Importing HOL-Light into Coq

Size: px
Start display at page:

Download "Importing HOL-Light into Coq"

Transcription

1 Outlines Importing HOL-Light into Coq Deep and shallow embeddings of the higher order logic into Coq Work in progress Chantal Keller Bejamin Werner 2009 Types meeting Importing HOL-Light into Coq 1 / 24

2 Outlines Introduction What: long term: importing HOL-Light theorems and proofs into Coq short term: encoding the Higher Order Logic into Coq dening and exporting HOL-Light proof terms Why: theoretical interest analysis libraries verication of HOL-Light into Coq Importing HOL-Light into Coq 2 / 24

3 Outlines Double embedding Deep embedding (data-type to represent types and terms): reasoning by induction over the structure Shallow embedding (using Coq types and terms): using the Coq features Importing HOL-Light into Coq 3 / 24

4 Outlines Double embedding Deep embedding (data-type to represent types and terms): reasoning by induction over the structure Shallow embedding (using Coq types and terms): using the Coq features obtaining Coq propositions Importing HOL-Light into Coq 3 / 24

5 Outlines Double embedding Deep embedding (data-type to represent types and terms): reasoning by induction over the structure simple compact Shallow embedding (using Coq types and terms): using the Coq features obtaining Coq propositions Importing HOL-Light into Coq 3 / 24

6 Outlines Double embedding Deep embedding (data-type to represent types and terms): reasoning by induction over the structure simple compact Shallow embedding (using Coq types and terms): using the Coq features obtaining Coq propositions translation function from deep to shallow Importing HOL-Light into Coq 3 / 24

7 Outlines Idea HOL Light + proof recording Coq + classical axioms HOL Light theorem export encoded proof term translation function Coq proposition P proof of P Importing HOL-Light into Coq 4 / 24

8 Outlines Outlines 1 A short presentation of HOL-Light 2 Embedding the higher order logic into Coq 3 Recording and exporting HOL-Light proof terms 4 Conclusion and perspectives Importing HOL-Light into Coq 5 / 24

9 A short presentation of HOL-Light Part I A short presentation of HOL-Light Importing HOL-Light into Coq 6 / 24

10 A short presentation of HOL-Light HOL-Light HOL-Light: proof assistant written by John Harrison et al. in an OCaml top-level higher order classical logic automated tools and pre-proved theorems programmable without compromising soundness simpler logical kernel than HOL Importing HOL-Light into Coq 7 / 24

11 A short presentation of HOL-Light Types and terms Logical framework: simply-typed λ-calculus terms and type variables and constants polymorphism: type schemes all the types must be inhabited theorem: term of type bool under the hypotheses of other terms of type bool Example: no proof terms!x:a.?y:a. x = y Importing HOL-Light into Coq 8 / 24

12 A short presentation of HOL-Light Remarks Example of an inference rule: Γ p q p Γ q where is = bool Constants: main type constants: bool and > main term constants: = : A > A > bool and ε : (A > bool) > A (choice operator) possibility to dene new constants Importing HOL-Light into Coq 9 / 24

13 Embedding the higher order logic into Coq Part II Embedding the higher order logic into Coq Importing HOL-Light into Coq 10 / 24

14 Embedding the higher order logic into Coq Presentation What we want: deep and shallow embeddings translation function from deep to shallow HOL-Light inference rules proof of correctness of these inference rules with respect to semantics Carrying out: inductive Coq data-types type and term a translation function sem_term that maps any term of type Bool onto a term of type Prop (in particular) inductive data-type deriv : set term > term > Prop a proof of: forall G p, deriv G p > has_sem G > has_sem p Importing HOL-Light into Coq 11 / 24

15 Embedding the higher order logic into Coq Types Inductive data-type type: Bool type Num type X idt TVar X type C deft T 1,..., T n type TDef C [T 1 ;... ; T n ] type A, B type A B type idt, deft two sets. Importing HOL-Light into Coq 12 / 24

16 Embedding the higher order logic into Coq Constants Inductive data-type cst: Hand cst Hor cst Himp cst Hnot cst A type A type Htrue cst Hfalse cst Heq A cst Heps A cst A type Hforall A cst A type Hexists A cst Importing HOL-Light into Coq 13 / 24

17 Embedding the higher order logic into Coq Terms Inductive data-type term: c cst Cst c term n N Dbr n term x idv A type Var x A term c defv C type Def c C term u, v term App u v term A type u term Abs A u term idv, defv two sets Importing HOL-Light into Coq 14 / 24

18 Embedding the higher order logic into Coq Translation General idea: types: interface between syntax and semantics translation of a type: T A B A B translation of a term (using dependent types): t, T, t : T T Importing HOL-Light into Coq 15 / 24

19 Embedding the higher order logic into Coq Translation General idea: types: interface between syntax and semantics translation of a type: T? A B? A? B? translation of a term (using dependent types): t, T, t : T T? Importing HOL-Light into Coq 15 / 24

20 Embedding the higher order logic into Coq Translation General idea: types: interface between syntax and semantics translation of a type: T? A B? A? B? translation of a term (using dependent types): t, T, t : T T? a De Bruijn context interpretation functions for variables and denitions Importing HOL-Light into Coq 15 / 24

21 Embedding the higher order logic into Coq Translation General idea: types: interface between syntax and semantics translation of a type: T? A B? A? B? translation of a term (using dependent types): t, T, t : T T? a De Bruijn context interpretation functions for variables and denitions Code Importing HOL-Light into Coq 15 / 24

22 Embedding the higher order logic into Coq Inference rules General idea: inductive data-type deriv : set term > term > Prop a proof of: forall G p, deriv G p > has_sem G > has_sem p has_sem p: p is locally closed p:bool the translation of p is a correct proposition Importing HOL-Light into Coq 16 / 24

23 Embedding the higher order logic into Coq Inference rules General idea: inductive data-type deriv : set term > term > Prop a proof of: forall G p, deriv G p > has_sem G > has_sem p has_sem p: p is locally closed p:bool the translation of p is a correct proposition Code Importing HOL-Light into Coq 16 / 24

24 Embedding the higher order logic into Coq Example!x:A.?y:A. x = y x = A x y : A. x = A y REFL x x : A. y : A. x = A y EXISTS y : A. x =A y x GEN x Importing HOL-Light into Coq 17 / 24

25 Embedding the higher order logic into Coq Example!x:A.?y:A. x = y x = A x y : A. x = A y REFL x x : A. y : A. x = A y EXISTS y : A. x =A y x GEN x Code Importing HOL-Light into Coq 17 / 24

26 Recording and exporting HOL-Light proof terms Part III Recording and exporting HOL-Light proof terms Importing HOL-Light into Coq 18 / 24

27 Recording and exporting HOL-Light proof terms Proof-recording system by S. Obua Challenge: compact proofs short recording time Solution: granularity Statistics: recording the basic HOL-Light proofs (1694 theorems): 3 min Importing HOL-Light into Coq 19 / 24

28 Recording and exporting HOL-Light proof terms Exporting Challenge: small les small number of les Solution: sharing (proofs, types and terms... ) Statistics: exporting the basic HOL-Light proofs (1694 theorems): 14 min '.v' les 2.2 Gb Importing HOL-Light into Coq 20 / 24

29 Conclusion and perspectives Part IV Conclusion and perspectives Importing HOL-Light into Coq 21 / 24

30 Conclusion and perspectives Conclusion HOL-Light: recording proof terms export proofs Coq: Coq representation of HOL-Light data-types standard lemmas (substitution... ) translation function Coq representation of HOL-Light inference rules proof of correctness Importing HOL-Light into Coq 22 / 24

31 Conclusion and perspectives Perspectives Perspectives: nish the interface and the proofs deal with inhabited types, denitions, axioms more ecient Coq data-types more ecient exportation and smaller proof terms user interface scaling up Importing HOL-Light into Coq 23 / 24

32 Thank you for your attention! Any questions? Importing HOL-Light into Coq 24 / 24

Importing HOL Light into Coq

Importing HOL Light into Coq Importing HOL Light into Coq Chantal Keller 1,2 and Benjamin Werner 2 1 ENS Lyon 2 INRIA Saclay Île-de-France at École polytechnique Laboratoire d informatique (LIX) 91128 Palaiseau Cedex France keller@lix.polytechnique.fr

More information

Embedding logics in Dedukti

Embedding logics in Dedukti 1 INRIA, 2 Ecole Polytechnique, 3 ENSIIE/Cedric Embedding logics in Dedukti Ali Assaf 12, Guillaume Burel 3 April 12, 2013 Ali Assaf, Guillaume Burel: Embedding logics in Dedukti, 1 Outline Introduction

More information

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1

HOL DEFINING HIGHER ORDER LOGIC LAST TIME ON HOL CONTENT. Slide 3. Slide 1. Slide 4. Slide 2 WHAT IS HIGHER ORDER LOGIC? 2 LAST TIME ON HOL 1 LAST TIME ON HOL Proof rules for propositional and predicate logic Safe and unsafe rules NICTA Advanced Course Forward Proof Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 The Epsilon

More information

Introduction to dependent types in Coq

Introduction to dependent types in Coq October 24, 2008 basic use of the Coq system In Coq, you can play with simple values and functions. The basic command is called Check, to verify if an expression is well-formed and learn what is its type.

More information

Provably Correct Software

Provably Correct Software Provably Correct Software Max Schäfer Institute of Information Science/Academia Sinica September 17, 2007 1 / 48 The Need for Provably Correct Software BUT bugs are annoying, embarrassing, and cost gazillions

More information

Higher-Order Logic. Specification and Verification with Higher-Order Logic

Higher-Order Logic. Specification and Verification with Higher-Order Logic Higher-Order Logic Specification and Verification with Higher-Order Logic Arnd Poetzsch-Heffter (Slides by Jens Brandt) Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern

More information

Toward explicit rewrite rules in the λπ-calculus modulo

Toward explicit rewrite rules in the λπ-calculus modulo Toward explicit rewrite rules in the λπ-calculus modulo Ronan Saillard (Olivier Hermant) Deducteam INRIA MINES ParisTech December 14th, 2013 1 / 29 Motivation Problem Checking, in a trustful way, that

More information

Programming Languages Fall 2014

Programming Languages Fall 2014 Programming Languages Fall 2014 Lecture 7: Simple Types and Simply-Typed Lambda Calculus Prof. Liang Huang huang@qc.cs.cuny.edu 1 Types stuck terms? how to fix it? 2 Plan First I For today, we ll go back

More information

First-Class Type Classes

First-Class Type Classes First-Class Type Classes Matthieu Sozeau Joint work with Nicolas Oury LRI, Univ. Paris-Sud - Démons Team & INRIA Saclay - ProVal Project Gallium Seminar November 3rd 2008 INRIA Rocquencourt Solutions for

More information

Introduction to Type Theory August 2007 Types Summer School Bertinoro, It. Herman Geuvers Nijmegen NL

Introduction to Type Theory August 2007 Types Summer School Bertinoro, It. Herman Geuvers Nijmegen NL Introduction to Type Theory August 2007 Types Summer School Bertinoro, It Herman Geuvers Nijmegen NL Lecture 2: Dependent Type Theory, Logical Framework 1 For λ : Direct representation (shallow embedding)

More information

Mathematics for Computer Scientists 2 (G52MC2)

Mathematics for Computer Scientists 2 (G52MC2) Mathematics for Computer Scientists 2 (G52MC2) L07 : Operations on sets School of Computer Science University of Nottingham October 29, 2009 Enumerations We construct finite sets by enumerating a list

More information

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214

Theorem proving. PVS theorem prover. Hoare style verification PVS. More on embeddings. What if. Abhik Roychoudhury CS 6214 Theorem proving PVS theorem prover Abhik Roychoudhury National University of Singapore Both specification and implementation can be formalized in a suitable logic. Proof rules for proving statements in

More information

Lecture 3: Typed Lambda Calculus and Curry-Howard

Lecture 3: Typed Lambda Calculus and Curry-Howard Lecture 3: Typed Lambda Calculus and Curry-Howard H. Geuvers Radboud University Nijmegen, NL 21st Estonian Winter School in Computer Science Winter 2016 H. Geuvers - Radboud Univ. EWSCS 2016 Typed λ-calculus

More information

Assistant for Language Theory. SASyLF: An Educational Proof. Corporation. Microsoft. Key Shin. Workshop on Mechanizing Metatheory

Assistant for Language Theory. SASyLF: An Educational Proof. Corporation. Microsoft. Key Shin. Workshop on Mechanizing Metatheory SASyLF: An Educational Proof Assistant for Language Theory Jonathan Aldrich Robert J. Simmons Key Shin School of Computer Science Carnegie Mellon University Microsoft Corporation Workshop on Mechanizing

More information

Synthesis of distributed mobile programs using monadic types in Coq

Synthesis of distributed mobile programs using monadic types in Coq Synthesis of distributed mobile programs using monadic types in Coq Marino Miculan Marco Paviotti Dept. of Mathematics and Computer Science University of Udine ITP 2012 August 13th, 2012 1 / 22 The problem

More information

Inductive datatypes in HOL. lessons learned in Formal-Logic Engineering

Inductive datatypes in HOL. lessons learned in Formal-Logic Engineering Inductive datatypes in HOL lessons learned in Formal-Logic Engineering Stefan Berghofer and Markus Wenzel Institut für Informatik TU München = Isabelle λ β HOL α 1 Introduction Applications of inductive

More information

Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description)

Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description) Beluga: A Framework for Programming and Reasoning with Deductive Systems (System Description) Brigitte Pientka and Joshua Dunfield McGill University, Montréal, Canada {bpientka,joshua}@cs.mcgill.ca Abstract.

More information

From natural numbers to the lambda calculus

From natural numbers to the lambda calculus From natural numbers to the lambda calculus Benedikt Ahrens joint work with Ralph Matthes and Anders Mörtberg Outline 1 About UniMath 2 Signatures and associated syntax Outline 1 About UniMath 2 Signatures

More information

Typed Lambda Calculus for Syntacticians

Typed Lambda Calculus for Syntacticians Department of Linguistics Ohio State University January 12, 2012 The Two Sides of Typed Lambda Calculus A typed lambda calculus (TLC) can be viewed in two complementary ways: model-theoretically, as a

More information

Proof Pearl: Substitution Revisited, Again

Proof Pearl: Substitution Revisited, Again Proof Pearl: Substitution Revisited, Again Gyesik Lee Hankyong National University, Korea gslee@hknu.ac.kr Abstract. We revisit Allen Stoughton s 1988 paper Substitution Revisited and use it as our test

More information

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein

COMP 4161 NICTA Advanced Course. Advanced Topics in Software Verification. Toby Murray, June Andronick, Gerwin Klein COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Toby Murray, June Andronick, Gerwin Klein λ 1 Last time... λ calculus syntax free variables, substitution β reduction α and η conversion

More information

Programming Languages

Programming Languages CSE 230: Winter 2008 Principles of Programming Languages Ocaml/HW #3 Q-A Session Push deadline = Mar 10 Session Mon 3pm? Lecture 15: Type Systems Ranjit Jhala UC San Diego Why Typed Languages? Development

More information

Coq, a formal proof development environment combining logic and programming. Hugo Herbelin

Coq, a formal proof development environment combining logic and programming. Hugo Herbelin Coq, a formal proof development environment combining logic and programming Hugo Herbelin 1 Coq in a nutshell (http://coq.inria.fr) A logical formalism that embeds an executable typed programming language:

More information

Inductive Definitions, continued

Inductive Definitions, continued 1 / 27 Inductive Definitions, continued Assia Mahboubi Jan 7th, 2016 2 / 27 Last lecture Introduction to Coq s inductive types: Introduction, elimination and computation rules; Twofold implementation :

More information

Verification of an LCF-Style First-Order Prover with Equality

Verification of an LCF-Style First-Order Prover with Equality Verification of an LCF-Style First-Order Prover with Equality Alexander Birch Jensen, Anders Schlichtkrull, and Jørgen Villadsen DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

More information

c constructor P, Q terms used as propositions G, H hypotheses scope identifier for a notation scope M, module identifiers t, u arbitrary terms

c constructor P, Q terms used as propositions G, H hypotheses scope identifier for a notation scope M, module identifiers t, u arbitrary terms Coq quick reference Meta variables Usage Meta variables Usage c constructor P, Q terms used as propositions db identifier for a hint database s string G, H hypotheses scope identifier for a notation scope

More information

Coq quick reference. Category Example Description. Inductive type with instances defined by constructors, including y of type Y. Inductive X : Univ :=

Coq quick reference. Category Example Description. Inductive type with instances defined by constructors, including y of type Y. Inductive X : Univ := Coq quick reference Category Example Description Meta variables Usage Meta variables Usage c constructor P, Q terms used as propositions db identifier for a hint database s string G, H hypotheses scope

More information

Packaging Theories of Higher Order Logic

Packaging Theories of Higher Order Logic Packaging Theories of Higher Order Logic Joe Hurd Galois, Inc. joe@galois.com Theory Engineering Workshop Tuesday 9 February 2010 Joe Hurd Packaging Theories of Higher Order Logic 1 / 26 Talk Plan 1 Introduction

More information

λ calculus is inconsistent

λ calculus is inconsistent Content Rough timeline COMP 4161 NICTA Advanced Course Advanced Topics in Software Verification Gerwin Klein, June Andronick, Toby Murray λ Intro & motivation, getting started [1] Foundations & Principles

More information

Typed Lambda Calculus

Typed Lambda Calculus Department of Linguistics Ohio State University Sept. 8, 2016 The Two Sides of A typed lambda calculus (TLC) can be viewed in two complementary ways: model-theoretically, as a system of notation for functions

More information

CSE505, Fall 2012, Midterm Examination October 30, 2012

CSE505, Fall 2012, Midterm Examination October 30, 2012 CSE505, Fall 2012, Midterm Examination October 30, 2012 Rules: The exam is closed-book, closed-notes, except for one side of one 8.5x11in piece of paper. Please stop promptly at Noon. You can rip apart

More information

CSE-321 Programming Languages 2011 Final

CSE-321 Programming Languages 2011 Final Name: Hemos ID: CSE-321 Programming Languages 2011 Final Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Total Score Max 15 15 10 17 18 25 100 There are six problems on 18 pages in this exam, including one extracredit

More information

The HOL theorem-proving system

The HOL theorem-proving system The HOL theorem-proving system Michael Norrish Michael.Norrish@nicta.com.au National ICT Australia 8 September 2004 Outline Introduction History High-level description Design philosophy Basic types Logic

More information

Proof-by-Instance for Embedded Network Design From Prototype to Tool Roadmap. Marc Boyer, Loïc Fejoz. 1, Stephan Merz 3

Proof-by-Instance for Embedded Network Design From Prototype to Tool Roadmap. Marc Boyer, Loïc Fejoz. 1, Stephan Merz 3 Proof-by-Instance for Embedded Network Design From Prototype to Tool Roadmap 2 Marc Boyer, Loïc Fejoz 1 1, Stephan Merz 3 RealTime at Work, Nancy, France 2 ONERA The French aerospace Lab, 3 Inria & LORIA,

More information

Integration of SMT Solvers with ITPs There and Back Again

Integration of SMT Solvers with ITPs There and Back Again Integration of SMT Solvers with ITPs There and Back Again Sascha Böhme and University of Sheffield 7 May 2010 1 2 Features: SMT-LIB vs. Yices Translation Techniques Caveats 3 4 Motivation Motivation System

More information

Program Design in PVS. Eindhoven University of Technology. Abstract. Hoare triples (precondition, program, postcondition) have

Program Design in PVS. Eindhoven University of Technology. Abstract. Hoare triples (precondition, program, postcondition) have Program Design in PVS Jozef Hooman Dept. of Computing Science Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands e-mail: wsinjh@win.tue.nl Abstract. Hoare triples (precondition,

More information

Logical Verification Course Notes. Femke van Raamsdonk Vrije Universiteit Amsterdam

Logical Verification Course Notes. Femke van Raamsdonk Vrije Universiteit Amsterdam Logical Verification Course Notes Femke van Raamsdonk femke@csvunl Vrije Universiteit Amsterdam autumn 2008 Contents 1 1st-order propositional logic 3 11 Formulas 3 12 Natural deduction for intuitionistic

More information

locales ISAR IS BASED ON CONTEXTS CONTENT Slide 3 Slide 1 proof - fix x assume Ass: A. x and Ass are visible Slide 2 Slide 4 inside this context

locales ISAR IS BASED ON CONTEXTS CONTENT Slide 3 Slide 1 proof - fix x assume Ass: A. x and Ass are visible Slide 2 Slide 4 inside this context LAST TIME Syntax and semantics of IMP Hoare logic rules NICTA Advanced Course Soundness of Hoare logic Slide 1 Theorem Proving Principles, Techniques, Applications Slide 3 Verification conditions Example

More information

Basic Foundations of Isabelle/HOL

Basic Foundations of Isabelle/HOL Basic Foundations of Isabelle/HOL Peter Wullinger May 16th 2007 1 / 29 1 Introduction into Isabelle s HOL Why Type Theory Basic Type Syntax 2 More HOL Typed λ Calculus HOL Rules 3 Example proof 2 / 29

More information

First-Order Proof Tactics in Higher Order Logic Theorem Provers Joe Hurd p.1/24

First-Order Proof Tactics in Higher Order Logic Theorem Provers Joe Hurd p.1/24 First-Order Proof Tactics in Higher Order Logic Theorem Provers Joe Hurd joe.hurd@cl.cam.ac.uk University of Cambridge First-Order Proof Tactics in Higher Order Logic Theorem Provers Joe Hurd p.1/24 Contents

More information

From Types to Sets in Isabelle/HOL

From Types to Sets in Isabelle/HOL From Types to Sets in Isabelle/HOL Extented Abstract Ondřej Kunčar 1 and Andrei Popescu 1,2 1 Fakultät für Informatik, Technische Universität München, Germany 2 Institute of Mathematics Simion Stoilow

More information

Intrinsically Typed Reflection of a Gallina Subset Supporting Dependent Types for Non-structural Recursion of Coq

Intrinsically Typed Reflection of a Gallina Subset Supporting Dependent Types for Non-structural Recursion of Coq Intrinsically Typed Reflection of a Gallina Subset Supporting Dependent Types for Non-structural Recursion of Coq Akira Tanaka National Institute of Advanced Industrial Science and Technology (AIST) 2018-11-21

More information

Negations in Refinement Type Systems

Negations in Refinement Type Systems Negations in Refinement Type Systems T. Tsukada (U. Tokyo) 14th March 2016 Shonan, JAPAN This Talk About refinement intersection type systems that refute judgements of other type systems. Background Refinement

More information

Expr_annotated.v. Expr_annotated.v. Printed by Zach Tatlock

Expr_annotated.v. Expr_annotated.v. Printed by Zach Tatlock Oct 05, 16 8:02 Page 1/14 * Lecture 03 Include some useful libraries. Require Import Bool. Require Import List. Require Import String. Require Import ZArith. Require Import Omega. List provides the cons

More information

CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008

CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008 CMSC 336: Type Systems for Programming Languages Lecture 5: Simply Typed Lambda Calculus Acar & Ahmed January 24, 2008 Contents 1 Solution to the Exercise 1 1.1 Semantics for lambda calculus.......................

More information

Calculus of Inductive Constructions

Calculus of Inductive Constructions Calculus of Inductive Constructions Software Formal Verification Maria João Frade Departmento de Informática Universidade do Minho 2008/2009 Maria João Frade (DI-UM) Calculus of Inductive Constructions

More information

Mathematics for Computer Scientists 2 (G52MC2)

Mathematics for Computer Scientists 2 (G52MC2) Mathematics for Computer Scientists 2 (G52MC2) L03 : More Coq, Classical Logic School of Computer Science University of Nottingham October 8, 2009 The cut rule Sometimes we want to prove a goal Q via an

More information

Functional Programming with Isabelle/HOL

Functional Programming with Isabelle/HOL Functional Programming with Isabelle/HOL = Isabelle λ β HOL α Florian Haftmann Technische Universität München January 2009 Overview Viewing Isabelle/HOL as a functional programming language: 1. Isabelle/HOL

More information

Lambda Calculus: Implementation Techniques and a Proof. COS 441 Slides 15

Lambda Calculus: Implementation Techniques and a Proof. COS 441 Slides 15 Lambda Calculus: Implementation Techniques and a Proof COS 441 Slides 15 Last Time: The Lambda Calculus A language of pure functions: values e ::= x \x.e e e v ::= \x.e With a call-by-value operational

More information

Types Summer School Gothenburg Sweden August Dogma oftype Theory. Everything has a type

Types Summer School Gothenburg Sweden August Dogma oftype Theory. Everything has a type Types Summer School Gothenburg Sweden August 2005 Formalising Mathematics in Type Theory Herman Geuvers Radboud University Nijmegen, NL Dogma oftype Theory Everything has a type M:A Types are a bit like

More information

Specification, Verification, and Interactive Proof

Specification, Verification, and Interactive Proof Specification, Verification, and Interactive Proof SRI International May 23, 2016 PVS PVS - Prototype Verification System PVS is a verification system combining language expressiveness with automated tools.

More information

上海交通大学试卷 ( A 卷 ) ( 2015 至 2016 学年第 2 学期 )

上海交通大学试卷 ( A 卷 ) ( 2015 至 2016 学年第 2 学期 ) 上海交通大学试卷 ( A 卷 ) ( 2015 至 2016 学年第 2 学期 ) 班级号 (class) 学号 (id) 姓名 (name) 课程名称 程序语言理论 Theory of Programming Languages 成绩 (score) 1. (14 points) (a) Please give the value of a0, a1 after running the following

More information

Work-in-progress: "Verifying" the Glasgow Haskell Compiler Core language

Work-in-progress: Verifying the Glasgow Haskell Compiler Core language Work-in-progress: "Verifying" the Glasgow Haskell Compiler Core language Stephanie Weirich Joachim Breitner, Antal Spector-Zabusky, Yao Li, Christine Rizkallah, John Wiegley June 2018 Let's prove GHC correct

More information

Let Arguments Go First

Let Arguments Go First Let Arguments Go First Ningning Xie and Bruno C. d. S. Oliveira The University of Hong Kong {nnxie,bruno}@cs.hku.hk Abstract. Bi-directional type checking has proved to be an extremely useful and versatile

More information

Normalization by hereditary substitutions

Normalization by hereditary substitutions Normalization by hereditary substitutions Chantal Keller INRIA Saclay Île-de-France France keller@lix.polytechnique.fr Thorsten Altenkirch The University of Nottingham United Kingdom txa@cs.nott.ac.uk

More information

Lecture slides & distribution files:

Lecture slides & distribution files: Type Theory Lecture slides & distribution files: http://www.cs.rhul.ac.uk/home/zhaohui/ttlectures.html Zhaohui Luo Department of Computer Science Royal Holloway, University of London April 2011 2 Type

More information

CSE-321 Programming Languages 2012 Midterm

CSE-321 Programming Languages 2012 Midterm Name: Hemos ID: CSE-321 Programming Languages 2012 Midterm Prob 1 Prob 2 Prob 3 Prob 4 Prob 5 Prob 6 Total Score Max 14 15 29 20 7 15 100 There are six problems on 24 pages in this exam. The maximum score

More information

Preuves Interactives et Applications

Preuves Interactives et Applications Preuves Interactives et Applications Christine Paulin & Burkhart Wolff http://www.lri.fr/ paulin/preuvesinteractives Université Paris-Saclay HOL and its Specification Constructs 10/12/16 B. Wolff - M2

More information

Lesson 4 Typed Arithmetic Typed Lambda Calculus

Lesson 4 Typed Arithmetic Typed Lambda Calculus Lesson 4 Typed Arithmetic Typed Lambda 1/28/03 Chapters 8, 9, 10 Outline Types for Arithmetic types the typing relation safety = progress + preservation The simply typed lambda calculus Function types

More information

A NEW PROOF-ASSISTANT THAT REVISITS HOMOTOPY TYPE THEORY THE THEORETICAL FOUNDATIONS OF COQ USING NICOLAS TABAREAU

A NEW PROOF-ASSISTANT THAT REVISITS HOMOTOPY TYPE THEORY THE THEORETICAL FOUNDATIONS OF COQ USING NICOLAS TABAREAU COQHOTT A NEW PROOF-ASSISTANT THAT REVISITS THE THEORETICAL FOUNDATIONS OF COQ USING HOMOTOPY TYPE THEORY NICOLAS TABAREAU The CoqHoTT project Design and implement a brand-new proof assistant by revisiting

More information

Dynamic Logic David Harel, The Weizmann Institute Dexter Kozen, Cornell University Jerzy Tiuryn, University of Warsaw The MIT Press, Cambridge, Massac

Dynamic Logic David Harel, The Weizmann Institute Dexter Kozen, Cornell University Jerzy Tiuryn, University of Warsaw The MIT Press, Cambridge, Massac Dynamic Logic David Harel, The Weizmann Institute Dexter Kozen, Cornell University Jerzy Tiuryn, University of Warsaw The MIT Press, Cambridge, Massachusetts, 2000 Among the many approaches to formal reasoning

More information

Programming Language Concepts: Lecture 19

Programming Language Concepts: Lecture 19 Programming Language Concepts: Lecture 19 Madhavan Mukund Chennai Mathematical Institute madhavan@cmi.ac.in http://www.cmi.ac.in/~madhavan/courses/pl2009 PLC 2009, Lecture 19, 01 April 2009 Adding types

More information

Subsumption. Principle of safe substitution

Subsumption. Principle of safe substitution Recap on Subtyping Subsumption Some types are better than others, in the sense that a value of one can always safely be used where a value of the other is expected. Which can be formalized as by introducing:

More information

A Simple Supercompiler Formally Verified in Coq

A Simple Supercompiler Formally Verified in Coq A Simple Supercompiler Formally Verified in Coq IGE+XAO Balkan 4 July 2010 / META 2010 Outline 1 Introduction 2 3 Test Generation, Extensional Equivalence More Realistic Language Use Information Propagation

More information

Functional Programming and Modeling

Functional Programming and Modeling Chapter 2 2. Functional Programming and Modeling 2.0 2. Functional Programming and Modeling 2.0 Overview of Chapter Functional Programming and Modeling 2. Functional Programming and Modeling 2.1 Overview

More information

CIS 500: Software Foundations

CIS 500: Software Foundations CIS 500: Software Foundations Midterm I October 4, 2016 Name (printed): Username (PennKey login id): My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic

More information

Adam Chlipala University of California, Berkeley ICFP 2006

Adam Chlipala University of California, Berkeley ICFP 2006 Modular Development of Certified Program Verifiers with a Proof Assistant Adam Chlipala University of California, Berkeley ICFP 2006 1 Who Watches the Watcher? Program Verifier Might want to ensure: Memory

More information

The Programming Language Core

The Programming Language Core The Programming Language Core Wolfgang Schreiner Research Institute for Symbolic Computation (RISC-Linz) Johannes Kepler University, A-4040 Linz, Austria Wolfgang.Schreiner@risc.uni-linz.ac.at http://www.risc.uni-linz.ac.at/people/schreine

More information

Lecture 13: Subtyping

Lecture 13: Subtyping Lecture 13: Subtyping Polyvios Pratikakis Computer Science Department, University of Crete Type Systems and Programming Languages Pratikakis (CSD) Subtyping CS546, 2018-2019 1 / 15 Subtyping Usually found

More information

An LCF-Style Interface between HOL and First-Order Logic

An LCF-Style Interface between HOL and First-Order Logic An LCF-Style Interface between HOL and First-Order Logic Joe Hurd Computer Laboratory University of Cambridge, joe.hurd@cl.cam.ac.uk 1 Introduction Performing interactive proof in the HOL theorem prover

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Operational Semantics CMSC 330 Summer 2018 1 Formal Semantics of a Prog. Lang. Mathematical description of the meaning of programs written in that language

More information

DRAFT. Formalization of Metatheory of the Quipper Quantum Programming Language in a Linear Logic

DRAFT. Formalization of Metatheory of the Quipper Quantum Programming Language in a Linear Logic Noname manuscript No. (will be inserted by the editor) Formalization of Metatheory of the Quipper Quantum Programming Language in a Linear Logic Mohamed Yousri Mahmoud Amy P. Felty July 2018 Abstract We

More information

From Math to Machine A formal derivation of an executable Krivine Machine Wouter Swierstra Brouwer Seminar

From Math to Machine A formal derivation of an executable Krivine Machine Wouter Swierstra Brouwer Seminar From Math to Machine A formal derivation of an executable Krivine Machine Wouter Swierstra Brouwer Seminar β reduction (λx. t0) t1 t0 {t1/x} Substitution Realizing β-reduction through substitution is a

More information

The three faces of homotopy type theory. Type theory and category theory. Minicourse plan. Typing judgments. Michael Shulman.

The three faces of homotopy type theory. Type theory and category theory. Minicourse plan. Typing judgments. Michael Shulman. The three faces of homotopy type theory Type theory and category theory Michael Shulman 1 A programming language. 2 A foundation for mathematics based on homotopy theory. 3 A calculus for (, 1)-category

More information

Theory Engineering Using Composable Packages

Theory Engineering Using Composable Packages Theory Engineering Using Composable Packages Joe Leslie-Hurd Intel Corp. joe@gilith.com SVARM & VMCAI 21 January 2013 Joe Leslie-Hurd Theory Engineering Using Composable Packages 1 / 52 Theory Engineering

More information

Part III. Chapter 15: Subtyping

Part III. Chapter 15: Subtyping Part III Chapter 15: Subtyping Subsumption Subtype relation Properties of subtyping and typing Subtyping and other features Intersection and union types Subtyping Motivation With the usual typing rule

More information

A heuristic method for formally verifying real inequalities

A heuristic method for formally verifying real inequalities A heuristic method for formally verifying real inequalities Robert Y. Lewis Vrije Universiteit Amsterdam June 22, 2018 Motivation Specific topic for today: verifying systems of nonlinear inequalities over

More information

Verified Characteristic Formulae for CakeML. Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 27, 2017

Verified Characteristic Formulae for CakeML. Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 27, 2017 Verified Characteristic Formulae for CakeML Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish April 27, 2017 Goal: write programs in a high-level (ML-style) language, prove them correct interactively,

More information

Design of an Interactive Digital Library of Formal Algorithmic Knowledge

Design of an Interactive Digital Library of Formal Algorithmic Knowledge OFFICE OF NAVAL RESEARCH (ONR) CORNELL UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE Design of an Interactive Digital Library of Formal Algorithmic Knowledge December 12, 2002 / Stanford University Stuart

More information

Formal proofs and certified computation in Coq

Formal proofs and certified computation in Coq Formal proofs and certified computation in Coq Érik Martin-Dorel http://erik.martin-dorel.org Équipe ACADIE, Laboratoire IRIT Université Toulouse III - Paul Sabatier French Symposium on Games 26 30 May

More information

More Untyped Lambda Calculus & Simply Typed Lambda Calculus

More Untyped Lambda Calculus & Simply Typed Lambda Calculus Concepts in Programming Languages Recitation 6: More Untyped Lambda Calculus & Simply Typed Lambda Calculus Oded Padon & Mooly Sagiv (original slides by Kathleen Fisher, John Mitchell, Shachar Itzhaky,

More information

PARSIFAL Summer 2011 Internship Report Logically validating logic programs

PARSIFAL Summer 2011 Internship Report Logically validating logic programs PARSIFAL Summer 2011 Internship Report Logically validating logic programs Chris Martens August 22, 2011 1 Overview Logic programs can be used to specify systems, and logic programming languages such as

More information

A Certified Implementation of a Distributed Security Logic

A Certified Implementation of a Distributed Security Logic A Certified Implementation of a Distributed Security Logic Nathan Whitehead University of California, Santa Cruz nwhitehe@cs.ucsc.edu based on joint work with Martín Abadi University of California, Santa

More information

Exporting an Arithmetic Library from Dedukti to HOL

Exporting an Arithmetic Library from Dedukti to HOL Exporting an rithmetic Library from Dedukti to HOL François Thiré To cite this version: François Thiré. Exporting an rithmetic Library from Dedukti to HOL. 2017. HL Id: hal-01668250 https://hal.inria.fr/hal-01668250

More information

Coq in a Hurry. Yves Bertot

Coq in a Hurry. Yves Bertot Coq in a Hurry Yves Bertot To cite this version: Yves Bertot. Coq in a Hurry. Types Summer School, also used at the University of Nice Goteborg, Nice, 2006. HAL Id: inria-00001173 https://cel.archives-ouvertes.fr/inria-00001173v2

More information

The theory of Mezzo. François Pottier. IHP, April 2014 INRIA

The theory of Mezzo. François Pottier. IHP, April 2014 INRIA The theory of Mezzo François Pottier INRIA IHP, April 2014 1 / 94 Acknowledgements Jonathan Protzenko, Thibaut Balabonski, Henri Chataing, Armaël Guéneau, Cyprien Mangin. 2 / 94 Outline Introduction The

More information

Combining Programming with Theorem Proving

Combining Programming with Theorem Proving Combining Programming with Theorem Proving Chiyan Chen and Hongwei Xi Boston University Programming with Theorem Proving p.1/27 Motivation for the Research To support advanced type systems for practical

More information

Appendix G: Some questions concerning the representation of theorems

Appendix G: Some questions concerning the representation of theorems Appendix G: Some questions concerning the representation of theorems Specific discussion points 1. What should the meta-structure to represent mathematics, in which theorems naturally fall, be? There obviously

More information

MoreIntro.v. MoreIntro.v. Printed by Zach Tatlock. Oct 07, 16 18:11 Page 1/10. Oct 07, 16 18:11 Page 2/10. Monday October 10, 2016 lec02/moreintro.

MoreIntro.v. MoreIntro.v. Printed by Zach Tatlock. Oct 07, 16 18:11 Page 1/10. Oct 07, 16 18:11 Page 2/10. Monday October 10, 2016 lec02/moreintro. Oct 07, 16 18:11 Page 1/10 * Lecture 02 Set Implicit Arguments. Inductive list (A: Type) : Type := nil : list A cons : A > list A > list A. Fixpoint length (A: Type) (l: list A) : nat := nil _ => O cons

More information

An experiment with variable binding, denotational semantics, and logical relations in Coq. Adam Chlipala University of California, Berkeley

An experiment with variable binding, denotational semantics, and logical relations in Coq. Adam Chlipala University of California, Berkeley A Certified TypePreserving Compiler from Lambda Calculus to Assembly Language An experiment with variable binding, denotational semantics, and logical relations in Coq Adam Chlipala University of California,

More information

Universes. Universes for Data. Peter Morris. University of Nottingham. November 12, 2009

Universes. Universes for Data. Peter Morris. University of Nottingham. November 12, 2009 for Data Peter Morris University of Nottingham November 12, 2009 Introduction Outline 1 Introduction What is DTP? Data Types in DTP Schemas for Inductive Families 2 of Data Inductive Types Inductive Families

More information

Formally Certified Satisfiability Solving

Formally Certified Satisfiability Solving SAT/SMT Proof Checking Verifying SAT Solver Code Future Work Computer Science, The University of Iowa, USA April 23, 2012 Seoul National University SAT/SMT Proof Checking Verifying SAT Solver Code Future

More information

The Polymorphic Blame Calculus and Parametricity

The Polymorphic Blame Calculus and Parametricity 1 / 31 The Polymorphic Blame Calculus and Parametricity Jeremy G. Siek Indiana University, Bloomington University of Strathclyde August 2015 2 / 31 Integrating static and dynamic typing Static Dynamic

More information

A native compiler for Coq: current status, perspectives and discussion 1

A native compiler for Coq: current status, perspectives and discussion 1 A native compiler for Coq A native compiler for Coq: current status, perspectives and discussion 1 Maxime Dénès, jww M. Boespflug and B. Grégoire Marelle Team, INRIA Sophia-Antipolis February 19, 2013

More information

Implementing Constructive Logics with OCaml

Implementing Constructive Logics with OCaml Implementing Constructive Logics with OCaml Siva Somayyajula Chirag Bharadwaj December 6, 2016 Contents 1 Introduction 1 2 Theory of Polymorphic Programming Logics 1 2.1 Realizability Interpretation..............................

More information

Tracing Ambiguity in GADT Type Inference

Tracing Ambiguity in GADT Type Inference Tracing Ambiguity in GADT Type Inference ML Workshop 2012, Copenhagen Jacques Garrigue & Didier Rémy Nagoya University / INRIA Garrigue & Rémy Tracing ambiguity 1 Generalized Algebraic Datatypes Algebraic

More information

Equations: a tool for dependent pattern-matching

Equations: a tool for dependent pattern-matching Equations: a tool for dependent pattern-matching Cyprien Mangin cyprien.mangin@m4x.org Matthieu Sozeau matthieu.sozeau@inria.fr Inria Paris & IRIF, Université Paris-Diderot May 15, 2017 1 Outline 1 Setting

More information

The Next 700 Syntactic Models of Type Theory

The Next 700 Syntactic Models of Type Theory The Next 700 Syntactic Models of Type Theory Simon Boulier 1 Pierre-Marie Pédrot 2 Nicolas Tabareau 1 1 INRIA, 2 University of Ljubljana CPP 17th January 2017 Pédrot & al (INRIA & U Ljubljana) The Next

More information

Mikiβ : A General GUI Library for Visualizing Proof Trees

Mikiβ : A General GUI Library for Visualizing Proof Trees Mikiβ : A General GUI Library for Visualizing Proof Trees System Description and Demonstration Kanako Sakurai and Kenichi Asai Ochanomizu University, Japan {sakurai.kanako,asai}@is.ocha.ac.jp Abstract.

More information

Symmetry in Type Theory

Symmetry in Type Theory Google May 29th, 2012 What is Symmetry? Definition Symmetry: Two or more things that initially look distinct, may actually be instances of a more general underlying principle. Why do we care? Simplicity.

More information