cmps104a 2002q4 Assignment 3 LALR(1) Parser page 1

Size: px
Start display at page:

Download "cmps104a 2002q4 Assignment 3 LALR(1) Parser page 1"

Transcription

1 cmps104a 2002q4 Assignment 3 LALR(1) Parser page 1 $Id: asg3-parser.mm,v :59: $ 1. Summary Write a main program, string table manager, lexical analyzer, and parser for the language c0 that you will be compiling this quarter. The usage and options were described in the first assignment. Include options to generate the.str file, and the.tok file, as before. In addition, dump the abstract syntax tree into the.ast file. The -a option will be used to request that the.ast file be generated. And remember that the -v option causes all lower case options, including -a, to be turned on. Use bison to generate the parser. The main program calls yyparse() with no arguments. The result is 0 for a successful parse and 1 for a failed parse. However, it does not register your own errors. Include your own error handler which counts errors. Return zero back to Unix on success and non-zero if any error messages were generated. IMPORTANT : You must implement all of the options from previous assignments in this assignment. And options from this assignment must be implemented in later assignments. For debugging, you must implement both L and Y which turn on, respectively, the scanner s debugger and the parser s debugger. 2. The Metagrammar When reading the grammar of c0, it is important to distinguish between the grammar and the metagrammar. the metagrammar is the grammar that describes the grammar. You must also use your knowledge of C to fill in what is only implied. The metalanguage redundantly uses fonts and typography to represent concepts for the benefit of those reading this document via simple ASCII text. It looks prettier in the Postscript version. The notation used is : x... [x] [x]... x y while symbol Three dots means that the preceding symbol occurs one or more times. Square brackets indicate the the symbol(s) occurs zero times or once. Square brackets and three dots mean that the symbol(s) occur zero or more times. Astick indicates alternation between its left and right operands. Symbols representing themselves and written in Courier-Bold. Nonterminal symbols in the grammar are written in lower-case Roman. IDENT Token classes with lexical information are written in upper-case ITALIC. 3. The Grammar Following is the context-free syntax of c0. You will need to translate it into an LALR(1) grammar acceptable to bison. You may, of course, take advantage of bison s capacity to handle ambiguous grammars. The dangling else problem in the grammar below istoberesolved in the usual way. Operator precedence is given inaseparate table. program [[decl ] ; function ]... decl declobj type function fntype fnobj type declobj * declobj object char int void fntype params fnblock type fnobj * fnobj IDENT params ( [decl [, decl ]... ] ) fnblock { [decl ; stmt ]... } stmt { [stmt ]... } while ( expr ) stmt if ( expr ) stmt [ else stmt ] return [expr ] ; [expr ] ;

2 cmps104a 2002q4 Assignment 3 LALR(1) Parser page 2 expr ( expr ) expr BINOP expr UNOP expr IDENT ( [expr [, expr ]... ] ) object CHAR_LIT INT_LIT STRING_LIT object IDENT [ [ [ expr ] ] ] Note that you will not be able to feed to grammar above to bison, because it will not be able to handle BINOP and UNOP as you might expect. You will need to explicitly enumerate all possible rules with operators in them. However, using bison s operator precedence declarations, the number of necessary rules will be reduced. Following is a table of operator precedence and associativity. Itisthe same as that of C, except that C has more operators. Operators Arity Associativity Precedence if else ternary right lowest = binary right. <<=>>= binary left. ==!= binary left. +- binary left. */% binary left. +-&* unary right. () [] variable left highest 4. Semantic Information Void declarations are syntactically valid but semantically invalid, and will be caught later during symbol table insertion. That is, the declaration, «void foo;» should be accepted by the parser, as it is too much trouble to suppress it. Your symbol table handler will figure out that this is wrong. In general, you should be fairly forgiving in the parser and accept things which are not strictly valid and the later put on a semantic check to reject the error. For example, the grammar above gives the idea that an expression is optional on a return statement. That is not true. It is either required or prohibited, dependong on whether the function is void or non-void. However, you can not determine that until you have a symbol table. Declarations of objects above imply an indefinitely large number of pointer indirections. Example : «int ****x;» is syntactically valid and the parser will accept this. However, your symbol table manager might generate a semantic error rejecting this. Attempting to make the parser reject this is actually more work that accepting it. 5. Required output to the.ast file If the -a option is set then a file with a.ast suffix will be created with a symbolic representation of the Abstract Syntax Tree after the parse is complete. (Note : this is not the parse tree.) This file, like the string table file, can be opened, dumped to, and closed in the same function. This function will call a recursive tree-walker function that will dump to the file using a prefix depth-first walk. For example, if part of the input file is int *mul_int( char num[], int int_num ) { num[ 0 ] = num[ 0 ] + int_num; } then part of the output file might be :

3 cmps104a 2002q4 Assignment 3 LALR(1) Parser page e088 {} ea70 int eae0 * eb50 mul_int ebc0 () ec30 char eca0 [] ed10 num ed80 int edf0 int_num ee60 {} eed0 = ef40 [] efb0 num f f f100 [] f170 num f1e f250 int_num The first column is the serial number divided by 1000, the second column is the node s address in hexadecimal (%p) format, and the final column is the lexical information from the token node, indented by three times the depth of the node from the root of the tree. Note that if you examine the.ast files in the samples directory, you will see that they contain more information that you can generate at the present time. The numbers in parentheses following the token are references to the declaration of variables and can not be generated without the symbol table. The information after that comes from the code generator 6. Pictures of AST parts Following are pictures of the abstract syntax trees to be constructed from each reduction. The mathematical structure of the trees are shown, not internal links, so which exact set of pointers you use will depend on your tree implementation. Nodes may have zero, one, two, three, or more than three child nodes. Pic has been used to draw pictures of each of them, but you can only see those pictures in the Postscript version. Pic more or less has a hissyfit when asked to generate ASCII, but makes a valiant, though inadequate, effort. In each of the picture labels, which is all you ll see in the ASCII version, the first word on the line is the root of the tree, and the rest are its child nodes Binary operator The subscript operator, «[]»behaves asabinary operator when it has an expression in the subscript position. BINOP [] expr expr IDENT expr 6.2 Unary operator The unary operators are : «+», «-», «&», and «*». The subscript operator, «[]»behaves asaunary operator when it has no expression in the subscript position. 1. After all, this isn t rec.arts.ascii or alt.ascii-art.

4 cmps104a 2002q4 Assignment 3 LALR(1) Parser page 4 UNOP [] expr IDENT 6.3 Function call The function call operator «()»has any number of arguments, but at least one. Its first argument is to the left of the parentheses, and its others, if any, are between the parentheses and separated by commas. Throw away the commas and the right parenthesis. Use the left parenthesis as the operator. () IDENT expr expr expr 6.4 Object declaration Each type mark serves as the root of a declaration subtree. The leaf of such a tree is the identifier. Any pointer indications are at intermediate levels of the tree. See the final diagram of a function for an example. 6.5 Block of declarations and statements. A block of declarations and statements begins and ends with braces and contains sequences of declarations and statements in between. When building a statement, discard the semi-colon. When building sequences thereof, discard the trailing «}» and use the leading «{}»asthe operator which is the parent of the declarations and statements. Then chain them together in the expected way : {} decl decl stmt stmt 6.6 Control structures The control structures «while»and «if»use the keyword as the root of a tree whose child nodes are arranged in the same way as for a binary operator. The expression at the start of the control structures is the first operand and the statement is the second operand. Note : one and only one statement is allowed, but this may be a block statement with a «{» atthe root. In the case of an «if»-«else», the the «if»operator is a ternary operator, with the operand of «else»asthe third operand. The node «else»itself is discarded. An «if»without an «else»looks just like a«while».

5 cmps104a 2002q4 Assignment 3 LALR(1) Parser page 5 while if expr stmt expr stmt stmt 6.7 Return statement A«return»statement is either a unary or a nilary operator. return return expr 6.8 Tree from afunction declaration A function declaration has the same tree as the corresponding variable declaration, except that the parameter list and statement block are hung off the type mark. For example : int *foo( int bar, int *baz ) { *baz = bar; return baz; } Would produce the following tree. Note that this tree is somewhat different from similar trees in the sample test data. When there is an inconsistency, follow the specifications here, and not the sample test data.

6 cmps104a 2002q4 Assignment 3 LALR(1) Parser page 6 int * () {} foo int int = return bar * * bar baz baz baz 7. Beginning the Grammar The first rules should be: start : program { $$ = ast_semantics( $1 ); } ; program : program decl { $$ = adopt( $1, $2, NULL ); } program func { $$ = adopt( $1, $2, NULL ); } {$$ = make_root_token( { ); } ; That is, the parser will be called to parse a complete program. After this is done, the root node of the parse tree will be passed to the semantic routines. These semantic routines will walk the tree and dump it symbolically into the.ast file. Before doing that, it will walk the tree, annotating it with symbol table attributes (but not until project 4), and then walk it again generating intermediate code (in project 5). Note that you will have a problem linking top-level constructs together, so you will need to create a root node under which to hang everything else. make_root_token() will just call make_token() from the previous project as a specialcase kluge 2. But before doing so, it must fiddle with yytext. This means that the final ast will be a list of decls and funcs linked by the follow links. 2. See /afs/cats.ucsc.edu/courses/cmps104a-wm/jargon/, the Jargon file, version See «kluge».

A Simple Syntax-Directed Translator

A Simple Syntax-Directed Translator Chapter 2 A Simple Syntax-Directed Translator 1-1 Introduction The analysis phase of a compiler breaks up a source program into constituent pieces and produces an internal representation for it, called

More information

1 Lexical Considerations

1 Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2013 Handout Decaf Language Thursday, Feb 7 The project for the course is to write a compiler

More information

Principles of Programming Languages COMP251: Syntax and Grammars

Principles of Programming Languages COMP251: Syntax and Grammars Principles of Programming Languages COMP251: Syntax and Grammars Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong, China Fall 2007

More information

A programming language requires two major definitions A simple one pass compiler

A programming language requires two major definitions A simple one pass compiler A programming language requires two major definitions A simple one pass compiler [Syntax: what the language looks like A context-free grammar written in BNF (Backus-Naur Form) usually suffices. [Semantics:

More information

Lexical Considerations

Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Fall 2005 Handout 6 Decaf Language Wednesday, September 7 The project for the course is to write a

More information

Lexical Considerations

Lexical Considerations Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.035, Spring 2010 Handout Decaf Language Tuesday, Feb 2 The project for the course is to write a compiler

More information

More Assigned Reading and Exercises on Syntax (for Exam 2)

More Assigned Reading and Exercises on Syntax (for Exam 2) More Assigned Reading and Exercises on Syntax (for Exam 2) 1. Read sections 2.3 (Lexical Syntax) and 2.4 (Context-Free Grammars) on pp. 33 41 of Sethi. 2. Read section 2.6 (Variants of Grammars) on pp.

More information

CS 4240: Compilers and Interpreters Project Phase 1: Scanner and Parser Due Date: October 4 th 2015 (11:59 pm) (via T-square)

CS 4240: Compilers and Interpreters Project Phase 1: Scanner and Parser Due Date: October 4 th 2015 (11:59 pm) (via T-square) CS 4240: Compilers and Interpreters Project Phase 1: Scanner and Parser Due Date: October 4 th 2015 (11:59 pm) (via T-square) Introduction This semester, through a project split into 3 phases, we are going

More information

Decaf Language Reference

Decaf Language Reference Decaf Language Reference Mike Lam, James Madison University Fall 2016 1 Introduction Decaf is an imperative language similar to Java or C, but is greatly simplified compared to those languages. It will

More information

Compiler Techniques MN1 The nano-c Language

Compiler Techniques MN1 The nano-c Language Compiler Techniques MN1 The nano-c Language February 8, 2005 1 Overview nano-c is a small subset of C, corresponding to a typical imperative, procedural language. The following sections describe in more

More information

Properties of Regular Expressions and Finite Automata

Properties of Regular Expressions and Finite Automata Properties of Regular Expressions and Finite Automata Some token patterns can t be defined as regular expressions or finite automata. Consider the set of balanced brackets of the form [[[ ]]]. This set

More information

2.2 Syntax Definition

2.2 Syntax Definition 42 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR sequence of "three-address" instructions; a more complete example appears in Fig. 2.2. This form of intermediate code takes its name from instructions

More information

COMPILER CONSTRUCTION LAB 2 THE SYMBOL TABLE. Tutorial 2 LABS. PHASES OF A COMPILER Source Program. Lab 2 Symbol table

COMPILER CONSTRUCTION LAB 2 THE SYMBOL TABLE. Tutorial 2 LABS. PHASES OF A COMPILER Source Program. Lab 2 Symbol table COMPILER CONSTRUCTION Lab 2 Symbol table LABS Lab 3 LR parsing and abstract syntax tree construction using ''bison' Lab 4 Semantic analysis (type checking) PHASES OF A COMPILER Source Program Lab 2 Symtab

More information

Examples of attributes: values of evaluated subtrees, type information, source file coordinates,

Examples of attributes: values of evaluated subtrees, type information, source file coordinates, 1 2 3 Attributes can be added to the grammar symbols, and program fragments can be added as semantic actions to the grammar, to form a syntax-directed translation scheme. Some attributes may be set by

More information

LECTURE 3. Compiler Phases

LECTURE 3. Compiler Phases LECTURE 3 Compiler Phases COMPILER PHASES Compilation of a program proceeds through a fixed series of phases. Each phase uses an (intermediate) form of the program produced by an earlier phase. Subsequent

More information

Context-Free Grammar. Concepts Introduced in Chapter 2. Parse Trees. Example Grammar and Derivation

Context-Free Grammar. Concepts Introduced in Chapter 2. Parse Trees. Example Grammar and Derivation Concepts Introduced in Chapter 2 A more detailed overview of the compilation process. Parsing Scanning Semantic Analysis Syntax-Directed Translation Intermediate Code Generation Context-Free Grammar A

More information

Programming Project II

Programming Project II Programming Project II CS 322 Compiler Construction Winter Quarter 2006 Due: Saturday, January 28, at 11:59pm START EARLY! Description In this phase, you will produce a parser for our version of Pascal.

More information

Structure of a compiler. More detailed overview of compiler front end. Today we ll take a quick look at typical parts of a compiler.

Structure of a compiler. More detailed overview of compiler front end. Today we ll take a quick look at typical parts of a compiler. More detailed overview of compiler front end Structure of a compiler Today we ll take a quick look at typical parts of a compiler. This is to give a feeling for the overall structure. source program lexical

More information

3.5 Practical Issues PRACTICAL ISSUES Error Recovery

3.5 Practical Issues PRACTICAL ISSUES Error Recovery 3.5 Practical Issues 141 3.5 PRACTICAL ISSUES Even with automatic parser generators, the compiler writer must manage several issues to produce a robust, efficient parser for a real programming language.

More information

Theoretical Part. Chapter one:- - What are the Phases of compiler? Answer:

Theoretical Part. Chapter one:- - What are the Phases of compiler? Answer: Theoretical Part Chapter one:- - What are the Phases of compiler? Six phases Scanner Parser Semantic Analyzer Source code optimizer Code generator Target Code Optimizer Three auxiliary components Literal

More information

A Bison Manual. You build a text file of the production (format in the next section); traditionally this file ends in.y, although bison doesn t care.

A Bison Manual. You build a text file of the production (format in the next section); traditionally this file ends in.y, although bison doesn t care. A Bison Manual 1 Overview Bison (and its predecessor yacc) is a tool that take a file of the productions for a context-free grammar and converts them into the tables for an LALR(1) parser. Bison produces

More information

This book is licensed under a Creative Commons Attribution 3.0 License

This book is licensed under a Creative Commons Attribution 3.0 License 6. Syntax Learning objectives: syntax and semantics syntax diagrams and EBNF describe context-free grammars terminal and nonterminal symbols productions definition of EBNF by itself parse tree grammars

More information

Syntax-Directed Translation. Lecture 14

Syntax-Directed Translation. Lecture 14 Syntax-Directed Translation Lecture 14 (adapted from slides by R. Bodik) 9/27/2006 Prof. Hilfinger, Lecture 14 1 Motivation: parser as a translator syntax-directed translation stream of tokens parser ASTs,

More information

Time : 1 Hour Max Marks : 30

Time : 1 Hour Max Marks : 30 Total No. of Questions : 6 P4890 B.E/ Insem.- 74 B.E ( Computer Engg) PRINCIPLES OF MODERN COMPILER DESIGN (2012 Pattern) (Semester I) Time : 1 Hour Max Marks : 30 Q.1 a) Explain need of symbol table with

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164 Spring 2009 P. N. Hilfinger CS 164: Final Examination (corrected) Name: Login: You have

More information

Language Reference Manual simplicity

Language Reference Manual simplicity Language Reference Manual simplicity Course: COMS S4115 Professor: Dr. Stephen Edwards TA: Graham Gobieski Date: July 20, 2016 Group members Rui Gu rg2970 Adam Hadar anh2130 Zachary Moffitt znm2104 Suzanna

More information

SEMANTIC ANALYSIS TYPES AND DECLARATIONS

SEMANTIC ANALYSIS TYPES AND DECLARATIONS SEMANTIC ANALYSIS CS 403: Type Checking Stefan D. Bruda Winter 2015 Parsing only verifies that the program consists of tokens arranged in a syntactically valid combination now we move to check whether

More information

Semantic actions for declarations and expressions

Semantic actions for declarations and expressions Semantic actions for declarations and expressions Semantic actions Semantic actions are routines called as productions (or parts of productions) are recognized Actions work together to build up intermediate

More information

cmps104a 2002q4 Assignment 2 Lexical Analyzer page 1

cmps104a 2002q4 Assignment 2 Lexical Analyzer page 1 cmps104a 2002q4 Assignment 2 Lexical Analyzer page 1 $Id: asg2-scanner.mm,v 327.1 2002-10-03 13:20:15-07 - - $ 1. The Scanner (Lexical Analyzer) Write a main program, string table manager, and lexical

More information

The Decaf language 1

The Decaf language 1 The Decaf language 1 In this course, we will write a compiler for a simple object-oriented programming language called Decaf. Decaf is a strongly-typed, object-oriented language with support for inheritance

More information

Using an LALR(1) Parser Generator

Using an LALR(1) Parser Generator Using an LALR(1) Parser Generator Yacc is an LALR(1) parser generator Developed by S.C. Johnson and others at AT&T Bell Labs Yacc is an acronym for Yet another compiler compiler Yacc generates an integrated

More information

Semantic actions for declarations and expressions. Monday, September 28, 15

Semantic actions for declarations and expressions. Monday, September 28, 15 Semantic actions for declarations and expressions Semantic actions Semantic actions are routines called as productions (or parts of productions) are recognized Actions work together to build up intermediate

More information

The Decaf Language. 1 Lexical considerations

The Decaf Language. 1 Lexical considerations The Decaf Language In this course, we will write a compiler for a simple object-oriented programming language called Decaf. Decaf is a strongly-typed, object-oriented language with support for inheritance

More information

Abstract Syntax Trees

Abstract Syntax Trees Abstract Syntax Trees COMS W4115 Prof. Stephen A. Edwards Fall 2007 Columbia University Department of Computer Science Parsing and Syntax Trees Parsing decides if the program is part of the language. Not

More information

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou COMP-421 Compiler Design Presented by Dr Ioanna Dionysiou Administrative! Any questions about the syllabus?! Course Material available at www.cs.unic.ac.cy/ioanna! Next time reading assignment [ALSU07]

More information

Syntax Analysis Check syntax and construct abstract syntax tree

Syntax Analysis Check syntax and construct abstract syntax tree Syntax Analysis Check syntax and construct abstract syntax tree if == = ; b 0 a b Error reporting and recovery Model using context free grammars Recognize using Push down automata/table Driven Parsers

More information

CS 536 Midterm Exam Spring 2013

CS 536 Midterm Exam Spring 2013 CS 536 Midterm Exam Spring 2013 ID: Exam Instructions: Write your student ID (not your name) in the space provided at the top of each page of the exam. Write all your answers on the exam itself. Feel free

More information

Implementing Actions

Implementing Actions Abstract Syntax Trees COMS W4115 Prof. Stephen A. Edwards Fall 2006 Columbia University Department of Computer Science In a top-down parser, actions are executed during the matching routines. can appear

More information

COMPILER CONSTRUCTION Seminar 02 TDDB44

COMPILER CONSTRUCTION Seminar 02 TDDB44 COMPILER CONSTRUCTION Seminar 02 TDDB44 Martin Sjölund (martin.sjolund@liu.se) Adrian Horga (adrian.horga@liu.se) Department of Computer and Information Science Linköping University LABS Lab 3 LR parsing

More information

Compilers Project 3: Semantic Analyzer

Compilers Project 3: Semantic Analyzer Compilers Project 3: Semantic Analyzer CSE 40243 Due April 11, 2006 Updated March 14, 2006 Overview Your compiler is halfway done. It now can both recognize individual elements of the language (scan) and

More information

EDAN65: Compilers, Lecture 06 A LR parsing. Görel Hedin Revised:

EDAN65: Compilers, Lecture 06 A LR parsing. Görel Hedin Revised: EDAN65: Compilers, Lecture 06 A LR parsing Görel Hedin Revised: 2017-09-11 This lecture Regular expressions Context-free grammar Attribute grammar Lexical analyzer (scanner) Syntactic analyzer (parser)

More information

Optimizing Finite Automata

Optimizing Finite Automata Optimizing Finite Automata We can improve the DFA created by MakeDeterministic. Sometimes a DFA will have more states than necessary. For every DFA there is a unique smallest equivalent DFA (fewest states

More information

Syntax and Grammars 1 / 21

Syntax and Grammars 1 / 21 Syntax and Grammars 1 / 21 Outline What is a language? Abstract syntax and grammars Abstract syntax vs. concrete syntax Encoding grammars as Haskell data types What is a language? 2 / 21 What is a language?

More information

TML Language Reference Manual

TML Language Reference Manual TML Language Reference Manual Jiabin Hu (jh3240) Akash Sharma (as4122) Shuai Sun (ss4088) Yan Zou (yz2437) Columbia University October 31, 2011 1 Contents 1 Introduction 4 2 Lexical Conventions 4 2.1 Character

More information

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan

Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Language Processing Systems Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Semantic Analysis Compiler Architecture Front End Back End Source language Scanner (lexical analysis)

More information

CS131 Compilers: Programming Assignment 2 Due Tuesday, April 4, 2017 at 11:59pm

CS131 Compilers: Programming Assignment 2 Due Tuesday, April 4, 2017 at 11:59pm CS131 Compilers: Programming Assignment 2 Due Tuesday, April 4, 2017 at 11:59pm Fu Song 1 Policy on plagiarism These are individual homework. While you may discuss the ideas and algorithms or share the

More information

Semantic Analysis computes additional information related to the meaning of the program once the syntactic structure is known.

Semantic Analysis computes additional information related to the meaning of the program once the syntactic structure is known. SEMANTIC ANALYSIS: Semantic Analysis computes additional information related to the meaning of the program once the syntactic structure is known. Parsing only verifies that the program consists of tokens

More information

Building a Parser Part III

Building a Parser Part III COMP 506 Rice University Spring 2018 Building a Parser Part III With Practical Application To Lab One source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda

More information

EDAN65: Compilers, Lecture 04 Grammar transformations: Eliminating ambiguities, adapting to LL parsing. Görel Hedin Revised:

EDAN65: Compilers, Lecture 04 Grammar transformations: Eliminating ambiguities, adapting to LL parsing. Görel Hedin Revised: EDAN65: Compilers, Lecture 04 Grammar transformations: Eliminating ambiguities, adapting to LL parsing Görel Hedin Revised: 2017-09-04 This lecture Regular expressions Context-free grammar Attribute grammar

More information

Decaf Language Reference Manual

Decaf Language Reference Manual Decaf Language Reference Manual C. R. Ramakrishnan Department of Computer Science SUNY at Stony Brook Stony Brook, NY 11794-4400 cram@cs.stonybrook.edu February 12, 2012 Decaf is a small object oriented

More information

Syntax-Directed Translation

Syntax-Directed Translation Syntax-Directed Translation ALSU Textbook Chapter 5.1 5.4, 4.8, 4.9 Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 What is syntax-directed translation? Definition: The compilation

More information

Section A. A grammar that produces more than one parse tree for some sentences is said to be ambiguous.

Section A. A grammar that produces more than one parse tree for some sentences is said to be ambiguous. Section A 1. What do you meant by parser and its types? A parser for grammar G is a program that takes as input a string w and produces as output either a parse tree for w, if w is a sentence of G, or

More information

Chapter 3: Describing Syntax and Semantics. Introduction Formal methods of describing syntax (BNF)

Chapter 3: Describing Syntax and Semantics. Introduction Formal methods of describing syntax (BNF) Chapter 3: Describing Syntax and Semantics Introduction Formal methods of describing syntax (BNF) We can analyze syntax of a computer program on two levels: 1. Lexical level 2. Syntactic level Lexical

More information

Lesson 10. CDT301 Compiler Theory, Spring 2011 Teacher: Linus Källberg

Lesson 10. CDT301 Compiler Theory, Spring 2011 Teacher: Linus Källberg Lesson 10 CDT301 Compiler Theory, Spring 2011 Teacher: Linus Källberg Outline Flex Bison Abstract syntax trees 2 FLEX 3 Flex Tool for automatic generation of scanners Open-source version of Lex Takes regular

More information

Intermediate Code Generation

Intermediate Code Generation Intermediate Code Generation In the analysis-synthesis model of a compiler, the front end analyzes a source program and creates an intermediate representation, from which the back end generates target

More information

CSE 12 Abstract Syntax Trees

CSE 12 Abstract Syntax Trees CSE 12 Abstract Syntax Trees Compilers and Interpreters Parse Trees and Abstract Syntax Trees (AST's) Creating and Evaluating AST's The Table ADT and Symbol Tables 16 Using Algorithms and Data Structures

More information

A simple syntax-directed

A simple syntax-directed Syntax-directed is a grammaroriented compiling technique Programming languages: Syntax: what its programs look like? Semantic: what its programs mean? 1 A simple syntax-directed Lexical Syntax Character

More information

Project 1: Scheme Pretty-Printer

Project 1: Scheme Pretty-Printer Project 1: Scheme Pretty-Printer CSC 4101, Fall 2017 Due: 7 October 2017 For this programming assignment, you will implement a pretty-printer for a subset of Scheme in either C++ or Java. The code should

More information

CMPT 379 Compilers. Parse trees

CMPT 379 Compilers. Parse trees CMPT 379 Compilers Anoop Sarkar http://www.cs.sfu.ca/~anoop 10/25/07 1 Parse trees Given an input program, we convert the text into a parse tree Moving to the backend of the compiler: we will produce intermediate

More information

CS 321 IV. Overview of Compilation

CS 321 IV. Overview of Compilation CS 321 IV. Overview of Compilation Overview of Compilation Translating from high-level language to machine code is organized into several phases or passes. In the early days passes communicated through

More information

Parsing II Top-down parsing. Comp 412

Parsing II Top-down parsing. Comp 412 COMP 412 FALL 2018 Parsing II Top-down parsing Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2018, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled

More information

IPCoreL. Phillip Duane Douglas, Jr. 11/3/2010

IPCoreL. Phillip Duane Douglas, Jr. 11/3/2010 IPCoreL Programming Language Reference Manual Phillip Duane Douglas, Jr. 11/3/2010 The IPCoreL Programming Language Reference Manual provides concise information about the grammar, syntax, semantics, and

More information

Operators. Java operators are classified into three categories:

Operators. Java operators are classified into three categories: Operators Operators are symbols that perform arithmetic and logical operations on operands and provide a meaningful result. Operands are data values (variables or constants) which are involved in operations.

More information

Introduction to Compilers and Language Design

Introduction to Compilers and Language Design Introduction to Compilers and Language Design Copyright 2018 Douglas Thain. Hardcover ISBN: 978-0-359-13804-3 Paperback ISBN: 978-0-359-14283-5 First edition. Anyone is free to download and print the PDF

More information

JavaCC Parser. The Compilation Task. Automated? JavaCC Parser

JavaCC Parser. The Compilation Task. Automated? JavaCC Parser JavaCC Parser The Compilation Task Input character stream Lexer stream Parser Abstract Syntax Tree Analyser Annotated AST Code Generator Code CC&P 2003 1 CC&P 2003 2 Automated? JavaCC Parser The initial

More information

Lexical Analysis. Lexical analysis is the first phase of compilation: The file is converted from ASCII to tokens. It must be fast!

Lexical Analysis. Lexical analysis is the first phase of compilation: The file is converted from ASCII to tokens. It must be fast! Lexical Analysis Lexical analysis is the first phase of compilation: The file is converted from ASCII to tokens. It must be fast! Compiler Passes Analysis of input program (front-end) character stream

More information

Syntax Analysis/Parsing. Context-free grammars (CFG s) Context-free grammars vs. Regular Expressions. BNF description of PL/0 syntax

Syntax Analysis/Parsing. Context-free grammars (CFG s) Context-free grammars vs. Regular Expressions. BNF description of PL/0 syntax Susan Eggers 1 CSE 401 Syntax Analysis/Parsing Context-free grammars (CFG s) Purpose: determine if tokens have the right form for the language (right syntactic structure) stream of tokens abstract syntax

More information

YOLOP Language Reference Manual

YOLOP Language Reference Manual YOLOP Language Reference Manual Sasha McIntosh, Jonathan Liu & Lisa Li sam2270, jl3516 and ll2768 1. Introduction YOLOP (Your Octothorpean Language for Optical Processing) is an image manipulation language

More information

CSE 401 Midterm Exam Sample Solution 2/11/15

CSE 401 Midterm Exam Sample Solution 2/11/15 Question 1. (10 points) Regular expression warmup. For regular expression questions, you must restrict yourself to the basic regular expression operations covered in class and on homework assignments:

More information

Jim Lambers ENERGY 211 / CME 211 Autumn Quarter Programming Project 4

Jim Lambers ENERGY 211 / CME 211 Autumn Quarter Programming Project 4 Jim Lambers ENERGY 211 / CME 211 Autumn Quarter 2008-09 Programming Project 4 This project is due at 11:59pm on Friday, October 31. 1 Introduction In this project, you will do the following: 1. Implement

More information

CSE302: Compiler Design

CSE302: Compiler Design CSE302: Compiler Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University February 20, 2007 Outline Recap

More information

Parsing. Roadmap. > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing

Parsing. Roadmap. > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing Roadmap > Context-free grammars > Derivations and precedence > Top-down parsing > Left-recursion > Look-ahead > Table-driven parsing The role of the parser > performs context-free syntax analysis > guides

More information

ECE251 Midterm practice questions, Fall 2010

ECE251 Midterm practice questions, Fall 2010 ECE251 Midterm practice questions, Fall 2010 Patrick Lam October 20, 2010 Bootstrapping In particular, say you have a compiler from C to Pascal which runs on x86, and you want to write a self-hosting Java

More information

Context-free grammars (CFG s)

Context-free grammars (CFG s) Syntax Analysis/Parsing Purpose: determine if tokens have the right form for the language (right syntactic structure) stream of tokens abstract syntax tree (AST) AST: captures hierarchical structure of

More information

Chapter 4: Syntax Analyzer

Chapter 4: Syntax Analyzer Chapter 4: Syntax Analyzer Chapter 4: Syntax Analysis 1 The role of the Parser The parser obtains a string of tokens from the lexical analyzer, and verifies that the string can be generated by the grammar

More information

Semantic Analysis. Compiler Architecture

Semantic Analysis. Compiler Architecture Processing Systems Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Source Compiler Architecture Front End Scanner (lexical tokens Parser (syntax Parse tree Semantic Analysis

More information

TDDD55 - Compilers and Interpreters Lesson 3

TDDD55 - Compilers and Interpreters Lesson 3 TDDD55 - Compilers and Interpreters Lesson 3 November 22 2011 Kristian Stavåker (kristian.stavaker@liu.se) Department of Computer and Information Science Linköping University LESSON SCHEDULE November 1,

More information

Chapter 9: Dealing with Errors

Chapter 9: Dealing with Errors Chapter 9: Dealing with Errors What we will learn: How to identify errors Categorising different types of error How to fix different errors Example of errors What you need to know before: Writing simple

More information

Yacc: A Syntactic Analysers Generator

Yacc: A Syntactic Analysers Generator Yacc: A Syntactic Analysers Generator Compiler-Construction Tools The compiler writer uses specialised tools (in addition to those normally used for software development) that produce components that can

More information

Syntax/semantics. Program <> program execution Compiler/interpreter Syntax Grammars Syntax diagrams Automata/State Machines Scanning/Parsing

Syntax/semantics. Program <> program execution Compiler/interpreter Syntax Grammars Syntax diagrams Automata/State Machines Scanning/Parsing Syntax/semantics Program program execution Compiler/interpreter Syntax Grammars Syntax diagrams Automata/State Machines Scanning/Parsing Meta-models 8/27/10 1 Program program execution Syntax Semantics

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164 Spring 2010 P. N. Hilfinger Project #1: Lexer and Parser for Python Subset Due: Tuesday,

More information

Compiler Lab. Introduction to tools Lex and Yacc

Compiler Lab. Introduction to tools Lex and Yacc Compiler Lab Introduction to tools Lex and Yacc Assignment1 Implement a simple calculator with tokens recognized using Lex/Flex and parsing and semantic actions done using Yacc/Bison. Calculator Input:

More information

Semantic actions for declarations and expressions

Semantic actions for declarations and expressions Semantic actions for declarations and expressions Semantic actions Semantic actions are routines called as productions (or parts of productions) are recognized Actions work together to build up intermediate

More information

ECE220: Computer Systems and Programming Spring 2018 Honors Section due: Saturday 14 April at 11:59:59 p.m. Code Generation for an LC-3 Compiler

ECE220: Computer Systems and Programming Spring 2018 Honors Section due: Saturday 14 April at 11:59:59 p.m. Code Generation for an LC-3 Compiler ECE220: Computer Systems and Programming Spring 2018 Honors Section Machine Problem 11 due: Saturday 14 April at 11:59:59 p.m. Code Generation for an LC-3 Compiler This assignment requires you to use recursion

More information

Error Detection in LALR Parsers. LALR is More Powerful. { b + c = a; } Eof. Expr Expr + id Expr id we can first match an id:

Error Detection in LALR Parsers. LALR is More Powerful. { b + c = a; } Eof. Expr Expr + id Expr id we can first match an id: Error Detection in LALR Parsers In bottom-up, LALR parsers syntax errors are discovered when a blank (error) entry is fetched from the parser action table. Let s again trace how the following illegal CSX-lite

More information

CS 426 Fall Machine Problem 1. Machine Problem 1. CS 426 Compiler Construction Fall Semester 2017

CS 426 Fall Machine Problem 1. Machine Problem 1. CS 426 Compiler Construction Fall Semester 2017 CS 426 Fall 2017 1 Machine Problem 1 Machine Problem 1 CS 426 Compiler Construction Fall Semester 2017 Handed Out: September 6, 2017. Due: September 21, 2017, 5:00 p.m. The machine problems for this semester

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Compiler Design

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Compiler Design i About the Tutorial A compiler translates the codes written in one language to some other language without changing the meaning of the program. It is also expected that a compiler should make the target

More information

Principles of Programming Languages COMP251: Syntax and Grammars

Principles of Programming Languages COMP251: Syntax and Grammars Principles of Programming Languages COMP251: Syntax and Grammars Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong, China Fall 2006

More information

Introduction to Compilers and Language Design Copyright (C) 2017 Douglas Thain. All rights reserved.

Introduction to Compilers and Language Design Copyright (C) 2017 Douglas Thain. All rights reserved. Introduction to Compilers and Language Design Copy (C) 2017 Douglas Thain. All s reserved. Anyone is free to download and print the PDF edition of this book for personal use. Commercial distribution, printing,

More information

How do LL(1) Parsers Build Syntax Trees?

How do LL(1) Parsers Build Syntax Trees? How do LL(1) Parsers Build Syntax Trees? So far our LL(1) parser has acted like a recognizer. It verifies that input token are syntactically correct, but it produces no output. Building complete (concrete)

More information

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger

UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division. P. N. Hilfinger UNIVERSITY OF CALIFORNIA Department of Electrical Engineering and Computer Sciences Computer Science Division CS 164 Spring 2009 P. N. Hilfinger Project #1: Lexer and Parser for Python Subset (revised

More information

LECTURE 7. Lex and Intro to Parsing

LECTURE 7. Lex and Intro to Parsing LECTURE 7 Lex and Intro to Parsing LEX Last lecture, we learned a little bit about how we can take our regular expressions (which specify our valid tokens) and create real programs that can recognize them.

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Context Free Grammars and Parsing 1 Recall: Architecture of Compilers, Interpreters Source Parser Static Analyzer Intermediate Representation Front End Back

More information

The Compiler So Far. CSC 4181 Compiler Construction. Semantic Analysis. Beyond Syntax. Goals of a Semantic Analyzer.

The Compiler So Far. CSC 4181 Compiler Construction. Semantic Analysis. Beyond Syntax. Goals of a Semantic Analyzer. The Compiler So Far CSC 4181 Compiler Construction Scanner - Lexical analysis Detects inputs with illegal tokens e.g.: main 5 (); Parser - Syntactic analysis Detects inputs with ill-formed parse trees

More information

The SPL Programming Language Reference Manual

The SPL Programming Language Reference Manual The SPL Programming Language Reference Manual Leonidas Fegaras University of Texas at Arlington Arlington, TX 76019 fegaras@cse.uta.edu February 27, 2018 1 Introduction The SPL language is a Small Programming

More information

flex is not a bad tool to use for doing modest text transformations and for programs that collect statistics on input.

flex is not a bad tool to use for doing modest text transformations and for programs that collect statistics on input. flex is not a bad tool to use for doing modest text transformations and for programs that collect statistics on input. More often than not, though, you ll want to use flex to generate a scanner that divides

More information

GBIL: Generic Binary Instrumentation Language. Language Reference Manual. By: Andrew Calvano. COMS W4115 Fall 2015 CVN

GBIL: Generic Binary Instrumentation Language. Language Reference Manual. By: Andrew Calvano. COMS W4115 Fall 2015 CVN GBIL: Generic Binary Instrumentation Language Language Reference Manual By: Andrew Calvano COMS W4115 Fall 2015 CVN Table of Contents 1) Introduction 2) Lexical Conventions 1. Tokens 2. Whitespace 3. Comments

More information

CPS 506 Comparative Programming Languages. Syntax Specification

CPS 506 Comparative Programming Languages. Syntax Specification CPS 506 Comparative Programming Languages Syntax Specification Compiling Process Steps Program Lexical Analysis Convert characters into a stream of tokens Lexical Analysis Syntactic Analysis Send tokens

More information

Lecture 14: Parser Conflicts, Using Ambiguity, Error Recovery. Last modified: Mon Feb 23 10:05: CS164: Lecture #14 1

Lecture 14: Parser Conflicts, Using Ambiguity, Error Recovery. Last modified: Mon Feb 23 10:05: CS164: Lecture #14 1 Lecture 14: Parser Conflicts, Using Ambiguity, Error Recovery Last modified: Mon Feb 23 10:05:56 2015 CS164: Lecture #14 1 Shift/Reduce Conflicts If a DFA state contains both [X: α aβ, b] and [Y: γ, a],

More information

PLT 4115 LRM: JaTesté

PLT 4115 LRM: JaTesté PLT 4115 LRM: JaTesté Andrew Grant amg2215@columbia.edu Jemma Losh jal2285@columbia.edu Jake Weissman jdw2159@columbia.edu March 7, 2016 Jared Weiss jbw2140@columbia.edu 1 Contents 1 Introduction 4 2 Lexical

More information