Preprocessing DWML, /33

Size: px
Start display at page:

Download "Preprocessing DWML, /33"

Transcription

1 Preprocessing DWML, /33

2 Preprocessing Before you can start on the actual data mining, the data may require some preprocessing: Attributes may be redundant. Values may be missing. The data contains outliers. The data is not in a suitable format. The values appear inconsistent. Garbage in, garbage out DWML, /33

3 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 DWML, /33

4 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Correct zip code? DWML, /33

5 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Correct zip code? DWML, /33

6 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W ?? S M S F D 3000 Missing value! DWML, /33

7 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Error/outlier! DWML, /33

8 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Error! DWML, /33

9 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Unexpected precision. DWML, /33

10 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Categorical value? DWML, /33

11 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Error/missing value? DWML, /33

12 Preprocessing Data Cleaning ID Zip Gander Income Age Marital status Transaction amount M C M J2S7K7 F W S M S F D 3000 Other issues: What are the semantics of the marital status? What is the unit of measure for the transaction field? DWML, /33

13 Preprocessing Missing Values In many real world data bases you will be faced with the problem of missing data: Id. Savings Assets Income Credit Risk ($ 1000s) 1 Medium High 75 Good 2 Low Low 50 Bad 3 25 Bad 4 Medium Medium Good 5 Low Medium 100 Good 6 High High 25 Good 7 Low 25 Bad 8 Medium Medium 75 Good By simply discarding the records with missing data we might unintentionally bias the data. DWML, /33

14 Preprocessing Missing Values Possible strategies for handling missing data: Use a predefined constant. Use the mean (for numerical variables) or the mode (for categorical values). Use a value drawn randomly form the observed distribution. Id. Savings Assets Income Credit Risk ($ 1000s) 1 Medium High 75 Good 2 Low Low 50 Bad 3 25 Bad 4 Medium Medium Good 5 Low Medium 100 Good 6 High High 25 Good 7 Low 25 Bad 8 Medium Medium 75 Good DWML, /33

15 Preprocessing Missing Values Possible strategies for handling missing data: Use a predefined constant. Use the mean (for numerical variables) or the mode (for categorical values). Use a value drawn randomly form the observed distribution. Id. Savings Assets Income Credit Risk ($ 1000s) 1 Medium High 75 Good 2 Low Low 50 Bad 3 Low 25 Bad 4 Medium Medium Good 5 Low Medium 100 Good 6 High High 25 Good 7 Low 25 Bad 8 Medium Medium 75 Good Both Low and Medium are modes for savings. DWML, /33

16 Preprocessing Missing Values Possible strategies for handling missing data: Use a predefined constant. Use the mean (for numerical variables) or the mode (for categorical values). Use a value drawn randomly form the observed distribution. Id. Savings Assets Income Credit Risk ($ 1000s) 1 Medium High 75 Good 2 Low Low 50 Bad 3 Low High 25 Bad 4 Medium Medium Good 5 Low Medium 100 Good 6 High High 25 Good 7 Low Medium 25 Bad 8 Medium Medium 75 Good High and Medium are drawn randomly from the observed distribution for Assets. DWML, /33

17 Preprocessing Missing Values Possible strategies for handling missing data: Use a predefined constant. Use the mean (for numerical variables) or the mode (for categorical values). Use a value drawn randomly form the observed distribution. Id. Savings Assets Income Credit Risk ($ 1000s) 1 Medium High 75 Good 2 Low Low 50 Bad 3 Low High 25 Bad 4 Medium Medium 54 Good 5 Low Medium 100 Good 6 High High 25 Good 7 Low Medium 25 Bad 8 Medium Medium 75 Good DWML, /33

18 Preprocessing Discretization Some data mining algorithms can only handle discrete attributes. Possible solution: Divide the continuous range into intervals. Example: (Income, Risk) = (25, B),(25, B),(50, G),(51, B),(54, G),(75, G),(75, G)(100, G),(100, G) Unsupervised discretization Equal width binning (width 25): Equal frequency binning (bin density 3): Bin 1: 25, 25 [25, 50) Bin 2: 50, 51, 54 [50,75) Bin 3: 75, 75, 100, 100 [75, 100] Bin 1: 25, 25, 50 [25, 50.5) Bin 2: 51, 54, 75, 75 [50.5, 87.5) Bin 3: 100, 100 [87.5, 100] DWML, /33

19 Preprocessing Supervised discretization Take the class distribution into account when selecting the intervals. For example, recursively bisect the interval by selecting the split point giving the highest information gain:» S v Gain(S, v) = Ent(S) S Until some stopping criteria is met. Ent(S v ) + S >v Ent(S >v ) S (Income, Risk) = (25, B),(25, B),(50, G),(51, B),(54, G),(75, G),(75, G)(100, G),(100, G) Ent(S) = 3 9 log log 2 «6 9 = Split E-Ent Interval (, 25],(25, ) (, 50],(50, ) (, 51],(51, ) (, 54],(54, ) (, 75],(75, ) DWML, /33

20 Preprocessing Data Transformation Some data mining tools tends to give variables with a large range a higher significance than variables with a smaller range. For example, Age versus income. DWML, /33

21 Preprocessing Data Transformation Some data mining tools tends to give variables with a large range a higher significance than variables with a smaller range. For example, Age versus income. The typical approach is to standardize the scales: 1 Min-Max Normalization: 0.8 X = X min(x) max(x) min(x). normalized values A1 A original values DWML, /33

22 Preprocessing Data Transformation Some data mining tools tends to give variables with a large range a higher significance than variables with a smaller range. For example, Age versus income. The typical approach is to standardize the scales: 1 Min-Max Normalization: 0.8 X = X min(x) max(x) min(x). normalized values A1 A original values 3 Z-score standardization: X = X mean(x) SD(X). standardized values A1 A original values DWML, /33

23 Preprocessing Outliers Data: 1, 2,3,3,4, 4,5,5,6, 6,6,6,7,7, 8,8,8, Summary statistics: First quartile (1Q): 25% of the data = 4. Second quartile (2Q): 50% of the data = Third quartile (3Q): 75% of the data = 7. Interquartile range IQR = 3Q 1Q = DWML, /33

24 Preprocessing Outliers Data: 1, 2,3,3,4, 4,5,5,6, 6,6,6,7,7, 8,8,8, Summary statistics: First quartile (1Q): 25% of the data = 4. Second quartile (2Q): 50% of the data = 6. Third quartile (3Q): 75% of the data = 7. Interquartile range IQR = 3Q 1Q = A data point may be an outlier if: It is lower than 1Q 1.5 IQR = = 0.5. It is higher than 3Q IQR = = DWML, /33

25 Clustering DWML, /33

26 Clustering Unlabeled Data The Iris data with class labels removed: Attributes SL SW PL PW Unlabeled data in general: (discrete or continuous) attributes, no class variable. DWML, /33

27 Clustering Clustering A clustering of the data S = s 1,..., s N consists of a set C = {c 1,..., c k } of cluster labels, and a cluster assignment ca : S C. Clustering Iris with C = {blue, red}: Note: a clustering partitions the datapoints, not necessarily the instance space. When cluster labels have no particular significance, can identify clustering also with partition S = S 1... S k where S i = ca 1 (c i ). DWML, /33

28 Clustering Clustering goal Instance Space Between cluster distances Within cluster distances A candidate clustering (indicated by colors) of data cases in instance space. Arrows indicate between- and within-cluster distances (selected). General goal: find clustering with large between-cluster variation (sum of between-cluster distances), and small within-cluster variation (sum of within-cluster distances). Concrete goal varies according to exact distance definition. DWML, /33

29 Clustering Examples Group plants/animals into families or related species, based on - morphological features - molecular features Identify types of customers based on attributes in a database (can then be targeted by special advertising campaigns) Web mining: group web-pages according to content DWML, /33

30 Clustering Clustering vs. Classification The cluster label can be interpreted as a hidden class variable that is never observed whose number of states is unknown on which the distribution of attribute values depends Clustering is often called unsupervised learning, vs. the supervised learning of classifiers: in supervised learning correct class labels for the training data are provided to the learning algorithm by a supervisor, or teacher. One key problem in clustering is determining the right number of clusters. Two different approaches: Partition-based clustering Hierarchical clustering All clustering methods require a distance measure on the instance space! DWML, /33

31 Clustering Partition-based Clustering Number k of clusters fixed (user defined). Partition data into k clusters. k-means clustering Assume that there is a distance function d(s, s ) defined between data items we can compute the mean value of a collection {s 1,..., s l } of data items Initialize: randomly pick initial cluster centers c = c 1,..., c k from S repeat for i = 1,..., k S i := {s S c i = arg min c c d(c, s)} c old,i := c i c i := mean S i ca(s) := c i (s S i ) until c = c old DWML, /33

32 Clustering Example k = 3: DWML, /33

33 Clustering Example k = 3: c 1 c 2 c 3 DWML, /33

34 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

35 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

36 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

37 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

38 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

39 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

40 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

41 Clustering Example k = 3: c 1 c 2 c 3 S 1 S 2 S 3 DWML, /33

42 Clustering Example(cont.) Result for clustering the same data with k = 2: c 1 c 2 S 1 S 2 Result can depend on choice of initial cluster centers! DWML, /33

43 Clustering Outliers The result of partitional clustering can be skewed by outliers. Example with k = 2: useful preprocessing: outlier detection and elimination. DWML, /33

44 Hierarchical Clustering Hierarchical clustering The right number of clusters may not only be unknown, it may also be quite ambiguous: DWML, /33

45 Hierarchical Clustering Hierarchical clustering The right number of clusters may not only be unknown, it may also be quite ambiguous: DWML, /33

46 Hierarchical Clustering Hierarchical clustering The right number of clusters may not only be unknown, it may also be quite ambiguous: DWML, /33

47 Hierarchical Clustering Hierarchical clustering The right number of clusters may not only be unknown, it may also be quite ambiguous: Provide an explicit representation of nested clusterings of different granularity DWML, /33

48 Hierarchical Clustering Agglomerative hierarchical clustering Extend distance function d(s, s ) to distance function D(S, S ) between sets of data items. Two out of many possibilities: D average (S, S ) := 1 S S X s S,s S d(s, s ) D min (S, S ) := min s S,s S d(s, s ) for i = 1,..., N: S i := {s i } while current partition S 1... S k of S contains more than one element (i, j) := arg min i,j 1,...,k D(S i, S j ) form new partition by merging S i and S j. When D average is used, this is also called average link clustering; for D min : single link clustering. DWML, /33

49 Hierarchical Clustering DWML, /33

50 Hierarchical Clustering DWML, /33

51 Hierarchical Clustering DWML, /33

52 Hierarchical Clustering DWML, /33

53 Hierarchical Clustering DWML, /33

54 Hierarchical Clustering DWML, /33

55 Hierarchical Clustering DWML, /33

56 Hierarchical Clustering DWML, /33

57 Hierarchical Clustering DWML, /33

58 Hierarchical Clustering DWML, /33

59 Hierarchical Clustering DWML, /33

60 Hierarchical Clustering DWML, /33

61 Hierarchical Clustering DWML, /33

62 Hierarchical Clustering Dendrogram Representation of Hierarchical Clustering Distance of merged components DWML, /33

63 Hierarchical Clustering Dendrogram Representation of Hierarchical Clustering Distance of merged components 3 clustering 5 clustering The length of the distance interval correponding to a specific clustering can be interpreted as a measure for the significance of this particular clustering DWML, /33

64 Hierarchical Clustering Single link vs. Average link DWML, /33

65 Hierarchical Clustering Single link vs. Average link 4-clustering for single link and average link DWML, /33

66 Hierarchical Clustering Single link vs. Average link 4-clustering for single link and average link single link 2-clustering DWML, /33

67 Hierarchical Clustering Single link vs. Average link 4-clustering for single link and average link single link 2-clustering average link 2-clustering DWML, /33

68 Hierarchical Clustering Single link vs. Average link 4-clustering for single link and average link single link 2-clustering average link 2-clustering Generally: single link will produce rather elongated, linear clusters, average link more convex clusters DWML, /33

69 Hierarchical Clustering Another Example DWML, /33

70 Hierarchical Clustering Another Example single link 2-clustering DWML, /33

71 Hierarchical Clustering Another Example average link 2-clustering (or similar) DWML, /33

72 Self Organizing Maps DWML, /33

73 Self Organizing Maps SOMs as Special Neural Networks Input Layer Output Layer Neural network structure without hidden layers Output neurons structured as two-dimensional array Connection from ith input to jth output has weight w i,j No activation function for output nodes DWML, /33

74 Self Organizing Maps Kohonen Learning Given: Unlabeled data a 1,...,a N R n Distance measure d n (, ) on R n Distance measure d out (, ) on output neurons Update function η(t, d) : N R R; decreasing in t and d. 1. Initialize weight vectors w (0) j for output nodes o j 2. t := 0 3. repeat 4. t := t for i = 1,..., N 6. let o j be the output neuron minimizing d n (w j,a i ). 7. for all output nodes o h : 8. w (t) h := w(t 1) h + η(t, d out (o h, o j ))(a i w (t 1) h ) 9. until termination condition applies DWML, /33

75 Self Organizing Maps Distances etc. Possible choices: d n : Euclidean d out (o j, o h ): e.g. 1 if o j, o h are neighbors (rectangular or hexagonal layout), or Euclidean distance on grid indices η(t, d): e.g. α(t)exp( d 2 /2σ 2 (t)) with α(t), σ(t) decreasing in t. DWML, /33

76 Self Organizing Maps Intuition SOM learning can be understood as fitting a 2-dimensional surface to the data: o 1,0 o 1,1 o 0,0 o 0,1 Colors indicate association with different output neurons, not data attributes. Some output neurons may not have any associated data cases. DWML, /33

77 Self Organizing Maps Example (from Tan et al.) Data: Word occurrence data (?) from 3204 articles from the Los Angeles Times with (hidden) section labels Entertainment, Financial, Foreign, Metro, National, Sports. Result of SOM clustering on 4 4 hexagonal grid: Density Sports Sports Metro Metro low Sports Sports Metro Foreign Entertainment Metro Metro National high Entertainment Metro Financial Financial Output nodes labelled with majority label of associated cases and colored according to number of cases associated with it (fictional). DWML, /33

78 Self Organizing Maps SOMs and k-means In spite of its roots in neural networks, SOMs are more closely related to k-means clustering: Weight vectors wj are cluster centers Kohonen updating associates data cases with cluster centers, and repositions cluster centers to fit associated data cases Differences: - 2-dim. spatial relationship among cluster centers - Data cases associated with more than one cluster center - On-line updating (one case at a time) DWML, /33

79 Self Organizing Maps Pros and Cons + Provides more insight than a basic clustering (i.e. partitioning of data) + Can produce intuitive representations of clustering results - No well-defined objective function that is optimized DWML, /33

Data Warehousing and Machine Learning

Data Warehousing and Machine Learning Data Warehousing and Machine Learning Preprocessing Thomas D. Nielsen Aalborg University Department of Computer Science Spring 2008 DWML Spring 2008 1 / 35 Preprocessing Before you can start on the actual

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation

Data Mining. Part 2. Data Understanding and Preparation. 2.4 Data Transformation. Spring Instructor: Dr. Masoud Yaghini. Data Transformation Data Mining Part 2. Data Understanding and Preparation 2.4 Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Normalization Attribute Construction Aggregation Attribute Subset Selection Discretization

More information

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha

Data Preprocessing. S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha Data Preprocessing S1 Teknik Informatika Fakultas Teknologi Informasi Universitas Kristen Maranatha 1 Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking

More information

Unsupervised Data Mining: Clustering. Izabela Moise, Evangelos Pournaras, Dirk Helbing

Unsupervised Data Mining: Clustering. Izabela Moise, Evangelos Pournaras, Dirk Helbing Unsupervised Data Mining: Clustering Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 1. Supervised Data Mining Classification Regression Outlier detection

More information

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler BBS654 Data Mining Pinar Duygulu Slides are adapted from Nazli Ikizler 1 Classification Classification systems: Supervised learning Make a rational prediction given evidence There are several methods for

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

DATA PREPROCESSING. Pronalaženje skrivenog znanja Bojan Furlan

DATA PREPROCESSING. Pronalaženje skrivenog znanja Bojan Furlan DATA PREPROCESSING Pronalaženje skrivenog znanja Bojan Furlan WHY DO WE NEED TO PREPROCESS THE DATA? Raw data contained in databases is unpreprocessed, incomplete, and noisy. For example, the databases

More information

Data Preprocessing. Slides by: Shree Jaswal

Data Preprocessing. Slides by: Shree Jaswal Data Preprocessing Slides by: Shree Jaswal Topics to be covered Why Preprocessing? Data Cleaning; Data Integration; Data Reduction: Attribute subset selection, Histograms, Clustering and Sampling; Data

More information

Stats 170A: Project in Data Science Exploratory Data Analysis: Clustering Algorithms

Stats 170A: Project in Data Science Exploratory Data Analysis: Clustering Algorithms Stats 170A: Project in Data Science Exploratory Data Analysis: Clustering Algorithms Padhraic Smyth Department of Computer Science Bren School of Information and Computer Sciences University of California,

More information

Supervised vs.unsupervised Learning

Supervised vs.unsupervised Learning Supervised vs.unsupervised Learning In supervised learning we train algorithms with predefined concepts and functions based on labeled data D = { ( x, y ) x X, y {yes,no}. In unsupervised learning we are

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

Data Preprocessing. Komate AMPHAWAN

Data Preprocessing. Komate AMPHAWAN Data Preprocessing Komate AMPHAWAN 1 Data cleaning (data cleansing) Attempt to fill in missing values, smooth out noise while identifying outliers, and correct inconsistencies in the data. 2 Missing value

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

ECLT 5810 Clustering

ECLT 5810 Clustering ECLT 5810 Clustering What is Cluster Analysis? Cluster: a collection of data objects Similar to one another within the same cluster Dissimilar to the objects in other clusters Cluster analysis Grouping

More information

Data Mining and Analytics. Introduction

Data Mining and Analytics. Introduction Data Mining and Analytics Introduction Data Mining Data mining refers to extracting or mining knowledge from large amounts of data It is also termed as Knowledge Discovery from Data (KDD) Mostly, data

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Unsupervised Learning Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Content Motivation Introduction Applications Types of clustering Clustering criterion functions Distance functions Normalization Which

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

CMPUT 391 Database Management Systems. Data Mining. Textbook: Chapter (without 17.10)

CMPUT 391 Database Management Systems. Data Mining. Textbook: Chapter (without 17.10) CMPUT 391 Database Management Systems Data Mining Textbook: Chapter 17.7-17.11 (without 17.10) University of Alberta 1 Overview Motivation KDD and Data Mining Association Rules Clustering Classification

More information

arxiv: v1 [physics.data-an] 27 Sep 2007

arxiv: v1 [physics.data-an] 27 Sep 2007 Classification of Interest Rate Curves Using Self-Organising Maps arxiv:0709.4401v1 [physics.data-an] 27 Sep 2007 M.Kanevski a,, M.Maignan b, V.Timonin a,1, A.Pozdnoukhov a,1 a Institute of Geomatics and

More information

Cluster Analysis: Agglomerate Hierarchical Clustering

Cluster Analysis: Agglomerate Hierarchical Clustering Cluster Analysis: Agglomerate Hierarchical Clustering Yonghee Lee Department of Statistics, The University of Seoul Oct 29, 2015 Contents 1 Cluster Analysis Introduction Distance matrix Agglomerative Hierarchical

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

UNIT 2 Data Preprocessing

UNIT 2 Data Preprocessing UNIT 2 Data Preprocessing Lecture Topic ********************************************** Lecture 13 Why preprocess the data? Lecture 14 Lecture 15 Lecture 16 Lecture 17 Data cleaning Data integration and

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

Data Warehousing and Machine Learning

Data Warehousing and Machine Learning Data Warehousing and Machine Learning Introduction Thomas D. Nielsen Aalborg University Department of Computer Science Spring 2008 DWML Spring 2008 1 / 47 What is Data Mining?? Introduction DWML Spring

More information

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES

2.1 Objectives. Math Chapter 2. Chapter 2. Variable. Categorical Variable EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 Objectives 2.1 What Are the Types of Data? www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Data Mining Concepts & Techniques

Data Mining Concepts & Techniques Data Mining Concepts & Techniques Lecture No. 03 Data Processing, Data Mining Naeem Ahmed Email: naeemmahoto@gmail.com Department of Software Engineering Mehran Univeristy of Engineering and Technology

More information

Basic Data Mining Technique

Basic Data Mining Technique Basic Data Mining Technique What is classification? What is prediction? Supervised and Unsupervised Learning Decision trees Association rule K-nearest neighbor classifier Case-based reasoning Genetic algorithm

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Clustering Basic Concepts and Algorithms 1

Clustering Basic Concepts and Algorithms 1 Clustering Basic Concepts and Algorithms 1 Jeff Howbert Introduction to Machine Learning Winter 014 1 Machine learning tasks Supervised Classification Regression Recommender systems Reinforcement learning

More information

Data Mining. Kohonen Networks. Data Mining Course: Sharif University of Technology 1

Data Mining. Kohonen Networks. Data Mining Course: Sharif University of Technology 1 Data Mining Kohonen Networks Data Mining Course: Sharif University of Technology 1 Self-Organizing Maps Kohonen Networks developed in 198 by Tuevo Kohonen Initially applied to image and sound analysis

More information

AND NUMERICAL SUMMARIES. Chapter 2

AND NUMERICAL SUMMARIES. Chapter 2 EXPLORING DATA WITH GRAPHS AND NUMERICAL SUMMARIES Chapter 2 2.1 What Are the Types of Data? 2.1 Objectives www.managementscientist.org 1. Know the definitions of a. Variable b. Categorical versus quantitative

More information

Figure (5) Kohonen Self-Organized Map

Figure (5) Kohonen Self-Organized Map 2- KOHONEN SELF-ORGANIZING MAPS (SOM) - The self-organizing neural networks assume a topological structure among the cluster units. - There are m cluster units, arranged in a one- or two-dimensional array;

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

CSE4334/5334 DATA MINING

CSE4334/5334 DATA MINING CSE4334/5334 DATA MINING Lecture 4: Classification (1) CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai Li (Slides courtesy

More information

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray Exploratory Data Analysis using Self-Organizing Maps Madhumanti Ray Content Introduction Data Analysis methods Self-Organizing Maps Conclusion Visualization of high-dimensional data items Exploratory data

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

Clustering COMS 4771

Clustering COMS 4771 Clustering COMS 4771 1. Clustering Unsupervised classification / clustering Unsupervised classification Input: x 1,..., x n R d, target cardinality k N. Output: function f : R d {1,..., k} =: [k]. Typical

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Table Of Contents: xix Foreword to Second Edition

Table Of Contents: xix Foreword to Second Edition Data Mining : Concepts and Techniques Table Of Contents: Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments xxxi About the Authors xxxv Chapter 1 Introduction 1 (38) 1.1 Why Data

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 3/3/08 CAP5510 1 Gene g Probe 1 Probe 2 Probe N 3/3/08 CAP5510

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

University of Florida CISE department Gator Engineering. Clustering Part 2

University of Florida CISE department Gator Engineering. Clustering Part 2 Clustering Part 2 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Partitional Clustering Original Points A Partitional Clustering Hierarchical

More information

Chapter 3: Supervised Learning

Chapter 3: Supervised Learning Chapter 3: Supervised Learning Road Map Basic concepts Evaluation of classifiers Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Summary 2 An example

More information

Contents. Foreword to Second Edition. Acknowledgments About the Authors

Contents. Foreword to Second Edition. Acknowledgments About the Authors Contents Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments About the Authors xxxi xxxv Chapter 1 Introduction 1 1.1 Why Data Mining? 1 1.1.1 Moving toward the Information Age 1

More information

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning CSE 40171: Artificial Intelligence Learning from Data: Unsupervised Learning 32 Homework #6 has been released. It is due at 11:59PM on 11/7. 33 CSE Seminar: 11/1 Amy Reibman Purdue University 3:30pm DBART

More information

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22 INF4820 Clustering Erik Velldal University of Oslo Nov. 17, 2009 Erik Velldal INF4820 1 / 22 Topics for Today More on unsupervised machine learning for data-driven categorization: clustering. The task

More information

Clustering. Content. Typical Applications. Clustering: Unsupervised data mining technique

Clustering. Content. Typical Applications. Clustering: Unsupervised data mining technique Content Clustering Examples Cluster analysis Partitional: K-Means clustering method Hierarchical clustering methods Data preparation in clustering Interpreting clusters Cluster validation Clustering: Unsupervised

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015 Clustering Subhransu Maji CMPSCI 689: Machine Learning 2 April 2015 7 April 2015 So far in the course Supervised learning: learning with a teacher You had training data which was (feature, label) pairs

More information

K-Means Clustering 3/3/17

K-Means Clustering 3/3/17 K-Means Clustering 3/3/17 Unsupervised Learning We have a collection of unlabeled data points. We want to find underlying structure in the data. Examples: Identify groups of similar data points. Clustering

More information

COMP90049 Knowledge Technologies

COMP90049 Knowledge Technologies COMP90049 Knowledge Technologies Data Mining (Lecture Set 3) 2017 Rao Kotagiri Department of Computing and Information Systems The Melbourne School of Engineering Some of slides are derived from Prof Vipin

More information

Keywords Clustering, Goals of clustering, clustering techniques, clustering algorithms.

Keywords Clustering, Goals of clustering, clustering techniques, clustering algorithms. Volume 3, Issue 5, May 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Survey of Clustering

More information

Preprocessing Short Lecture Notes cse352. Professor Anita Wasilewska

Preprocessing Short Lecture Notes cse352. Professor Anita Wasilewska Preprocessing Short Lecture Notes cse352 Professor Anita Wasilewska Data Preprocessing Why preprocess the data? Data cleaning Data integration and transformation Data reduction Discretization and concept

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Data Preprocessing Aggregation Sampling Dimensionality Reduction Feature subset selection Feature creation

More information

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science Data Mining Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Department of Computer Science 06 07 Department of CS - DM - UHD Road map Cluster Analysis: Basic

More information

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science Data Mining Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Department of Computer Science 2016 201 Road map What is Cluster Analysis? Characteristics of Clustering

More information

Clustering & Classification (chapter 15)

Clustering & Classification (chapter 15) Clustering & Classification (chapter 5) Kai Goebel Bill Cheetham RPI/GE Global Research goebel@cs.rpi.edu cheetham@cs.rpi.edu Outline k-means Fuzzy c-means Mountain Clustering knn Fuzzy knn Hierarchical

More information

Chapter 6: Cluster Analysis

Chapter 6: Cluster Analysis Chapter 6: Cluster Analysis The major goal of cluster analysis is to separate individual observations, or items, into groups, or clusters, on the basis of the values for the q variables measured on each

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Introduction to Data Mining and Data Analytics

Introduction to Data Mining and Data Analytics 1/28/2016 MIST.7060 Data Analytics 1 Introduction to Data Mining and Data Analytics What Are Data Mining and Data Analytics? Data mining is the process of discovering hidden patterns in data, where Patterns

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10. Cluster

More information

Hierarchical Clustering

Hierarchical Clustering Hierarchical Clustering Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree-like diagram that records the sequences of merges

More information

Finding Clusters 1 / 60

Finding Clusters 1 / 60 Finding Clusters Types of Clustering Approaches: Linkage Based, e.g. Hierarchical Clustering Clustering by Partitioning, e.g. k-means Density Based Clustering, e.g. DBScan Grid Based Clustering 1 / 60

More information

Unsupervised Learning. Pantelis P. Analytis. Introduction. Finding structure in graphs. Clustering analysis. Dimensionality reduction.

Unsupervised Learning. Pantelis P. Analytis. Introduction. Finding structure in graphs. Clustering analysis. Dimensionality reduction. March 19, 2018 1 / 40 1 2 3 4 2 / 40 What s unsupervised learning? Most of the data available on the internet do not have labels. How can we make sense of it? 3 / 40 4 / 40 5 / 40 Organizing the web First

More information

Cluster Analysis. Prof. Thomas B. Fomby Department of Economics Southern Methodist University Dallas, TX April 2008 April 2010

Cluster Analysis. Prof. Thomas B. Fomby Department of Economics Southern Methodist University Dallas, TX April 2008 April 2010 Cluster Analysis Prof. Thomas B. Fomby Department of Economics Southern Methodist University Dallas, TX 7575 April 008 April 010 Cluster Analysis, sometimes called data segmentation or customer segmentation,

More information

4. Cluster Analysis. Francesc J. Ferri. Dept. d Informàtica. Universitat de València. Febrer F.J. Ferri (Univ. València) AIRF 2/ / 1

4. Cluster Analysis. Francesc J. Ferri. Dept. d Informàtica. Universitat de València. Febrer F.J. Ferri (Univ. València) AIRF 2/ / 1 Anàlisi d Imatges i Reconeixement de Formes Image Analysis and Pattern Recognition:. Cluster Analysis Francesc J. Ferri Dept. d Informàtica. Universitat de València Febrer 8 F.J. Ferri (Univ. València)

More information

University of Florida CISE department Gator Engineering. Clustering Part 5

University of Florida CISE department Gator Engineering. Clustering Part 5 Clustering Part 5 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville SNN Approach to Clustering Ordinary distance measures have problems Euclidean

More information

Clustering part II 1

Clustering part II 1 Clustering part II 1 Clustering What is Cluster Analysis? Types of Data in Cluster Analysis A Categorization of Major Clustering Methods Partitioning Methods Hierarchical Methods 2 Partitioning Algorithms:

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Fall 2013 Reading: Chapter 3 Han, Chapter 2 Tan Anca Doloc-Mihu, Ph.D. Some slides courtesy of Li Xiong, Ph.D. and 2011 Han, Kamber & Pei. Data Mining. Morgan Kaufmann.

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1 Week 8 Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Part I Clustering 2 / 1 Clustering Clustering Goal: Finding groups of objects such that the objects in a group

More information

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data.

Acquisition Description Exploration Examination Understanding what data is collected. Characterizing properties of data. Summary Statistics Acquisition Description Exploration Examination what data is collected Characterizing properties of data. Exploring the data distribution(s). Identifying data quality problems. Selecting

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Cluster Analysis: Basic Concepts and Methods Huan Sun, CSE@The Ohio State University 09/25/2017 Slides adapted from UIUC CS412, Fall 2017, by Prof. Jiawei Han 2 Chapter 10.

More information

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality

Data Preprocessing. Why Data Preprocessing? MIT-652 Data Mining Applications. Chapter 3: Data Preprocessing. Multi-Dimensional Measure of Data Quality Why Data Preprocessing? Data in the real world is dirty incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data e.g., occupation = noisy: containing

More information

ECLT 5810 Data Preprocessing. Prof. Wai Lam

ECLT 5810 Data Preprocessing. Prof. Wai Lam ECLT 5810 Data Preprocessing Prof. Wai Lam Why Data Preprocessing? Data in the real world is imperfect incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Unsupervised learning Until now, we have assumed our training samples are labeled by their category membership. Methods that use labeled samples are said to be supervised. However,

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

Machine Learning using MapReduce

Machine Learning using MapReduce Machine Learning using MapReduce What is Machine Learning Machine learning is a subfield of artificial intelligence concerned with techniques that allow computers to improve their outputs based on previous

More information

Data Mining: Data. What is Data? Lecture Notes for Chapter 2. Introduction to Data Mining. Properties of Attribute Values. Types of Attributes

Data Mining: Data. What is Data? Lecture Notes for Chapter 2. Introduction to Data Mining. Properties of Attribute Values. Types of Attributes 0 Data Mining: Data What is Data? Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Collection of data objects and their attributes An attribute is a property or characteristic

More information

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining

Data Mining: Data. Lecture Notes for Chapter 2. Introduction to Data Mining 10 Data Mining: Data Lecture Notes for Chapter 2 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 What is Data? Collection of data objects

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Erik Velldal & Stephan Oepen Language Technology Group (LTG) September 23, 2015 Agenda Last week Supervised vs unsupervised learning.

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Lecture 6: Unsupervised Machine Learning Dagmar Gromann International Center For Computational Logic

Lecture 6: Unsupervised Machine Learning Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 6: Unsupervised Machine Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 23 November 2018 Overview Unsupervised Machine Learning overview Association

More information

By Mahesh R. Sanghavi Associate professor, SNJB s KBJ CoE, Chandwad

By Mahesh R. Sanghavi Associate professor, SNJB s KBJ CoE, Chandwad By Mahesh R. Sanghavi Associate professor, SNJB s KBJ CoE, Chandwad Data Analytics life cycle Discovery Data preparation Preprocessing requirements data cleaning, data integration, data reduction, data

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Clustering algorithms

Clustering algorithms Clustering algorithms Machine Learning Hamid Beigy Sharif University of Technology Fall 1393 Hamid Beigy (Sharif University of Technology) Clustering algorithms Fall 1393 1 / 22 Table of contents 1 Supervised

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Artificial Neural Networks Unsupervised learning: SOM

Artificial Neural Networks Unsupervised learning: SOM Artificial Neural Networks Unsupervised learning: SOM 01001110 01100101 01110101 01110010 01101111 01101110 01101111 01110110 01100001 00100000 01110011 01101011 01110101 01110000 01101001 01101110 01100001

More information

Clustering in Ratemaking: Applications in Territories Clustering

Clustering in Ratemaking: Applications in Territories Clustering Clustering in Ratemaking: Applications in Territories Clustering Ji Yao, PhD FIA ASTIN 13th-16th July 2008 INTRODUCTION Structure of talk Quickly introduce clustering and its application in insurance ratemaking

More information