS320 Principles of Programming Languages Weeks 6&7: Procedures and Parameter Passing Jingke Li Portland State University Fall 2017 PSU CS320 Fall 17 Weeks 6&7: Procedures and Parameter Passing 1 / 45

More information

Wednesday, October 15, 14. Functions

Wednesday, October 15, 14. Functions Functions Terms void foo() { int a, b;... bar(a, b); void bar(int x, int y) {... foo is the caller bar is the callee a, b are the actual parameters to bar x, y are the formal parameters of bar Shorthand:

More information

11/29/17. Outline. Subprograms. Subroutine. Subroutine. Parameters. Characteristics of Subroutines/ Subprograms

11/29/17. Outline. Subprograms. Subroutine. Subroutine. Parameters. Characteristics of Subroutines/ Subprograms Outline Subprograms In Text: Chapter 9 Definitions Design issues for subroutines Parameter passing modes and mechanisms Advanced subroutine issues N. Meng, S. Arthur 2 Subroutine A sequence of program

More information

The Procedure Abstraction

The Procedure Abstraction The Procedure Abstraction Procedure Abstraction Begins Chapter 6 in EAC The compiler must deal with interface between compile time and run time Most of the tricky issues arise in implementing procedures

More information

Control Abstraction. Hwansoo Han

Control Abstraction. Hwansoo Han Control Abstraction Hwansoo Han Review of Static Allocation Static allocation strategies Code Global variables Own variables (live within an encapsulation - static in C) Explicit constants (including strings,

More information

Calling Conventions. See P&H 2.8 and Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Calling Conventions. See P&H 2.8 and Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Calling Conventions See P&H 2.8 and 2.12 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Goals for Today Review: Calling Conventions call a routine (i.e. transfer control to

More information

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017 143A: Principles of Operating Systems Lecture 5: Calling conventions Anton Burtsev January, 2017 Stack and procedure calls Stack Main purpose: Store the return address for the current procedure Caller

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

Arrays and Functions

Arrays and Functions COMP 506 Rice University Spring 2018 Arrays and Functions source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled

More information

Lecture 5: Procedure Calls

Lecture 5: Procedure Calls Lecture 5: Procedure Calls Today s topics: Memory layout, numbers, control instructions Procedure calls 1 Memory Organization The space allocated on stack by a procedure is termed the activation record

More information

Chapter 9 :: Subroutines and Control Abstraction

Chapter 9 :: Subroutines and Control Abstraction Chapter 9 :: Subroutines and Control Abstraction Programming Language Pragmatics, Fourth Edition Michael L. Scott Copyright 2016 Elsevier 1 Chapter09_Subroutines_and_Control_Abstraction_4e - Tue November

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University CS558 Programming Languages Winter 2018 Lecture 4a Andrew Tolmach Portland State University 1994-2018 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Code Generation. Lecture 12

Code Generation. Lecture 12 Code Generation Lecture 12 1 Lecture Outline Topic 1: Basic Code Generation The MIPS assembly language A simple source language Stack-machine implementation of the simple language Topic 2: Code Generation

More information

Subprograms. Copyright 2015 Pearson. All rights reserved. 1-1

Subprograms. Copyright 2015 Pearson. All rights reserved. 1-1 Subprograms Introduction Fundamentals of Subprograms Design Issues for Subprograms Local Referencing Environments Parameter-Passing Methods Parameters That Are Subprograms Calling Subprograms Indirectly

More information

Chapter 9 Subprograms

Chapter 9 Subprograms Chapter 9 Subprograms We now explore the design of subprograms, including parameter-passing methods, local referencing environment, overloaded subprograms, generic subprograms, and the aliasing and problematic

More information

Machine Programming 3: Procedures

Machine Programming 3: Procedures Machine Programming 3: Procedures CS61, Lecture 5 Prof. Stephen Chong September 15, 2011 Announcements Assignment 2 (Binary bomb) due next week If you haven t yet please create a VM to make sure the infrastructure

More information

Procedure and Object- Oriented Abstraction

Procedure and Object- Oriented Abstraction Procedure and Object- Oriented Abstraction Scope and storage management cs5363 1 Procedure abstractions Procedures are fundamental programming abstractions They are used to support dynamically nested blocks

More information

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention

Separate compilation. Topic 6: Runtime Environments p.1/21. CS 526 Topic 6: Runtime Environments The linkage convention Runtime Environment The Procedure Abstraction and Separate Compilation Topics we will cover The procedure abstraction and linkage conventions Runtime storage convention Non-local data access (brief) These

More information

Administration CS 412/413. Advanced Language Support. First-class vs. Second-class. First-class functions. Function Types

Administration CS 412/413. Advanced Language Support. First-class vs. Second-class. First-class functions. Function Types Administration CS 412/413 Introduction to Compilers and Translators Andrew Myers Cornell University Lecture 33: First-class functions 21 April 00 Programming Assignment 6 handed out today register allocation

More information

Code Generation. Lecture 19

Code Generation. Lecture 19 Code Generation Lecture 19 Lecture Outline Topic 1: Basic Code Generation The MIPS assembly language A simple source language Stack-machine implementation of the simple language Topic 2: Code Generation

More information

238P: Operating Systems. Lecture 3: Calling conventions. Anton Burtsev October, 2018

238P: Operating Systems. Lecture 3: Calling conventions. Anton Burtsev October, 2018 238P: Operating Systems Lecture 3: Calling conventions Anton Burtsev October, 2018 What does CPU do internally? (Remember Lecture 01 - Introduction?) CPU execution loop CPU repeatedly reads instructions

More information

2/3/2018 CS313D: ADVANCED PROGRAMMING LANGUAGE. Lecture 3: C# language basics II. Lecture Contents. C# basics. Methods Arrays. Dr. Amal Khalifa, Spr17

2/3/2018 CS313D: ADVANCED PROGRAMMING LANGUAGE. Lecture 3: C# language basics II. Lecture Contents. C# basics. Methods Arrays. Dr. Amal Khalifa, Spr17 CS313D: ADVANCED PROGRAMMING LANGUAGE Lecture 3: C# language basics II Lecture Contents 2 C# basics Methods Arrays 1 Methods : Method Declaration: Header 3 A method declaration begins with a method header

More information

Programming Languages: Lecture 12

Programming Languages: Lecture 12 1 Programming Languages: Lecture 12 Chapter 10: Implementing Subprograms Jinwoo Kim jwkim@jjay.cuny.edu Chapter 10 Topics 2 The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing

More information

Lecture Outline. Topic 1: Basic Code Generation. Code Generation. Lecture 12. Topic 2: Code Generation for Objects. Simulating a Stack Machine

Lecture Outline. Topic 1: Basic Code Generation. Code Generation. Lecture 12. Topic 2: Code Generation for Objects. Simulating a Stack Machine Lecture Outline Code Generation Lecture 12 Topic 1: Basic Code Generation The MIPS assembly language A simple source language Stack-machine implementation of the simple language Topic 2: Code Generation

More information

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13 Run-time Environments Lecture 13 by Prof. Vijay Ganesh) Lecture 13 1 What have we covered so far? We have covered the front-end phases Lexical analysis (Lexer, regular expressions,...) Parsing (CFG, Top-down,

More information

Today. Instance Method Dispatch. Instance Method Dispatch. Instance Method Dispatch 11/29/11. today. last time

Today. Instance Method Dispatch. Instance Method Dispatch. Instance Method Dispatch 11/29/11. today. last time CS2110 Fall 2011 Lecture 25 Java program last time Java compiler Java bytecode (.class files) Compile for platform with JIT Interpret with JVM Under the Hood: The Java Virtual Machine, Part II 1 run native

More information

Run-Time Environments

Run-Time Environments 1 Run-Time Environments Chapter 7 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2011 2 Procedure Activation and Lifetime A procedure is activated when called

More information

Lecture 3: C Programm

Lecture 3: C Programm 0 3 E CS 1 Lecture 3: C Programm ing Reading Quiz Note the intimidating red border! 2 A variable is: A. an area in memory that is reserved at run time to hold a value of particular type B. an area in memory

More information

Calling Conventions. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See P&H 2.8 and 2.12

Calling Conventions. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See P&H 2.8 and 2.12 Calling Conventions Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See P&H 2.8 and 2.12 Goals for Today Calling Convention for Procedure Calls Enable code to be reused by allowing

More information

Systems I. Machine-Level Programming V: Procedures

Systems I. Machine-Level Programming V: Procedures Systems I Machine-Level Programming V: Procedures Topics abstraction and implementation IA32 stack discipline Procedural Memory Usage void swap(int *xp, int *yp) int t0 = *xp; int t1 = *yp; *xp = t1; *yp

More information

Programming Languages & Paradigms PROP HT Course Council. Subprograms. Meeting on friday! Subprograms, abstractions, encapsulation, ADT

Programming Languages & Paradigms PROP HT Course Council. Subprograms. Meeting on friday! Subprograms, abstractions, encapsulation, ADT Programming Languages & Paradigms PROP HT 2011 Lecture 4 Subprograms, abstractions, encapsulation, ADT Beatrice Åkerblom beatrice@dsv.su.se Course Council Meeting on friday! Talk to them and tell them

More information

Introduction to Software Testing Chapter 2.4 Graph Coverage for Design Elements Paul Ammann & Jeff Offutt

Introduction to Software Testing Chapter 2.4 Graph Coverage for Design Elements Paul Ammann & Jeff Offutt Introduction to Software Testing Chapter 2.4 Graph Coverage for Design Elements Paul Ammann & Jeff Offutt www.introsoftwaretesting.com OO Software and Designs Emphasis on modularity and reuse puts complexity

More information

Project. there are a couple of 3 person teams. a new drop with new type checking is coming. regroup or see me or forever hold your peace

Project. there are a couple of 3 person teams. a new drop with new type checking is coming. regroup or see me or forever hold your peace Project there are a couple of 3 person teams regroup or see me or forever hold your peace a new drop with new type checking is coming using it is optional 1 Compiler Architecture source code Now we jump

More information

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator CS 412/413 Introduction to Compilers and Translators Andrew Myers Cornell University Administration Design reports due Friday Current demo schedule on web page send mail with preferred times if you haven

More information

Lecture 15a Persistent Memory & Shared Pointers

Lecture 15a Persistent Memory & Shared Pointers Lecture 15a Persistent Memory & Shared Pointers Dec. 5 th, 2017 Jack Applin, Guest Lecturer 2017-12-04 CS253 Fall 2017 Jack Applin & Bruce Draper 1 Announcements PA9 is due today Recitation : extra help

More information

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University See P&H 2.8 and 2.12, and A.5-6 Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University Upcoming agenda PA1 due yesterday PA2 available and discussed during lab section this week

More information

Goal of lecture. Object-oriented Programming. Context of discussion. Message of lecture

Goal of lecture. Object-oriented Programming. Context of discussion. Message of lecture Goal of lecture Object-oriented Programming Understand inadequacies of class languages like Ur- Java Extend Ur-Java so it becomes an object-oriented language Implementation in SaM heap allocation of objects

More information

Programming Languages: Lecture 11

Programming Languages: Lecture 11 1 Programming Languages: Lecture 11 Chapter 9: Subprograms Jinwoo Kim jwkim@jjay.cuny.edu Chapter 9 Topics 2 Introduction Fundamentals of Subprograms Design Issues for Subprograms Local Referencing Environments

More information

Procedure and Function Calls, Part II. Comp 412 COMP 412 FALL Chapter 6 in EaC2e. target code. source code Front End Optimizer Back End

Procedure and Function Calls, Part II. Comp 412 COMP 412 FALL Chapter 6 in EaC2e. target code. source code Front End Optimizer Back End COMP 412 FALL 2017 Procedure and Function Calls, Part II Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved. Students

More information

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline.

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline. The Main Idea of Today s Lecture Code Generation We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

Module 27 Switch-case statements and Run-time storage management

Module 27 Switch-case statements and Run-time storage management Module 27 Switch-case statements and Run-time storage management In this module we will discuss the pending constructs in generating three-address code namely switch-case statements. We will also discuss

More information

We can emit stack-machine-style code for expressions via recursion

We can emit stack-machine-style code for expressions via recursion Code Generation The Main Idea of Today s Lecture We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

Chapter 6 Introduction to Defining Classes

Chapter 6 Introduction to Defining Classes Introduction to Defining Classes Fundamentals of Java: AP Computer Science Essentials, 4th Edition 1 Objectives Design and implement a simple class from user requirements. Organize a program in terms of

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 5.0 Software design Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation 1 Code quality What is quality? All exams have high quality. Student: Exam

More information

Computer Programming

Computer Programming Computer Programming Dr. Deepak B Phatak Dr. Supratik Chakraborty Department of Computer Science and Engineering Session: Parameter Passing in Function Calls Dr. Deepak B. Phatak & Dr. Supratik Chakraborty,

More information

CS313D: ADVANCED PROGRAMMING LANGUAGE

CS313D: ADVANCED PROGRAMMING LANGUAGE CS313D: ADVANCED PROGRAMMING LANGUAGE Computer Science Department Lecture 3: C# language basics Lecture Contents 2 C# basics Conditions Loops Methods Arrays Dr. Amal Khalifa, Spr 2015 3 Conditions and

More information

An Overview to Compiler Design. 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 1

An Overview to Compiler Design. 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 1 An Overview to Compiler Design 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 1 Outline An Overview of Compiler Structure Front End Middle End Back End 2008/2/14 \course\cpeg421-08s\topic-1a.ppt 2 Reading

More information

Chapter 10. Implementing Subprograms

Chapter 10. Implementing Subprograms Chapter 10 Implementing Subprograms Chapter 10 Topics The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing Subprograms with Stack-Dynamic Local Variables Nested Subprograms

More information

18-600: Recitation #3

18-600: Recitation #3 18-600: Recitation #3 Bomb Lab & GDB Overview September 12th, 2017 1 Today X86-64 Overview Bomb Lab Introduction GDB Tutorial 2 3 x86-64: Register Conventions Arguments passed in registers: %rdi, %rsi,

More information

Chapter 5. Names, Bindings, and Scopes

Chapter 5. Names, Bindings, and Scopes Chapter 5 Names, Bindings, and Scopes Chapter 5 Topics Introduction Names Variables The Concept of Binding Scope Scope and Lifetime Referencing Environments Named Constants 1-2 Introduction Imperative

More information

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS Lectures 5 Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS 1 OOPS - What does this C code do? int foo(char *s) { int L = 0; while (*s++) { ++L; } return L; } 2

More information

Typical Runtime Layout. Tiger Runtime Environments. Example: Nested Functions. Activation Trees. code. Memory Layout

Typical Runtime Layout. Tiger Runtime Environments. Example: Nested Functions. Activation Trees. code. Memory Layout Tiger Runtime Environments Compile-time environments are just symbol tables; they are used to assist static semantic analysis, code generation and code optimization. Run-time environments are about how

More information

a translator to convert your AST representation to a TAC intermediate representation; and

a translator to convert your AST representation to a TAC intermediate representation; and CS 301 Spring 2016 Project Phase 3 March 28 April 14 IC Compiler Back End Plan By the end of this phase of the project, you will be able to run IC programs generated by your compiler! You will implement:

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 13 Strings, Lists & Stacks Announcements HW #3 Due next Friday, May 15 at 5:00 PM in HFH Project #2 Due May 29 at 5:00 PM Project #3 Assigned next Thursday, May 19

More information

CS313D: ADVANCED PROGRAMMING LANGUAGE. Lecture 3: C# language basics II

CS313D: ADVANCED PROGRAMMING LANGUAGE. Lecture 3: C# language basics II CS313D: ADVANCED PROGRAMMING LANGUAGE Lecture 3: C# language basics II Lecture Contents 2 C# basics Methods Arrays Methods 3 A method: groups a sequence of statement takes input, performs actions, and

More information

Compilers. 8. Run-time Support. Laszlo Böszörmenyi Compilers Run-time - 1

Compilers. 8. Run-time Support. Laszlo Böszörmenyi Compilers Run-time - 1 Compilers 8. Run-time Support Laszlo Böszörmenyi Compilers Run-time - 1 Run-Time Environment A compiler needs an abstract model of the runtime environment of the compiled code It must generate code for

More information

Names, Scopes, and Bindings. CSE 307 Principles of Programming Languages Stony Brook University

Names, Scopes, and Bindings. CSE 307 Principles of Programming Languages Stony Brook University Names, Scopes, and Bindings CSE 307 Principles of Programming Languages Stony Brook University http://www.cs.stonybrook.edu/~cse307 1 Names, Scopes, and Bindings Names are identifiers (mnemonic character

More information

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1 Lecture #16: Introduction to Runtime Organization Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 1 Status Lexical analysis Produces tokens Detects & eliminates illegal tokens Parsing Produces

More information

The compilation process is driven by the syntactic structure of the program as discovered by the parser

The compilation process is driven by the syntactic structure of the program as discovered by the parser Semantic Analysis The compilation process is driven by the syntactic structure of the program as discovered by the parser Semantic routines: interpret meaning of the program based on its syntactic structure

More information