Abstraction. Markus Roggenbach. 4. März 2004

Size: px
Start display at page:

Download "Abstraction. Markus Roggenbach. 4. März 2004"

Transcription

1 Abstraction Markus Roggenbach 4. März 2004

2 Preliminary remark

3 Preliminary remark 2 Aspects of Programming Languages Value Expression State(transformation) Command Context(transformation) Declaration

4 Preliminary remark 3 Idea behind abstraction Parametrise expression function abstraction

5 Preliminary remark 3 Idea behind abstraction Parametrise expression function abstraction command procedure abstraction

6 Preliminary remark 3 Idea behind abstraction Parametrise expression function abstraction command procedure abstraction declaration generic abstraction

7 Preliminary remark 4 Motivations language extension

8 Preliminary remark 4 Motivations language extension structuring (in the small)

9 Preliminary remark 4 Motivations language extension structuring (in the small) distinguish: effect versus implementation

10 Preliminary remark 5 Abstractions I: Function abstraction A Function abstraction abstracts of an expression. function F (FP 1;...; FP n): T = B body: (yields) expression. function call (yields a value): expression.

11 Abstractions I: Function abstraction 6 Example function power (x:real;n:integer):real; begin if n=1 then power:=x else power:=x*power(x,n-1) end

12 Abstractions I: Function abstraction 7 Properties of function abstractions A function abstraction is side-effect free, if it does not change the global state of a program.

13 Abstractions I: Function abstraction 7 Properties of function abstractions A function abstraction is side-effect free, if it does not change the global state of a program. referentially transparent, if its value (with identical actual parameters) is independent of the program context.

14 Abstractions I: Function abstraction 8 Pascal An example Haskell var x: Char; x = newioref::io(ioref Char) hugo:: Int -> IOInt function hugo (y:int): Int; hugo (y::int) = begin x:= c ; writeioref x c >> hugo:= 2 * y return 2 * y end; erna :: Int -> Int erna (y::int) = 2 * y Standard function of IORef: >> :: IO alpha -> IO beta -> IO beta

15 Preliminary remark 9 Abstractions II: procedure abstraction A procedure abstraction abstracts of a command. procedure P (FP 1;... ; FP n) = B Body: Command Procedure call (changes the state): Command.

16 Abstractions II: procedure abstraction 10 Example in Ada procedure swap (a: in out integer, b: in out integer) is temp : integer begin temp:=a; a := b; b := temp end swap

17 Preliminary remark 11 Abstractions III: Generic Abstraction A generic abstraction abstracts of a declaration. generic FP 1;... ; FP n package P is B Body: Declaration. generic instantiation (yields context): Declaration.

18 Abstractions III: Generic Abstraction 12 Example in Ada generic capacity: in Positive; package queue_class is procedure append (newitem: in Character); procedure remove (olditem: out Character); end queue_class; package body queue_class is items: array (1..capacity) of Character;... end queue_class; package line_buffer is new queue_class (120);

19 Preliminary remark 13 Abstraction in general to abstract = to forget about

20 Preliminary remark 13 Abstraction in general to abstract = to forget about in programming languages: 1. (parametrised) combination of elements of one aspect to a new element of this aspect. 2. Binding of the abstraction (to a name).

21 Abstraction in general 14 Abstractions principle It is possible to construct abstractions over any syntactic class.

22 Abstraction in general 14 Abstractions principle It is possible to construct abstractions over any syntactic class. (provided only that the phrases of that class specify some kind of computation. )

23 Abstraction in general 14 Abstractions principle It is possible to construct abstractions over any syntactic class. (provided only that the phrases of that class specify some kind of computation. ) Example: variable access.

24 Preliminary remark 15 Parameter mechanism declaration : function F (FP 1;...;FP n) T = B call: F (AP 1;...;AP n) declaration : procedure P (FP 1;...;FP n) = B call: P (AP 1;...;AP n) declaration : generic FP 1;...;FP n package P is B call: package X is new P(AP 1;...;AP n) FP i: formal parameter AP i: actual parameter

25 Parameter mechanism 16 Assignment: actual formal using positions: AP i is assigned to FP i.

26 Parameter mechanism 16 Assignment: actual formal using positions: AP i is assigned to FP i. using names: names of the formal parameters.

27 Parameter mechanism 16 Assignment: actual formal using positions: AP i is assigned to FP i. using names: names of the formal parameters. function ComputePay (Income: Flaot; TaxRate: Float) return Float; pay := ComputePay (TaxRate => 0.15, Income => )

28 Parameter mechanism 17 Mode versus implementation Mode: in out in-out

29 Parameter mechanism 17 Mode versus implementation Mode: in out in-out Implementation: copy mechanism definitional mechanism

30 Parameter mechanism 18 Copy mechanism assignment: AP:=FP.

31 Parameter mechanism 18 Copy mechanism assignment: AP:=FP. Mode actual parameter entry exit in expression FP:=AP out variable AP:=FP in-out variable FP:=AP AP:=FP FP is a local variable of the abstraction.

32 Parameter mechanism 19 value: in result: out value result: in-out Example in Pseudo-Pascal type Vector= array [1..n] of Real; procedure add (value v,w: Vector; result: sum: Vector) var i: 1..n; begin for i:=1 to n do sum[i]:=v[i]+w[i] end;

33 Parameter mechanism 20 procedure normalise (value result u:vector) var i: 1..n; s: Real begin s:= 0.0 for i:=1 to n do s:= s + sqr(u[i]); s:= sqr(s); for i:=1 to n do u[i] := u[i] / s; end;

34 Parameter mechanism 21 Definitional mechanism Binding of the FPs to the APs.

35 Parameter mechanism 21 constant parameter: value Definitional mechanism Binding of the FPs to the APs.

36 Parameter mechanism 21 Definitional mechanism Binding of the FPs to the APs. constant parameter: value variable parameter: reference to a variable

37 Parameter mechanism 21 Definitional mechanism Binding of the FPs to the APs. constant parameter: value variable parameter: reference to a variable procedural parameter: procedure abstraction

38 Parameter mechanism 21 Definitional mechanism Binding of the FPs to the APs. constant parameter: value variable parameter: reference to a variable procedural parameter: procedure abstraction functional parameter: function abstraction (the only mechanism available in ML)

39 Parameter mechanism 22 const: in var: in-out Example in Pseudo-Pascal type Vector= array [1..n] of Real; procedure add (const v,w: Vector; var: sum: Vector) var i: 1..n; begin for i:=1 to n do sum[i]:=v[i]+w[i] end;

40 Parameter mechanism 23 procedure normalise (var u:vector) var i: 1..n; s: Real begin s:= 0.0 for i:=1 to n do s:= s + sqr(u[i]); s:= sqr(s); for i:=1 to n do u[i] := u[i] / s; end;

41 Parameter mechanism 24 The correspondence principle For each form of declaration there exists a corresponding parameter mechanism, and vice-versa.

42 Parameter mechanism 25 Be careful with out/in-out parameters procedure foolish (out x, out y) x:=7; y:=9 end foolish(p,p)

43 Parameter mechanism 26 Alias problems with variable parameters direct problem: (in C) void fun (int *first, int *second) fun (&total, &total)

44 Parameter mechanism 26 Alias problems with variable parameters direct problem: (in C) void fun (int *first, int *second) fun (&total, &total) undecidable problem: (in C) void fun (int *first, int *second) fun (&list[i], &list[j])

45 Parameter mechanism 27 Formal parameter and non-local variable: var global: integer; procedure hugo(var local: integer); begin... end; begin hugo(global);... end

46 Parameter mechanism 28 Copy versus definitional mechanism criterion copy def. add. memory x time to copy x access fast slow types with assignment all security in concurrent progr. yes no

47 Parameter mechanism 29 Parameter mechanisms in programing languages language in out in-out in-out copy definitional call by value call by reference C x (pointer) Pascal x (var) Modula-2 x (var) Java x (object param.) Fortran: in-out Modus

48 Parameter mechanism 30 Type check Languages with type check Fortran 77, Pascal, Modula-2, Ada, Java, Fortran 90

49 Parameter mechanism 30 Type check Languages with type check Fortran 77, Pascal, Modula-2, Ada, Java, Fortran 90 Languages without type check C the original version ANSI-C: type check as option

50 Parameter mechanism 31 Type completeness principle No operation should be restricted in the types of its operands. Results of Function abstractions:

51 Parameter mechanism 31 Type completeness principle No operation should be restricted in the types of its operands. Results of Function abstractions: Fortran 77, Pascal, Modula-2: simple types.

52 Parameter mechanism 31 Type completeness principle No operation should be restricted in the types of its operands. Results of Function abstractions: Fortran 77, Pascal, Modula-2: simple types. C: all types, with the exception of array and function.

53 Parameter mechanism 31 Type completeness principle No operation should be restricted in the types of its operands. Results of Function abstractions: Fortran 77, Pascal, Modula-2: simple types. C: all types, with the exception of array and function. Ada: all types

54 Parameter mechanism 32 Application order strict (applicative, eager): 1) evaluation at call v 2) binding: F P v.

55 Parameter mechanism 32 Application order strict (applicative, eager): 1) evaluation at call v 2) binding: F P v. normal order: 1) binding: F P AP. 2) evaluation at each use of F P.

56 Parameter mechanism 33 lazy: 1) binding: F P AP. 2) evaluation at first use of F P : v 3) binding: F P v.

57 Parameter mechanism 34 Examples fun sqr (n: int) = n * n sqr(p+q) fun cand (b1:bool, b2:bool) = if b1 then b2 else false cand( n > 0, t/0 > 1)

CS 345. Functions. Vitaly Shmatikov. slide 1

CS 345. Functions. Vitaly Shmatikov. slide 1 CS 345 Functions Vitaly Shmatikov slide 1 Reading Assignment Mitchell, Chapter 7 C Reference Manual, Chapters 4 and 9 slide 2 Procedural Abstraction Can be overloaded (e.g., binary +) Procedure is a named

More information

Subroutines. Subroutine. Subroutine design. Control abstraction. If a subroutine does not fit on the screen, it is too long

Subroutines. Subroutine. Subroutine design. Control abstraction. If a subroutine does not fit on the screen, it is too long Subroutines Subroutine = procedure (statement) - no return value - side effects function (expression) - return value - (no side effects in some languages) Subroutine Control abstraction Subroutine design

More information

Programming Languages: Lecture 11

Programming Languages: Lecture 11 1 Programming Languages: Lecture 11 Chapter 9: Subprograms Jinwoo Kim jwkim@jjay.cuny.edu Chapter 9 Topics 2 Introduction Fundamentals of Subprograms Design Issues for Subprograms Local Referencing Environments

More information

UNIT V Sub u P b ro r g o r g a r m a s

UNIT V Sub u P b ro r g o r g a r m a s UNIT V SubPrograms Outline Subprograms Parameter Passing Parameter correspondence Main Issues when designing subroutine in programming languages Parameter passing techniques Characteristics of Subprogram

More information

References and pointers

References and pointers References and pointers Pointers are variables whose value is a reference, i.e. an address of a store location. Early languages (Fortran, COBOL, Algol 60) had no pointers; added to Fortran 90. In Pascal,

More information

Subprograms. Bilkent University. CS315 Programming Languages Pinar Duygulu

Subprograms. Bilkent University. CS315 Programming Languages Pinar Duygulu 1 Subprograms CS 315 Programming Languages Pinar Duygulu Bilkent University Introduction 2 Two fundamental abstraction facilities Process abstraction Emphasized from early days Data abstraction Emphasized

More information

Organization of Programming Languages CS 3200/5200N. Lecture 09

Organization of Programming Languages CS 3200/5200N. Lecture 09 Organization of Programming Languages CS 3200/5200N Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Control Flow Control flow = the flow of control, or execution

More information

Lecture 11: Subprograms & their implementation. Subprograms. Parameters

Lecture 11: Subprograms & their implementation. Subprograms. Parameters Lecture 11: Subprograms & their implementation Subprograms Parameter passing Activation records The run-time stack Implementation of static and dynamic scope rules Subprograms A subprogram is a piece of

More information

Programmiersprachen (Programming Languages)

Programmiersprachen (Programming Languages) 2016-05-13 Preface Programmiersprachen (Programming Languages) coordinates: lecturer: web: usable for: requirements: No. 185.208, VU, 3 ECTS Franz Puntigam http://www.complang.tuwien.ac.at/franz/ps.html

More information

Chapter 5: Procedural abstraction. Function procedures. Function procedures. Proper procedures and function procedures

Chapter 5: Procedural abstraction. Function procedures. Function procedures. Proper procedures and function procedures Chapter 5: Procedural abstraction Proper procedures and function procedures Abstraction in programming enables distinction: What a program unit does How a program unit works This enables separation of

More information

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine.

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 2. true / false ML can be compiled. 3. true / false FORTRAN can reasonably be considered

More information

Chapter 8 ( ) Control Abstraction. Subprograms Issues related to subprograms How is control transferred to & from the subprogram?

Chapter 8 ( ) Control Abstraction. Subprograms Issues related to subprograms How is control transferred to & from the subprogram? Control Abstraction Chapter 8 (81 84) Control Abstraction: Subroutines and parameters Programmer defined control structures Subprograms Procedures Functions Coroutines Exception handlers Processes Subprograms

More information

Types and Type Inference

Types and Type Inference CS 242 2012 Types and Type Inference Notes modified from John Mitchell and Kathleen Fisher Reading: Concepts in Programming Languages, Revised Chapter 6 - handout on Web!! Outline General discussion of

More information

Chapter 5 Names, Binding, Type Checking and Scopes

Chapter 5 Names, Binding, Type Checking and Scopes Chapter 5 Names, Binding, Type Checking and Scopes Names - We discuss all user-defined names here - Design issues for names: -Maximum length? - Are connector characters allowed? - Are names case sensitive?

More information

Types and Type Inference

Types and Type Inference Types and Type Inference Mooly Sagiv Slides by Kathleen Fisher and John Mitchell Reading: Concepts in Programming Languages, Revised Chapter 6 - handout on the course homepage Outline General discussion

More information

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures

Agenda. The main body and cout. Fundamental data types. Declarations and definitions. Control structures The main body and cout Agenda 1 Fundamental data types Declarations and definitions Control structures References, pass-by-value vs pass-by-references The main body and cout 2 C++ IS AN OO EXTENSION OF

More information

Implementing Subprograms

Implementing Subprograms 1 Implementing Subprograms CS 315 Programming Languages Pinar Duygulu Bilkent University CS315 Programming Languages Pinar Duygulu The General Semantics of Calls and Returns 2 The subprogram call and return

More information

COP4020 Programming Languages. Subroutines and Parameter Passing Prof. Robert van Engelen

COP4020 Programming Languages. Subroutines and Parameter Passing Prof. Robert van Engelen COP4020 Programming Languages Subroutines and Parameter Passing Prof. Robert van Engelen Overview Parameter passing modes Subroutine closures as parameters Special-purpose parameters Function returns COP4020

More information

INF 212/CS 253 Type Systems. Instructors: Harry Xu Crista Lopes

INF 212/CS 253 Type Systems. Instructors: Harry Xu Crista Lopes INF 212/CS 253 Type Systems Instructors: Harry Xu Crista Lopes What is a Data Type? A type is a collection of computational entities that share some common property Programming languages are designed to

More information

9/21/17. Outline. Expression Evaluation and Control Flow. Arithmetic Expressions. Operators. Operators. Notation & Placement

9/21/17. Outline. Expression Evaluation and Control Flow. Arithmetic Expressions. Operators. Operators. Notation & Placement Outline Expression Evaluation and Control Flow In Text: Chapter 6 Notation Operator evaluation order Operand evaluation order Overloaded operators Type conversions Short-circuit evaluation of conditions

More information

IA010: Principles of Programming Languages

IA010: Principles of Programming Languages IA010 5. Subroutines 1 IA010: Principles of Programming Languages 5. Subroutines Jan Obdržálek obdrzalek@fi.muni.cz Faculty of Informatics, Masaryk University, Brno Subroutines IA010 5. Subroutines 2 Subprograms,

More information

Chapter 9 Subprograms

Chapter 9 Subprograms Chapter 9 Subprograms We now explore the design of subprograms, including parameter-passing methods, local referencing environment, overloaded subprograms, generic subprograms, and the aliasing and problematic

More information

More Untyped Lambda Calculus & Simply Typed Lambda Calculus

More Untyped Lambda Calculus & Simply Typed Lambda Calculus Concepts in Programming Languages Recitation 6: More Untyped Lambda Calculus & Simply Typed Lambda Calculus Oded Padon & Mooly Sagiv (original slides by Kathleen Fisher, John Mitchell, Shachar Itzhaky,

More information

Functional Languages and Higher-Order Functions

Functional Languages and Higher-Order Functions Functional Languages and Higher-Order Functions Leonidas Fegaras CSE 5317/4305 L12: Higher-Order Functions 1 First-Class Functions Values of some type are first-class if They can be assigned to local variables

More information

9. Subprograms. 9.2 Fundamentals of Subprograms

9. Subprograms. 9.2 Fundamentals of Subprograms 9. Subprograms 9.2 Fundamentals of Subprograms General characteristics of subprograms A subprogram has a single entry point The caller is suspended during execution of the called subprogram Control always

More information

Functional Programming. Big Picture. Design of Programming Languages

Functional Programming. Big Picture. Design of Programming Languages Functional Programming Big Picture What we ve learned so far: Imperative Programming Languages Variables, binding, scoping, reference environment, etc What s next: Functional Programming Languages Semantics

More information

INF 212 ANALYSIS OF PROG. LANGS Type Systems. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS Type Systems. Instructors: Crista Lopes Copyright Instructors. INF 212 ANALYSIS OF PROG. LANGS Type Systems Instructors: Crista Lopes Copyright Instructors. What is a Data Type? A type is a collection of computational entities that share some common property Programming

More information

Parameter Binding. Value: The formal parameter represents a local variable initialized to the value of the corresponding actual parameter.

Parameter Binding. Value: The formal parameter represents a local variable initialized to the value of the corresponding actual parameter. Parameter Binding Almost all programming languages have some notion of binding an actual parameter (provided at the point of call) to a formal parameter (used in the body of a subprogram). There are many

More information

COMP 181. Agenda. Midterm topics. Today: type checking. Purpose of types. Type errors. Type checking

COMP 181. Agenda. Midterm topics. Today: type checking. Purpose of types. Type errors. Type checking Agenda COMP 181 Type checking October 21, 2009 Next week OOPSLA: Object-oriented Programming Systems Languages and Applications One of the top PL conferences Monday (Oct 26 th ) In-class midterm Review

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages 1 / 26 CSE 307: Principles of Programming Languages Names, Scopes, and Bindings R. Sekar 2 / 26 Topics Bindings 1. Bindings Bindings: Names and Attributes Names are a fundamental abstraction in languages

More information

Chapter 8. Fundamental Characteristics of Subprograms. 1. A subprogram has a single entry point

Chapter 8. Fundamental Characteristics of Subprograms. 1. A subprogram has a single entry point Fundamental Characteristics of Subprograms 1. A subprogram has a single entry point 2. The caller is suspended during execution of the called subprogram 3. Control always returns to the caller when the

More information

NOTE: Answer ANY FOUR of the following 6 sections:

NOTE: Answer ANY FOUR of the following 6 sections: A-PDF MERGER DEMO Philadelphia University Lecturer: Dr. Nadia Y. Yousif Coordinator: Dr. Nadia Y. Yousif Internal Examiner: Dr. Raad Fadhel Examination Paper... Programming Languages Paradigms (750321)

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 3 Thomas Wies New York University Review Last week Names and Bindings Lifetimes and Allocation Garbage Collection Scope Outline Control Flow Sequencing

More information

Programming Languages Third Edition. Chapter 10 Control II Procedures and Environments

Programming Languages Third Edition. Chapter 10 Control II Procedures and Environments Programming Languages Third Edition Chapter 10 Control II Procedures and Environments Objectives Understand the nature of procedure definition and activation Understand procedure semantics Learn parameter-passing

More information

Design Issues. Subroutines and Control Abstraction. Subroutines and Control Abstraction. CSC 4101: Programming Languages 1. Textbook, Chapter 8

Design Issues. Subroutines and Control Abstraction. Subroutines and Control Abstraction. CSC 4101: Programming Languages 1. Textbook, Chapter 8 Subroutines and Control Abstraction Textbook, Chapter 8 1 Subroutines and Control Abstraction Mechanisms for process abstraction Single entry (except FORTRAN, PL/I) Caller is suspended Control returns

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 15: Review and Functional Programming Zheng (Eddy) Zhang Rutgers University March 19, 2018 Class Information Midterm exam forum open in Sakai. HW4 and

More information

SEMANTIC ANALYSIS TYPES AND DECLARATIONS

SEMANTIC ANALYSIS TYPES AND DECLARATIONS SEMANTIC ANALYSIS CS 403: Type Checking Stefan D. Bruda Winter 2015 Parsing only verifies that the program consists of tokens arranged in a syntactically valid combination now we move to check whether

More information

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline CS 0 Lecture 8 Chapter 5 Louden Outline The symbol table Static scoping vs dynamic scoping Symbol table Dictionary associates names to attributes In general: hash tables, tree and lists (assignment ) can

More information

22c:111 Programming Language Concepts. Fall Types I

22c:111 Programming Language Concepts. Fall Types I 22c:111 Programming Language Concepts Fall 2008 Types I Copyright 2007-08, The McGraw-Hill Company and Cesare Tinelli. These notes were originally developed by Allen Tucker, Robert Noonan and modified

More information

Lectures Basics in Procedural Programming: Machinery

Lectures Basics in Procedural Programming: Machinery Lectures 3-4-5-6 Basics in Procedural Programming: Machinery February 21-28, 2014 2014-03-01 11:04:07 1/48 Lecture3-6E-2014.pdf (#21) Basics in Procedural Programming: Machinery Naming and Binding Mutable

More information

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University

CS558 Programming Languages Winter 2018 Lecture 4a. Andrew Tolmach Portland State University CS558 Programming Languages Winter 2018 Lecture 4a Andrew Tolmach Portland State University 1994-2018 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

Lambda Calculus. Concepts in Programming Languages Recitation 6:

Lambda Calculus. Concepts in Programming Languages Recitation 6: Concepts in Programming Languages Recitation 6: Lambda Calculus Oded Padon & Mooly Sagiv (original slides by Kathleen Fisher, John Mitchell, Shachar Itzhaky, S. Tanimoto ) Reference: Types and Programming

More information

Lecture Overview. [Scott, chapter 7] [Sebesta, chapter 6]

Lecture Overview. [Scott, chapter 7] [Sebesta, chapter 6] 1 Lecture Overview Types 1. Type systems 2. How to think about types 3. The classification of types 4. Type equivalence structural equivalence name equivalence 5. Type compatibility 6. Type inference [Scott,

More information

Functional Programming and Haskell

Functional Programming and Haskell Functional Programming and Haskell Tim Dawborn University of Sydney, Australia School of Information Technologies Tim Dawborn Functional Programming and Haskell 1/22 What are Programming Paradigms? A programming

More information

Names, Scopes, and Bindings II. Hwansoo Han

Names, Scopes, and Bindings II. Hwansoo Han Names, Scopes, and Bindings II Hwansoo Han Scope Rules A scope is textual region where bindings are active A program section of maximal size Bindings become active at the entry No bindings change in the

More information

S.No Question Blooms Level Course Outcome UNIT I. Programming Language Syntax and semantics

S.No Question Blooms Level Course Outcome UNIT I. Programming Language Syntax and semantics S.No Question Blooms Level Course Outcome UNIT I. Programming Language Syntax and semantics 1 What do you mean by axiomatic Knowledge C254.1 semantics? Give the weakest precondition for a sequence of statements.

More information

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 4 Robert Grimm, New York University 1 Review Last week Control Structures Selection Loops 2 Outline Subprograms Calling Sequences Parameter Passing

More information

Binding and Variables

Binding and Variables Binding and Variables 1. DEFINITIONS... 2 2. VARIABLES... 3 3. TYPE... 4 4. SCOPE... 4 5. REFERENCES... 7 6. ROUTINES... 9 7. ALIASING AND OVERLOADING... 10 8. GENERICS AND TEMPLATES... 12 A. Bellaachia

More information

SE352b: Roadmap. SE352b Software Engineering Design Tools. W3: Programming Paradigms

SE352b: Roadmap. SE352b Software Engineering Design Tools. W3: Programming Paradigms SE352b Software Engineering Design Tools W3: Programming Paradigms Feb. 3, 2005 SE352b, ECE,UWO, Hamada Ghenniwa SE352b: Roadmap CASE Tools: Introduction System Programming Tools Programming Paradigms

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2016 Lecture 4a Andrew Tolmach Portland State University 1994-2016 Pragmatics of Large Values Real machines are very efficient at handling word-size chunks of data (e.g.

More information

CHAPTER 4 FUNCTIONS. 4.1 Introduction

CHAPTER 4 FUNCTIONS. 4.1 Introduction CHAPTER 4 FUNCTIONS 4.1 Introduction Functions are the building blocks of C++ programs. Functions are also the executable segments in a program. The starting point for the execution of a program is main

More information

UNIT II Structuring the Data, Computations and Program. Kainjan Sanghavi

UNIT II Structuring the Data, Computations and Program. Kainjan Sanghavi UNIT II Structuring the Data, Computations and Program B y Kainjan Sanghavi Contents Monomorphic versus polymorphic type systems Case Study- The type structure of C++ and Java Structuring the computation

More information

Semantic Analysis. How to Ensure Type-Safety. What Are Types? Static vs. Dynamic Typing. Type Checking. Last time: CS412/CS413

Semantic Analysis. How to Ensure Type-Safety. What Are Types? Static vs. Dynamic Typing. Type Checking. Last time: CS412/CS413 CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 13: Types and Type-Checking 19 Feb 07 Semantic Analysis Last time: Semantic errors related to scopes Symbol tables Name resolution This lecture:

More information

known as non-void functions/methods in C/C++/Java called from within an expression.

known as non-void functions/methods in C/C++/Java called from within an expression. FUNCTIONS 1 OUTLINE Basic Terminology Function Call and Return Parameters Parameter Passing Mechanisms Activation Records Recursive Functions Run Time Stack Function Declaration and Call in Clite Completing

More information

Subprograms. Akim D le Étienne Renault Roland Levillain EPITA École Pour l Informatique et les Techniques Avancées

Subprograms. Akim D le Étienne Renault Roland Levillain EPITA École Pour l Informatique et les Techniques Avancées Subprograms Akim Demaille Étienne Renault Roland Levillain first.last@lrde.epita.fr EPITA École Pour l Informatique et les Techniques Avancées June 1, 2017 Subprograms 1 Routines 2 Argument passing 3 Functions

More information

PROCEDURES, METHODS AND FUNCTIONS

PROCEDURES, METHODS AND FUNCTIONS Cosc 2P90 PROCEDURES, METHODS AND FUNCTIONS (c) S. Thompson, M. Winters 1 Procedures, Functions & Methods The are varied and complex rules for declaring, defining and calling procedures, methods and functions

More information

Assigning to a Variable

Assigning to a Variable What is the result of this program? Is it 0 or 1? Assigning to a Variable let f = proc(x) set x = 1 in let y = 0 in { (f y); y } 1 Assigning to a Variable let f = proc(x) set x = 1 in let y = 0 in { (f

More information

Run-time Environments - 2

Run-time Environments - 2 Run-time Environments - 2 Y.N. Srikant Computer Science and Automation Indian Institute of Science Bangalore 560 012 NPTEL Course on Principles of Compiler Design Outline of the Lecture n What is run-time

More information

Principles of Programming Languages

Principles of Programming Languages Ting Zhang Iowa State University Computer Science Department Lecture Note 16 October 26, 2010 Control Abstraction: Subroutines 1 / 26 Outline 1 Subroutines 2 Parameter Passing 3 Generic Subroutines 2 /

More information

Chapter 9 Subprograms

Chapter 9 Subprograms Chapter 9 Subprograms 9.1 Introduction 366 9.2 Fundamentals of Subprograms 366 9.3 Design Issues for Subprograms 374 9.4 Local Referencing Environments 375 9.5 Parameter-Passing Methods 377 9.6 Parameters

More information

Types, Type Inference and Unification

Types, Type Inference and Unification Types, Type Inference and Unification Mooly Sagiv Slides by Kathleen Fisher and John Mitchell Cornell CS 6110 Summary (Functional Programming) Lambda Calculus Basic ML Advanced ML: Modules, References,

More information

Chapter 10. Implementing Subprograms ISBN

Chapter 10. Implementing Subprograms ISBN Chapter 10 Implementing Subprograms ISBN 0-321-33025-0 Chapter 10 Topics The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing Subprograms with Stack-Dynamic Local Variables

More information

Informatica 3 Syntax and Semantics

Informatica 3 Syntax and Semantics Informatica 3 Syntax and Semantics Marcello Restelli 9/15/07 Laurea in Ingegneria Informatica Politecnico di Milano Introduction Introduction to the concepts of syntax and semantics Binding Variables Routines

More information

Chapter 3:: Names, Scopes, and Bindings (cont.)

Chapter 3:: Names, Scopes, and Bindings (cont.) Chapter 3:: Names, Scopes, and Bindings (cont.) Programming Language Pragmatics Michael L. Scott Review What is a regular expression? What is a context-free grammar? What is BNF? What is a derivation?

More information

Last class. CS Principles of Programming Languages. Introduction. Outline

Last class. CS Principles of Programming Languages. Introduction. Outline Last class CS6848 - Principles of Programming Languages Principles of Programming Languages V. Krishna Nandivada IIT Madras Interpreters A Environment B Cells C Closures D Recursive environments E Interpreting

More information

Lecture #23: Conversion and Type Inference

Lecture #23: Conversion and Type Inference Lecture #23: Conversion and Type Inference Administrivia. Due date for Project #2 moved to midnight tonight. Midterm mean 20, median 21 (my expectation: 17.5). Last modified: Fri Oct 20 10:46:40 2006 CS164:

More information

Chapter 3:: Names, Scopes, and Bindings (cont.)

Chapter 3:: Names, Scopes, and Bindings (cont.) Chapter 3:: Names, Scopes, and Bindings (cont.) Programming Language Pragmatics Michael L. Scott Review What is a regular expression? What is a context-free grammar? What is BNF? What is a derivation?

More information

Type Bindings. Static Type Binding

Type Bindings. Static Type Binding Type Bindings Two key issues in binding (or associating) a type to an identifier: How is type binding specified? When does the type binding take place? N. Meng, S. Arthur 1 Static Type Binding An explicit

More information

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = "Hello";

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = Hello; Lecture #23: Conversion and Type Inference Administrivia. Due date for Project #2 moved to midnight tonight. Midterm mean 20, median 21 (my expectation: 17.5). In Java, this is legal: Object x = "Hello";

More information

More Examples. Lecture 24: More Scala. Higher-Order Functions. Control Structures

More Examples. Lecture 24: More Scala. Higher-Order Functions. Control Structures More Examples Lecture 24: More Scala CSC 131 Fall, 2014 Kim Bruce MyList, MyArrayList, SinglyLinkedList - Val vs var - Can create Array[T] (unlike Java), though need implicit ClassManifest - foreach(f)

More information

Principles of Programming Languages

Principles of Programming Languages Principles of Programming Languages Lecture 06 Parameters 1 Parameter Passing Modes Definitional Modes (call time binding)! Call as constant CAC! Call by reference CBR Copying Modes (call time copying)!

More information

Types. What is a type?

Types. What is a type? Types What is a type? Type checking Type conversion Aggregates: strings, arrays, structures Enumeration types Subtypes Types, CS314 Fall 01 BGRyder 1 What is a type? A set of values and the valid operations

More information

Chapter 10. Implementing Subprograms

Chapter 10. Implementing Subprograms Chapter 10 Implementing Subprograms Chapter 10 Topics The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing Subprograms with Stack-Dynamic Local Variables Nested Subprograms

More information

Chapter7 Expression and Assignment Statement. Introduction

Chapter7 Expression and Assignment Statement. Introduction Chapter7 Expression and Assignment Statement Arithmetic Expressions Overloaded Operators Boolean Expressions Short-Circuit Evaluation Assignment Statements Mixed-Mode Assignment Introduction Fundamental

More information

Software II: Principles of Programming Languages. Why Expressions?

Software II: Principles of Programming Languages. Why Expressions? Software II: Principles of Programming Languages Lecture 7 Expressions and Assignment Statements Why Expressions? Expressions are the fundamental means of specifying computations in a programming language

More information

Chapter 6 Single-dimensional Arrays

Chapter 6 Single-dimensional Arrays Chapter 6 Single-dimensional s 1. See the section "Declaring and Creating s." 2. You access an array using its index. 3. No memory is allocated when an array is declared. The memory is allocated when creating

More information

Lecture 12: Data Types (and Some Leftover ML)

Lecture 12: Data Types (and Some Leftover ML) Lecture 12: Data Types (and Some Leftover ML) COMP 524 Programming Language Concepts Stephen Olivier March 3, 2009 Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts Goals

More information

COP4020 Programming Languages. Control Flow Prof. Robert van Engelen

COP4020 Programming Languages. Control Flow Prof. Robert van Engelen COP4020 Programming Languages Control Flow Prof. Robert van Engelen Overview Structured and unstructured flow Goto's Sequencing Selection Iteration and iterators Recursion Nondeterminacy Expressions evaluation

More information

CMSC 4023 Chapter 9. Fundamentals of Subprograms Introduction

CMSC 4023 Chapter 9. Fundamentals of Subprograms Introduction 9. 9.1. Introduction Two fundamental abstraction facilities Process abstraction Emphasized from early days Data abstraction Emphasized in the1980s 9.2. 9.2.1. General Subprogram Characteristics Each subprogram

More information

Subprograms. Copyright 2015 Pearson. All rights reserved. 1-1

Subprograms. Copyright 2015 Pearson. All rights reserved. 1-1 Subprograms Introduction Fundamentals of Subprograms Design Issues for Subprograms Local Referencing Environments Parameter-Passing Methods Parameters That Are Subprograms Calling Subprograms Indirectly

More information

Fundamentals of Programming Languages

Fundamentals of Programming Languages Fundamentals of Programming Languages 1. DEFINITIONS... 2 2. BUILT-IN TYPES AND PRIMITIVE TYPES... 3 TYPE COMPATIBILITY... 9 GENERIC TYPES... 14 MONOMORPHIC VERSUS POLYMORPHIC... 16 TYPE IMPLEMENTATION

More information

Intermediate Code Generation Part II

Intermediate Code Generation Part II Intermediate Code Generation Part II Chapter 6: Type checking, Control Flow Slides adapted from : Robert van Engelen, Florida State University Static versus Dynamic Checking Static checking: the compiler

More information

LECTURE 18. Control Flow

LECTURE 18. Control Flow LECTURE 18 Control Flow CONTROL FLOW Sequencing: the execution of statements and evaluation of expressions is usually in the order in which they appear in a program text. Selection (or alternation): a

More information

Chapter 7 Expressions and Assignment statements

Chapter 7 Expressions and Assignment statements Chapter 7 Expressions and Assignment statements 1 7.1 Introduction Expressions are the fundamental means of specifying computations in a programming language Semantics of expressions are discussed in this

More information

Polymorphism and Type Inference

Polymorphism and Type Inference Polymorphism and Type Inference Volker Stolz stolz@ifi.uio.no Department of Informatics University of Oslo Initially by Gerardo Schneider. Based on John C. Mitchell s slides (Stanford U.) Compile-time

More information

UNIT I Programming Language Syntax and semantics. Kainjan Sanghavi

UNIT I Programming Language Syntax and semantics. Kainjan Sanghavi UNIT I Programming Language Syntax and semantics B y Kainjan Sanghavi Contents Bird s eye view of programming language concepts Syntax Semantics Pragmatics Programming Language Concepts A programming language

More information

Functions and Recursion

Functions and Recursion Programming Languages Functions and Recursion Dr. Philip Cannata 1 10 High Level Languages This Course Jython in Java Java (Object Oriented) ACL2 (Propositional Induction) Relation Algorithmic Information

More information

Chapter 5 Names, Bindings, Type Checking, and Scopes

Chapter 5 Names, Bindings, Type Checking, and Scopes Chapter 5 Names, Bindings, Type Checking, and Scopes 長庚大學資訊工程學系 陳仁暉 助理教授 Tel: (03) 211-8800 Ext: 5990 E-mail: jhchen@mail.cgu.edu.tw URL: http://www.csie.cgu.edu.tw/jhchen All rights reserved. No part

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming 1 and data-structures CS/ENGRD 2110 SUMMER 2018 Lecture 1: Types and Control Flow http://courses.cs.cornell.edu/cs2110/2018su Lecture 1 Outline 2 Languages Overview Imperative

More information

Programming Languages: Lecture 12

Programming Languages: Lecture 12 1 Programming Languages: Lecture 12 Chapter 10: Implementing Subprograms Jinwoo Kim jwkim@jjay.cuny.edu Chapter 10 Topics 2 The General Semantics of Calls and Returns Implementing Simple Subprograms Implementing

More information

Principles of Programming Languages 2017W, Functional Programming

Principles of Programming Languages 2017W, Functional Programming Principles of Programming Languages 2017W, Functional Programming Assignment 3: Lisp Machine (16 points) Lisp is a language based on the lambda calculus with strict execution semantics and dynamic typing.

More information

CS313D: ADVANCED PROGRAMMING LANGUAGE

CS313D: ADVANCED PROGRAMMING LANGUAGE CS313D: ADVANCED PROGRAMMING LANGUAGE Computer Science department Lecture 2 : C# Language Basics Lecture Contents 2 The C# language First program Variables and constants Input/output Expressions and casting

More information

JVM ByteCode Interpreter

JVM ByteCode Interpreter JVM ByteCode Interpreter written in Haskell (In under 1000 Lines of Code) By Louis Jenkins Presentation Schedule ( 15 Minutes) Discuss and Run the Virtual Machine first

More information

Page # Expression Evaluation: Outline. CSCI: 4500/6500 Programming Languages. Expression Evaluation: Precedence

Page # Expression Evaluation: Outline. CSCI: 4500/6500 Programming Languages. Expression Evaluation: Precedence Expression Evaluation: Outline CSCI: 4500/6500 Programming Languages Control Flow Chapter 6 Infix, Prefix or Postfix Precedence and Associativity Side effects Statement versus Expression Oriented Languages

More information

CSc 372. Comparative Programming Languages. 2 : Functional Programming. Department of Computer Science University of Arizona

CSc 372. Comparative Programming Languages. 2 : Functional Programming. Department of Computer Science University of Arizona 1/37 CSc 372 Comparative Programming Languages 2 : Functional Programming Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2013 Christian Collberg 2/37 Programming Paradigms

More information

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS PAUL L. BAILEY Abstract. This documents amalgamates various descriptions found on the internet, mostly from Oracle or Wikipedia. Very little of this

More information

procedure definition (or declaration - some make a distinction, we generally won t), e.g., void foo(int x) {... }

procedure definition (or declaration - some make a distinction, we generally won t), e.g., void foo(int x) {... } Parameters Terminology: procedure invocation, e.g., (in different language notations) foo(a*8) x:=goo(19,a) call hoo() actual parameters, e.g., a*8 is an actual parameter of the above inv ocation of foo

More information

G Programming Languages Spring 2010 Lecture 6. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 6. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 6 Robert Grimm, New York University 1 Review Last week Function Languages Lambda Calculus SCHEME review 2 Outline Promises, promises, promises Types,

More information

Topic 8: Lazy Evaluation

Topic 8: Lazy Evaluation Topic 8: Lazy Evaluation 1 Recommended Exercises and Readings From Haskell: The craft of functional programming (3 rd Ed.) Exercises: 17.1, 17.2, 17.4, 17.8, 17.23, 17.25, 17.28, 17.29 Readings: Chapter

More information