movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt

Size: px
Start display at page:

Download "movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt"

Transcription

1 movlw 0x20 #endif call scan movlw 0xfd tris PORTB ; select colb (RB1) #ifdef MODE_CH8 movlw 0x04 #endif #ifdef MODE_CH4 movlw 0x30 #endif call scan movf cod, W bz loop2 ; if no buton is pressed, skip subwf prevcod, W ; if the same button is pressed, skip bz loop2 movf cod, W movwf prevcod ; a new button is pressed - rcnt=3 movwf (mtx_buffer+1) movlw 3 movwf rcnt movlw 0x40 ; new button - new transmission addwf tcnt, F loop2 movlw 0xf7 1

2 tris PORTB ; select ID (RB3) call scanid movf cod0, W movwf (mtx_buffer) loop3 movf (mtx_buffer+1), W andlw 0x3f iorwf tcnt, W movwf (mtx_buffer+1) call mtx_send movf rcnt, W bz loop_done decfsz rcnt, F goto loop loop_done movf cod, W btfsc STATUS, Z goto loop0 ; no button was pressed, go sleep ; if the same button is being hold, repeat the transmission goto loop scan movwf cod0 ;movlw 0xc0 scandelay ;addlw 1 ;bnz scandelay movlw 0xf0 2

3 andwf PORTB, W movwf rowstate incf cod0, F btfss rowstate, 4 goto pressed incf cod0, F btfss rowstate, 5 goto pressed incf cod0, F btfss rowstate, 6 goto pressed incf cod0, F btfss rowstate, 7 goto pressed retlw 0 pressed movf cod0, W movwf cod return scanid clrf cod0 clrw scandelay2 addlw 1 bnz scandelay2 3

4 movlw 0xf0 andwf PORTB, W movwf rowstate btfss rowstate, 7 bsf cod0, 3 btfss rowstate, 6 bsf cod0, 2 btfss rowstate, 5 bsf cod0, 1 btfss rowstate, 4 bsf cod0, 0 return end RF RECEIVER Filename: decoder.asm NOTES PA0-PA3-> outputs PA4 -> valid reception PA5 <- RX input PB0-PB3<- address bits PB4-PB7-> outputs 4

5 list p=16f628 CONFIG _CP_OFF & _WDT_OFF & _PWRTE_ON & _HS_OSC & _LVP_OFF & _MCLRE_OFF & _BODEN_ON #include <p16f628.inc> #include "mrxv4.inc" EXPIRE_TIMER EQU 0x12 LATCH_MASK EQU B' ' VALID_BIT EQU 4.mainda UDATA 0x20 savew1 res 1 savestatus res 1 savepclath res 1 savefsr res 1 bt res 1 expire_cnt res 1 cur_seq res 1 cur_ch res 1 cur_state res 1 vectors CODE 0 goto main ; go to beginning of program nop nop nop 5

6 goto itr ; interrupt vector location prog CODE 5 channel_lookup andlw 0x07 addwf PCL, F dt 0x1, 0x2, 0x4, 0x8 dt 0x10, 0x20, 0x40, 0x80 itr movwf savew1 movf STATUS,w clrf STATUS movwf savestatus movf PCLATH,w movwf savepclath clrf PCLATH movf FSR,w movwf savefsr btfsc INTCON, T0IF call t0_int_handler movf savefsr,w movwf FSR 6

7 movf savepclath,w movwf PCLATH movf savestatus,w movwf STATUS swapf savew1,f swapf savew1,w retfie main ;HARDWARE INIT movlw 7 movwf CMCON movlw (1<<VALID_BIT) MOVWF PORTA clrf PORTB BANKSEL TRISA movlw 0x20 ; A5=input movwf TRISA MOVLW 0x0f ; B0-B3=input movwf TRISB 7

8 ; setup TMR0 interrupt clrwdt ; changing default presc. assignment movlw 0x03 ; prescaler 1:16 assigned to TMR0 movwf OPTION_REG ; T0CS selects internal CLK bsf INTCON, T0IE ; enable TMR0 int BANKSEL TMR0 clrf TMR0 clrf expire_cnt call mrx_init bsf INTCON, GIE warm clrf cur_seq clrf cur_state incf cur_seq, F loop call mrx_receive andlw 0xff bnz loop call mrx_chk_buf andlw 0xff bnz loop movf PORTB, W andlw 0x0f subwf (mrx_buffer), W 8

9 bnz loop rx_ok movlw EXPIRE_TIMER ; indicate packet reception movwf expire_cnt movf (mrx_buffer+1), W ; if (seq==cur_seq) skip (only expire timer is updated) andlw 0xc0 subwf cur_seq, W bz loop movf (mrx_buffer+1), W andlw 0xc0 movwf cur_seq movf (mrx_buffer+1), W andlw 0x3f bz loop ; illegal channel data addlw 0xff andlw 0x0f movwf bt btfsc bt, 3 goto loop ; ch>=8: illegal with this model call channel_lookup movwf cur_ch bcf INTCON, GIE btfsc (mrx_buffer+1), 5 9

10 goto state_on_off ; 00-0f: toggle or momentary ON movf cur_ch, W andlw LATCH_MASK bz state_on_off ; momentary ON state_toggle movf cur_ch, W xorwf cur_state, F goto state_done state_on_off movf cur_ch, W xorlw 0xff andwf cur_state, F ; 20-2f: latch ON movf cur_ch, W btfss (mrx_buffer+1), 4 ; 30-3f: latch OFF iorwf cur_state, F goto state_done state_done bsf STATUS, C ; set valid led ON call state_out bsf INTCON, GIE goto loop t0_int_handler bcf INTCON, T0IF movf expire_cnt, F bnz valid_on 10

11 movlw LATCH_MASK ; clear momentary outputs andwf cur_state, F bcf STATUS, C ; set valid led OFF state_out ; C: turn valid bit on or off? movlw ~(1<<VALID_BIT) andwf cur_state, W ; set valid led ON btfss STATUS, C iorlw (1<<VALID_BIT) ; set valid led OFF movwf PORTA movf cur_state, W movwf PORTB return valid_on decf expire_cnt, F ;;bsf RX_LED return end PROGAM FOR PIC16F690 SERVO MOTOR CONTROL #include <htc.h> /* PIC Configuration Bit: ** INTIO - Using Internal RC No Clock ** WDTDIS - Wacthdog Timer Disable ** PWRTEN - Power Up Timer Enable 11

12 ** MCLREN - Master Clear Enable ** UNPROTECT - Code Un-Protect ** UNPROTECT - Data EEPROM Read Un-Protect ** BORDIS - Borwn Out Detect Disable ** IESODIS - Internal External Switch Over Mode Disable ** FCMDIS - Monitor Clock Fail Safe Disable */ CONFIG(FOSC_INTRCIO & WDTE_OFF & PWRTE_ON & MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & IESO_OFF & FCMEN_OFF); // Using Internal Clock of 8 Mhz #define FOSC L // Servo definition and variables #define MAX_VALUE 200 #define CCW_ROTATION MAX_VALUE - 20 #define CW_ROTATION MAX_VALUE - 10 #define STOP_ROTATION MAX_VALUE #define THRESHOLD_VALUE 50 unsigned char pulse_max=0; unsigned char pulse_top=0; unsigned char top_value = 0; static void interrupt isr(void) { if(t0if) { // TIMER0 Interrupt Flag pulse_max++; // Pulse Max Increment pulse_top++; // Pulse Top Increment /* MAX_VALUE=200 turn off the pulse */ 12

13 if (pulse_max >= MAX_VALUE) { pulse_max=0; pulse_top=0; RC2=0; // Turn off RC2 } /* top_value = MAX_VALUE - n, n=10: 10 x 0.1ms = 1.0ms, n=20: 20 x 0.1ms = 2.0ms */ /* 2ms -> CCW Rotation, 1ms -> CW Rotation */ if (pulse_top == top_value) { RC2=1; // Turn On RC2 } TMR0 = 156; // Initial Value for 0.1ms Interrupt T0IF = 0; // Clear TIMER0 interrupt flag } } void main(void) { unsigned char ldr_left; unsigned char ldr_right; int ldr_diff; OSCCON=0x70; // Select 8 Mhz internal clock /* Initial Port Used */ TRISC = 0x03; // Set RC0 and RC1 as input others as Output ANSEL = 0x30; // Set PORT AN4 and AN5 as analog input ANSELH = 0x00; // Set PORT AN8 to AN11 as Digital I/O PORTC = 0x00; // Turn Off all PORTC /* Init Servo Pulse */ 13

14 pulse_max=0; pulse_top=0; top_value = MAX_VALUE; // top_value = MAX_VALUE: Servo Motor Stop /* Initial ADC */ ADCON1=0b ; // Select the FRC for 8 Mhz /* Init TIMER0: Period: Fosc/4 x Prescaler x TMR ms x 2 * 100 = 0.1 ms */ OPTION_REG = 0b ; // 1:2 Prescaller TMR0=156; // Interupt every 0.1 ms T0IE = 1; // Enable interrupt on TMR0 overflow GIE = 1; // Global interrupt enable for(;;) { /* Read the ADC here */ ADCON0=0b ; // select left justify result. ADC port channel AN4 GO_DONE=1; // initiate conversion on the channel 4 while(go_done) continue; // Wait for ldr_left conversion done ldr_left=adresh; // Read 8 bits MSB, Ignore 2 bits LSB in ADRESL ADCON0=0b ; // select left justify result. ADC port channel AN5 GO_DONE=1; // initiate conversion on the channel 5 while(go_done) continue; // Wait for ldr_right conversion done ldr_right=adresh; // Read 8 bits MSB, Ignore 2 bits LSB in ADRESL 14

15 /* Get the different */ ldr_diff=ldr_left - ldr_right; if ((ldr_diff >= -THRESHOLD_VALUE) && (ldr_diff <= THRESHOLD_VALUE)) { top_value = MAX_VALUE; // Stop the Servo Motor } else { if (ldr_diff > THRESHOLD_VALUE) { top_value = CCW_ROTATION; // Counterclockwise Rotation } else { top_value = CW_ROTATION; // Clockwise Rotation } } } } /* EOF: servo.c */ 15

16 PCB LAYOUT RF TRANSMITTER RF RECEIVER: 16

17 Created by Simpo PDF Creator Pro (unregistered version) MAIN PROJECT 2012 ESC DRIVER: RUDDER: 17

18 Created by Simpo PDF Creator Pro (unregistered version) MAIN PROJECT 2012 FLAPRON RIGHT AND ELEVATOR: FLAPRON LEFT: 18

19 DATA SHEETS 19

20 20

21 21

22 22

23 23

24 If you are really interested in this projetct,then for any help pls feel free to contact : pradu333@gmail.com 24

Lecture (04) PIC16F84A (3)

Lecture (04) PIC16F84A (3) Lecture (04) PIC16F84A (3) By: Dr. Ahmed ElShafee ١ Central Processing Unit Central processing unit (CPU) is the brain of a microcontroller responsible for finding and fetching the right instruction which

More information

Assembly Language Instructions

Assembly Language Instructions Assembly Language Instructions Content: Assembly language instructions of PIC16F887. Programming by assembly language. Prepared By- Mohammed Abdul kader Assistant Professor, EEE, IIUC Assembly Language

More information

PIC 16F84A programming (II)

PIC 16F84A programming (II) Lecture (05) PIC 16F84A programming (II) Dr. Ahmed M. ElShafee ١ Introduction to 16F84 ٣ PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Program memory (FLASH) EEPROM RAM PORTA

More information

Instuction set

Instuction set Instuction set http://www.piclist.com/images/www/hobby_elec/e_pic3_1.htm#1 In PIC16 series, RISC(Reduced Instruction Set Computer) is adopted and the number of the instructions to use is 35 kinds. When

More information

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Philadelphia University Faculty of Engineering Course Title: Embedded Systems (630414) Instructor: Eng. Anis Nazer Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Student Name: Student

More information

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution

16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 16.317: Microprocessor Systems Design I Fall 2013 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

EECE.3170: Microprocessor Systems Design I Summer 2017

EECE.3170: Microprocessor Systems Design I Summer 2017 EECE.3170: Microprocessor Systems Design I Summer 2017 1. What is an interrupt? What is an exception? Lecture 13: Key Questions June 19, 2017 2. For what purposes are interrupts useful? 3. Describe the

More information

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */

/* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ /* PROGRAM FOR BLINKING LEDs CONEECTED TO PORT-D */ CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC & _WRT_OFF & _LVP_OFF & _CPD_OFF ;***** VARIABLE DEFINITIONS COUNT_L EQU 0x01 ;**********************************************************************

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002. Semester 2. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J2. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 Semester 2 Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J2 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F87X 13.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PIC6F87X 3.0 INSTRUCTION SET SUMMARY Each PIC6F87X instruction is a 4bit word, divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of

More information

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours

UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT. Year 2 MICROCONTROLLER SYSTEMS. Module Code: EEE305J1. Time allowed: 3 Hours UNIVERSITY OF ULSTER UNIVERSITY EXAMINATIONS : 2001/2002 RESIT Year 2 MICROCONTROLLER SYSTEMS Module Code: EEE305J1 Time allowed: 3 Hours Answer as many questions as you can. Not more than TWO questions

More information

D:\PICstuff\PartCounter\PartCounter.asm

D:\PICstuff\PartCounter\PartCounter.asm 1 ;********************************************************************** 2 ; This file is a basic code template for assembly code generation * 3 ; on the PICmicro PIC16F84A. This file contains the basic

More information

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar

Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Starting to Program Chapter 4 Sections 1 4, 10 Dr. Iyad Jafar Outline Introduction Program Development Process The PIC 16F84A Instruction Set Examples The PIC 16F84A Instruction Encoding Assembler Details

More information

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Sample Programs. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Sample Programs Eng. Anis Nazer First Semester 2017-2018 Development cycle (1) Write code (2) Assemble / compile (3) Simulate (4) Download to MCU (5) Test Inputs / Outputs PIC16F84A

More information

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006

CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT. Spring 2006 CENG 336 INT. TO EMBEDDED SYSTEMS DEVELOPMENT Spring 2006 Recitation 01 21.02.2006 CEng336 1 OUTLINE LAB & Recitation Program PIC Architecture Overview PIC Instruction Set PIC Assembly Code Structure 21.02.2006

More information

Embedded Systems Programming and Architectures

Embedded Systems Programming and Architectures Embedded Systems Programming and Architectures Lecture No 10 : Data acquisition and data transfer Dr John Kalomiros Assis. Professor Department of Post Graduate studies in Communications and Informatics

More information

ECE Test #1: Name

ECE Test #1: Name ECE 376 - Test #1: Name Closed Book, Closed Notes. Calculators Permitted. September 23, 2016 20 15 10 5 0

More information

Application Note - PIC Source Code v1.1.doc

Application Note - PIC Source Code v1.1.doc Programmable, RGB-backlit LCD Keyswitches APPLICATION NOTE PIC SOURCE CODE 2004-2006 copyright [E³] Engstler Elektronik Entwicklung GmbH. All rights reserved. PIC Source Code The following Assembler source

More information

EEE111A/B Microprocessors

EEE111A/B Microprocessors EEE111A/B Microprocessors Revision Notes Lecture 1: What s it all About? Covers the basic principles of digital signals. The intelligence of virtually all communications, control and electronic devices

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 15 Instruction Set Most instructions execution Time One instruction cycle If XTAL frequency = 20 MHz, then instruction cycle time is 0.2 s or 200 ns (= 4/20

More information

Week1. EEE305 Microcontroller Key Points

Week1. EEE305 Microcontroller Key Points Week1 Harvard Architecture Fig. 3.2 Separate Program store and Data (File) stores with separate Data and Address buses. Program store Has a 14-bit Data bus and 13-bit Address bus. Thus up to 2 13 (8K)

More information

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010

TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE. E4160 Microprocessor & Microcontroller System. Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 TOPIC 3 INTRODUCTION TO PIC ASSEMBLY LANGUAGE Prepared by : Puziah Yahaya JKE, POLISAS / DEC 2010 E4160 Microprocessor & Microcontroller System Learning Outcomes 2 At the end of this topic, students should

More information

EECE.3170: Microprocessor Systems Design I Spring 2016

EECE.3170: Microprocessor Systems Design I Spring 2016 EECE.3170: Microprocessor Systems Design I Spring 2016 Lecture 31: Key Questions April 20, 2016 1. (Review) Explain how interrupts can be set up and managed in the PIC microcontrollers. 1 EECE.3170: Microprocessor

More information

S w e d i s h c r. w e e b l y. c o m j a l i l a h m e l i v e. c o m Page 1

S w e d i s h c r. w e e b l y. c o m j a l i l a h m e l i v e. c o m Page 1 ********************************************************************** This file is a basic code template for assembly code generation * on the PICmicro PIC12C508. This file contains the basic code * building

More information

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work

LAB WORK 2. 1) Debugger-Select Tool-MPLAB SIM View-Program Memory Trace the program by F7 button. Lab Work LAB WORK 1 We are studying with PIC16F84A Microcontroller. We are responsible for writing assembly codes for the microcontroller. For the code, we are using MPLAB IDE software. After opening the software,

More information

Arithmetic,logic Instruction and Programs

Arithmetic,logic Instruction and Programs Arithmetic,logic Instruction and Programs 1 Define the range of numbers possible in PIC unsigned data Code addition and subtraction instructions for unsigned data Perform addition of BCD Code PIC unsigned

More information

Flow Charts and Assembler Programs

Flow Charts and Assembler Programs Flow Charts and Assembler Programs Flow Charts: A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a flow chart is to make the program easier to understand.

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

Chapter 11: Interrupt On Change

Chapter 11: Interrupt On Change Chapter 11: Interrupt On Change The last two chapters included examples that used the external interrupt on Port C, pin 1 to determine when a button had been pressed. This approach works very well on most

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!!

SOLUTIONS!! DO NOT DISTRIBUTE PRIOR TO EXAM!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF APRIL MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: MidTerm Date and Time: Thursday April 14th 2005 8AM Duration:

More information

SOLUTIONS!! DO NOT DISTRIBUTE!!

SOLUTIONS!! DO NOT DISTRIBUTE!! THE UNIVERSITY OF THE WEST INDIES EXAMINATIONS OF FEBRUARY MID-TERM 2005 Code and Name of Course: EE25M Introduction to Microprocessors Paper: Date and Time: Duration: One Hour INSTRUCTIONS TO CANDIDATES:

More information

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed

Hardware Interfacing. EE25M Introduction to microprocessors. Part V. 15 Interfacing methods. original author: Feisal Mohammed EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 18th February 2002 CLR Part V Hardware Interfacing There are several features of computers/microcontrollers which have not

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE6008 Microcontroller based system design Year: IV DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 Microcontroller based system design Semester : VII UNIT I Introduction to PIC Microcontroller

More information

16.317: Microprocessor-Based Systems I Spring 2012

16.317: Microprocessor-Based Systems I Spring 2012 16.317: Microprocessor-Based Systems I Spring 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University PIC ming in C and Assembly Outlines Microprocessor vs. MicroController PIC in depth PIC ming Assembly ming Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University Embedded C

More information

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller

APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with a PIC Microcontroller Maxim/Dallas > App Notes > REAL-TIME CLOCKS Keywords: DS1305, SPI, PIC, real time clock, RTC, spi interface, pic microcontroller Aug 20, 2003 APPLICATION NOTE 2361 Interfacing an SPI-Interface RTC with

More information

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background:

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background: Background: Timer2 Interrupts The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the sampling rate. Example: Write a routine which increments an 8-bit

More information

16.317: Microprocessor-Based Systems I Summer 2012

16.317: Microprocessor-Based Systems I Summer 2012 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

PIC16F84A 7.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS

PIC16F84A 7.0 INSTRUCTION SET SUMMARY INSTRUCTIONS DESCRIPTIONS PI6F84A 7.0 INSTRUTION SET SUMMARY Each PI6XX instruction is a 4bit word, divided into an OPODE which specifies the instruction type and one or more operands which further specify the operation of the

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

Performance & Applications

Performance & Applications EE25M Introduction to microprocessors original author: Feisal Mohammed updated: 15th March 2002 CLR Part VI Performance & Applications It is possible to predict the execution time of code, on the basis

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 5 Solution For each of the following complex operations, write a sequence of PIC 16F1829 instructions that performs an equivalent operation. Assume that X, Y, and Z are 16-bit values split into individual bytes as

More information

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics:

Section 11. Timer0. Timer0 HIGHLIGHTS. This section of the manual contains the following major topics: M 11 Section 11. HIGHLIGHTS This section of the manual contains the following major topics: 11.1 Introduction...11-2 11.2 Control Register...11-3 11.3 Operation...11-4 11.4 TMR0 Interrupt...11-5 11.5 Using

More information

Arithmetic and Logic Instructions. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Arithmetic and Logic Instructions. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Arithmetic and Logic Instructions Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Find the sum of the values from 40H to 43H. Put the sum in filereg locations

More information

The University of Texas at Arlington Lecture 5

The University of Texas at Arlington Lecture 5 The University of Texas at Arlington Lecture 5 CSE 3442/5442 LCD Discussed in Chapter 12 RS, R/W, E Signals Are Used to Send/Receive Data on D0-D7 2 PIC PROGRAMMING IN C CHAPTER 7 Chapter 7 discusses the

More information

Section 31. Instruction Set

Section 31. Instruction Set 31 HIGHLIGHTS Section 31. Instruction Set Instruction Set This section of the manual contains the following major topics: 31.1 Introduction... 31-2 31.2 Data Memory Map... 31-3 31.3 Instruction Formats...

More information

EE6008-Microcontroller Based System Design Department Of EEE/ DCE

EE6008-Microcontroller Based System Design Department Of EEE/ DCE UNIT- II INTERRUPTS AND TIMERS PART A 1. What are the interrupts available in PIC? (Jan 14) Interrupt Source Enabled by Completion Status External interrupt from INT INTE = 1 INTF = 1 TMR0 interrupt T0IE

More information

Introduction to PIC Programming

Introduction to PIC Programming Introduction to PIC Programming Midrange Architecture and Assembly Language by David Meiklejohn, Gooligum Electronics Lesson 5: Assembler Directives and Macros As the programs presented in these tutorials

More information

President Alan VK6ZWZ Acting Sec. Don VK6HK Vice President Terry VK6ZLT Treasurer Ces VK6AO

President Alan VK6ZWZ Acting Sec. Don VK6HK Vice President Terry VK6ZLT Treasurer Ces VK6AO The West Australian VHF Group Bulletin JANUARY 2002 THE WEST AUSTRALIAN VHF GROUP (INC) PO BOX 189 APPLECROSS e-mail for editor to: pi@multiline.com.au President Alan VK6ZWZ Acting Sec. Don VK6HK Vice

More information

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller

APPLICATION NOTE Wire Communication with a Microchip PICmicro Microcontroller Maxim > App Notes > 1-Wire DEVICES BATTERY MANAGEMENT Keywords: 1-wire, PICmicro, Microchip PIC, 1-Wire communication, PIC microcontroller, PICmicro microcontroller, 1 wire communication, PICs, micros,

More information

16.317: Microprocessor Systems Design I Fall Exam 3 December 15, Name: ID #:

16.317: Microprocessor Systems Design I Fall Exam 3 December 15, Name: ID #: 16.317: Microprocessor Systems Design I Fall 2014 Exam 3 December 15, 2014 Name: ID #: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic devices

More information

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER

SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER SOLAR TRACKING SYSTEM USING PIC16F84A STEPPER MOTOR AND 555TIMER Amey Arvind Madgaonkar 1, Sumit Dhere 2 & Rupesh Ratnakar Kadam 3 1. Block diagram International Journal of Latest Trends in Engineering

More information

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model)

When JP1 is cut, baud rate is Otherwise, baud rate is Factory default is that JP1 is shorted. (JP1 is jumper type in some model) ELCD SERIES INTRODUCTION ALCD is Serial LCD module which is controlled through Serial communication. Most of existing LCD adopts Parallel communication which needs lots of control lines and complicated

More information

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch.

which means that writing to a port implies that the port pins are first read, then this value is modified and then written to the port data latch. Introduction to microprocessors Feisal Mohammed 3rd January 2001 Additional features 1 Input/Output Ports One of the features that differentiates a microcontroller from a microprocessor is the presence

More information

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Work Completed: Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Last week started with the goal to complete writing the overall program for the game.

More information

PIC16C63A/65B/73B/74B

PIC16C63A/65B/73B/74B PI663A/65B/73B/74B 4.0 MEMORY ORGANIATION 4. Program Memory Organization The PI663A/65B/73B/74B has a 3bit program counter capable of addressing an 8K x 4 program memory space. All devices covered by this

More information

TM57PA20/ TM57PA40. 8 Bit Microcontroller. User Manual. Tenx reserves the right to change or discontinue this product without notice.

TM57PA20/ TM57PA40. 8 Bit Microcontroller. User Manual. Tenx reserves the right to change or discontinue this product without notice. Advance Information TM57PA20/ TM57PA40 User Manual Tenx reserves the right to change or discontinue this product without notice. tenx technology inc. tenx technology, inc. CONTENTS FEATURES... 3 BLOCK

More information

CENG-336 Introduction to Embedded Systems Development. Timers

CENG-336 Introduction to Embedded Systems Development. Timers CENG-336 Introduction to Embedded Systems Development Timers Definitions A counter counts (possibly asynchronous) input pulses from an external signal A timer counts pulses of a fixed, known frequency

More information

ME 6405 Introduction to Mechatronics

ME 6405 Introduction to Mechatronics ME 6405 Introduction to Mechatronics Fall 2006 Instructor: Professor Charles Ume Microchip PIC Manufacturer Information: Company: Website: http://www.microchip.com Reasons for success: Became the hobbyist's

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller

More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller 1 von 8 24.02.2010 21:53 More (up a level)... Connecting the Nokia 3510i LCD to a Microchip PIC16F84 microcontroller As with the FPGA board previously, the connections are made by soldering standard IDC

More information

ECE Homework #3

ECE Homework #3 ECE 376 - Homework #3 Flow Charts, Binary Inputs, Binary Outputs (LEDs). Due Monday, January 29th The temperature sensor in your lab kits has the temperature-resistance relationship of R = 1000 exp 3965

More information

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features:

PIC16C84. 8-bit CMOS EEPROM Microcontroller PIC16C84. Pin Diagram. High Performance RISC CPU Features: CMOS Technology: Peripheral Features: 8-bit CMOS EEPROM Microcontroller High Performance RISC CPU Features: Only 35 single word instructions to learn All instructions single cycle (400 ns @ 10 MHz) except for program branches which are two-cycle

More information

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada

A Better Mouse Trap. Consumer Appliance, Widget, Gadget APPLICATION OPERATION: Ontario, Canada A Better Mouse Trap Author: APPLICATION OPERATION: My application uses a PIC12C508 to produce realistic sounding mouse-like coos that all mice are sure to find seductive. The entire circuit should be imbedded

More information

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle.

PIC PROGRAMMING START. The next stage is always the setting up of the PORTS, the symbol used to indicate this and all Processes is a Rectangle. PIC PROGRAMMING You have been introduced to PIC chips and the assembly language used to program them in the past number of lectures. The following is a revision of the ideas and concepts covered to date.

More information

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling

Interfacing PIC Microcontrollers. ADC8BIT2 Schematic. This application demonstrates analogue input sampling Interfacing PIC Microcontrollers ADC8BIT2 Schematic This application demonstrates analogue input sampling A manually adjusted test voltage 0-5V is provided at AN0 input A reference voltage of 2.56V is

More information

PTK8756B 8 Bit Micro-controller Data Sheet

PTK8756B 8 Bit Micro-controller Data Sheet PTK8756B 8 Bit Micro-controller DEC 15, 2008 Ver1.1 普泰半導體股份有限公司 PORTEK Technology Corporation 公司地址 : 臺北縣新店市寶橋路 235 巷 120 號 4 樓 聯絡電話 : 886-2-89121055 傳真號碼 : 886-2-89121473 公司網址 : www.portek.com.tw Page1

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name : Embedded System Class/Sem : BE (ECE) / VII Subject Code

More information

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept.

Embedded Systems Design (630470) Lecture 4. Memory Organization. Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Embedded Systems Design (630470) Lecture 4 Memory Organization Prof. Kasim M. Al-Aubidy Computer Eng. Dept. Memory Organization: PIC16F84 has two separate memory blocks, for data and for program. EEPROM

More information

Introduction to PIC Programming

Introduction to PIC Programming Introduction to PIC Programming Baseline Architecture and Assembly Language by David Meiklejohn, Gooligum Electronics Lesson 5: Using Timer0 The lessons until now have covered the essentials of baseline

More information

Binary Outputs and Timing

Binary Outputs and Timing Binary Outputs and Timing Each of the I/O pins on a PIC can be inputs or ourputs As an input, the pin is high impedance (meaning it is passive and draws very little current). If you apply 0V to that pin,

More information

Figure 1: Pushbutton without Pull-up.

Figure 1: Pushbutton without Pull-up. Chapter 7: Using the I/O pins as Inputs. In addition to working as outputs and being able to turn the I/O pins on and off, these same pins can be used as inputs. In this mode the PIC is able to determine

More information

Fortune. Semiconductor Corporation 富晶半導體股份有限公司. 8-bit MCU with 1k program ROM, 64-byte RAM, 1 R2F module and 3 13 LCD driver. TD Rev. 1.

Fortune. Semiconductor Corporation 富晶半導體股份有限公司. 8-bit MCU with 1k program ROM, 64-byte RAM, 1 R2F module and 3 13 LCD driver. TD Rev. 1. Fortune 1 R2F module and 3 13 LCD driver. Data Sheet TD-0410001 Rev. 1.2 This manual contains new product information. Fortune reserves the rights to modify the product specification without further notice.

More information

Laboratory Exercise 5 - Analog to Digital Conversion

Laboratory Exercise 5 - Analog to Digital Conversion Laboratory Exercise 5 - Analog to Digital Conversion The purpose of this lab is to control the blinking speed of an LED through the Analog to Digital Conversion (ADC) module on PIC16 by varying the input

More information

Chapter 5 Sections 1 6 Dr. Iyad Jafar

Chapter 5 Sections 1 6 Dr. Iyad Jafar Building Assembler Programs Chapter 5 Sections 1 6 Dr. Iyad Jafar Outline Building Structured Programs Conditional Branching Subroutines Generating Time Delays Dealing with Data Example Programs 2 Building

More information

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics:

Section 13. Timer0 HIGHLIGHTS. Timer0. This section of the manual contains the following major topics: Section 13. Timer0 HIGHLIGHTS This section of the manual contains the following major topics: 13.1 Introduction... 13-2 13.2 Control Register... 13-3 13.3 Operation... 13-4 13.4 Timer0 Interrupt... 13-5

More information

Section 4. Architecture

Section 4. Architecture M Section 4. Architecture HIGHLIGHTS This section of the manual contains the following major topics: 4. Introduction...4-2 4.2 Clocking Scheme/Instruction Cycle...4-5 4.3 Instruction Flow/Pipelining...4-6

More information

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10

/ 40 Q3: Writing PIC / 40 assembly language TOTAL SCORE / 100 EXTRA CREDIT / 10 16.317: Microprocessor-Based Systems I Summer 2012 Exam 3 August 13, 2012 Name: ID #: Section: For this exam, you may use a calculator and one 8.5 x 11 double-sided page of notes. All other electronic

More information

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers

PIC16F8X 18-pin Flash/EEPROM 8-Bit Microcontrollers 18-pin Flash/EEPROM 8-Bit Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16F84 PIC16CR83 PIC16CR84 Extended voltage range devices available (PIC16LF8X, PIC16LCR8X) High Performance RISC

More information

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features:

M PIC16F84A. 18-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller. High Performance RISC CPU Features: Pin Diagrams. Peripheral Features: M PIC6F84A 8-pinEnhanced FLASH/EEPROM 8-Bit Microcontroller High Performance RISC CPU Features: Pin Diagrams Only 35 single word instructions to learn All instructions single-cycle except for program branches

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information

Input/Output Ports and Interfacing

Input/Output Ports and Interfacing Input/Output Ports and Interfacing ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic I/O Concepts Peripherals such as LEDs and keypads are essential

More information

Here is a sample of the Hellschrieber sent by this project: Following is the PIC MPASM Source Code for Version 0.03 of the Beacon:

Here is a sample of the Hellschrieber sent by this project: Following is the PIC MPASM Source Code for Version 0.03 of the Beacon: 1 of 16 12/16/2010 20:49 This is a simple circuit that does a fair bit of work. The core of the circuit is my favourite IC - the Microchip PIC 16F84 Microcontroller / RISC Microprocessor. This project

More information

4.5.1) The Label Field ) The Mnemonic Field. 4.5) Assembly Language Program Structure A PIC18 ALP consists of 3 type of statements:

4.5.1) The Label Field ) The Mnemonic Field. 4.5) Assembly Language Program Structure A PIC18 ALP consists of 3 type of statements: 4.5) Assembly Language Program Structure A PIC18 ALP consists of 3 type of statements: 1) Assembler Directives To control the assembler: its input, output, and data allocation. Must be terminated with

More information

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses

ECE 354 Computer Systems Lab II. Interrupts, Strings, and Busses ECE 354 Computer Systems Lab II Interrupts, Strings, and Busses Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system

More information

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet:

PIC16F8X. 8-Bit CMOS Flash/EEPROM Microcontrollers PIC16F8X PIC16CR8X. Pin Diagram. Devices Included in this Data Sheet: This document was created with FrameMaker 404 PIC16F8X 8-Bit CMOS Flash/EEPROM Microcontrollers Devices Included in this Data Sheet: PIC16F83 PIC16CR83 PIC16F84 PIC16CR84 Extended voltage range devices

More information

PIC Discussion. By Eng. Tamar Jomaa

PIC Discussion. By Eng. Tamar Jomaa PIC Discussion By Eng. Tamar Jomaa Chapter#2 Programming Microcontroller Using Assembly Language Quiz#1 : Time: 10 minutes Marks: 10 Fill in spaces: 1) PIC is abbreviation for 2) Microcontroller with..architecture

More information

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar

Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Starting with Serial Chapter 10 Sections 1,2,9,10 Dr. Iyad Jafar Outline Introduction Synchronous Serial Communication Asynchronous Serial Communication Physical Limitations Overview of PIC 16 Series The

More information

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan Bank Switching, Table, Macros & Modules Hi Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.twcgu PIC18 memory access up to 2 MB of program memory Inside the

More information

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features:

PIC16F84A. 18-pin Enhanced Flash/EEPROM 8-Bit Microcontroller. Devices Included in this Data Sheet: Pin Diagrams. High Performance RISC CPU Features: M PIC6F84A 8-pin Enhanced Flash/EEPROM 8-Bit Microcontroller Devices Included in this Data Sheet: PIC6F84A Extended voltage range device available (PIC6LF84A) High Performance RISC CPU Features: Only 35

More information

Discrete Logic Replacement Message Dispatch Engine

Discrete Logic Replacement Message Dispatch Engine Message Dispatch Engine Author: OVERVIEW As we all know, the 8-pin PICmicro has limited resources. A nice way of using interrupts is for queuing events, prioritizing them, or even buffering them. This

More information

Interfacing PIC Microcontrollers to Peripherial Devices

Interfacing PIC Microcontrollers to Peripherial Devices Interfacing PIC Microcontrollers to Peripherial Devices International Series on INTELLIGENT SYSTEMS, CONTROL, AND AUTOMATION: SCIENCE AND ENGINEERING VOLUME 49 Editor Professor S. G. Tzafestas, National

More information

Computer Engineering Capstone Design Summer A : Handheld Video Games

Computer Engineering Capstone Design Summer A : Handheld Video Games Computer Engineering Capstone Design Summer A 99 0: Handheld Video Games J. S. McDonald Odd-Wednesday Talks May, 0 http://www.kettering.edu/~mcdonald/ece0/ PIC-Pong By Rickard Gunée; uses a -MHz PICF and

More information

ECE 354 Introduction to Lab 2. February 23 rd, 2003

ECE 354 Introduction to Lab 2. February 23 rd, 2003 ECE 354 Introduction to Lab 2 February 23 rd, 2003 Fun Fact Press release from Microchip: Microchip Technology Inc. announced it provides PICmicro field-programmable microcontrollers and system supervisors

More information

Introduction to PICL and PICLab

Introduction to PICL and PICLab Introduction to PICL and PICLab Introduction Assembling and running your first program: 1)Enter assembly code in the PICL text window. 2)Press the Build button to assemble your code and check for syntax

More information

CONNECT TO THE PIC. A Simple Development Board

CONNECT TO THE PIC. A Simple Development Board CONNECT TO THE PIC A Simple Development Board Ok, so you have now got your programmer, and you have a PIC or two. It is all very well knowing how to program the PIC in theory, but the real learning comes

More information

Experiment 7:The USART

Experiment 7:The USART University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 7 Experiment 7:The USART Objectives Introduce the USART module of the PIC

More information

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver

PIC16C432 OTP 8-Bit CMOS MCU with LIN bus Transceiver OTP 8-Bit CMOS MCU with LIN bus Transceiver Devices included in this Data Sheet: High Performance RISC CPU: Only 35 instructions to learn All single cycle instructions (200 ns), except for program branches

More information

PIN DESCRIPTION Name I/O Description VDD P VSS P 5V Power from USB cable Ground RC6M O X1 I Test/OTP mode clock in Internal clock output (6MHz) VPP I

PIN DESCRIPTION Name I/O Description VDD P VSS P 5V Power from USB cable Ground RC6M O X1 I Test/OTP mode clock in Internal clock output (6MHz) VPP I GENERAL DESCRIPTION The IN6005 is an 8-bit microprocessor embedded device tailored to the USB genernal purpose application. It includes an 8-bit RISC CPU core, 192-byte SRAM, Low Speed USB Interface and

More information