BioImaging &Optics Platform. Digital Imaging. Dr. Arne Seitz

Size: px
Start display at page:

Download "BioImaging &Optics Platform. Digital Imaging. Dr. Arne Seitz"

Transcription

1 Digital Imaging Swiss Institute of Technology (EPFL) Faculty of Life Sciences Head of BIOIMAGING AND OPTICS BIOP

2 Digital imaging Outlook Digital Camera (Kodak, 1975)

3 Human Eye

4 Human Eye Visual Pigments Protein + Retinal 13 cis/trans Photoreaction (Isomerization) Signal transduction pathway Amplification steps Hyperpolarization Stimulated cells release less Neurotransmitter System is noiseless

5 Digital imaging Outlook Principle of digital imaging Different detection devices Photomultiplier CCD Camera etc. Application in light microscopy Do s and dont s Pitfalls

6 What is light particle/wave 1669 Newton Emanations theory (particle) 1677 Huygens wave theory 1802 Young interference 1871 Maxwell electromagnetic light theory 1886 Hertz experimental proof of Maxwells theory

7 Albert Einstein Nobel price 1921 Experiments by Lennart 1902 BioImaging &Optics Platform What is light Photoelectric effect Maximal energy of the photo electrons is independent of the intensity of the light Slope is the same for different cathode materials Light can be described as particles called photons or light quants. Detection of Photons

8 What is light particle/wave Light can be described as Electromagnetic wave Amplitude, Phase, wavelength, polarization Particle (Photons) Photoelectric effect can be used to detect photons.

9 Detection Principle BioImaging &Optics Platform Analog Imaging Photographic plate Ag + is reduced to Ag 0 (complex photochemical reaction) development = amplification = more Ag + is reduced to Ag 0 Fixation removal of Ag + ions Negative Light exposed=black not exposed=transparent

10 BioImaging &Optics Platform Analog Imaging Photographic plate Advantages Easy to handle. High spatial resolution, e.g. Fuji Velvia 50: 100 lines/mm. Disadvantages Low quantum efficiency ca. 0.8 % for photons but almost 100% for electrons. slow, i.e. time consuming Irreversible Poor linearity

11 Digital imaging Outlook Principle of digital imaging Different detection devices Photomultiplier Photodiode, CCD Camera etc. Application in light microscopy Do s and don'ts Pitfalls

12 Photomultiplier

13 BioImaging &Optics Platform Photomultiplier

14 Photomultiplier Summary Photons produce electrons which are multiplied by acceleration and detected afterwards. Gain (=multiplication factor) can be varied. Large linear range. Quantum efficiency of the photocathode up to 30% in the visible range. no spatial resolution, i.e. photomultipliers can only be used as point (scanning) detectors

15 BioImaging &Optics Platform Digital imaging Definition A digital image is a representation of a twodimensional image using ones and zeros (binary). (Wikipedia) Analog = continuous values Digital = discrete steps

16 Digital imaging Definition Array of photosensitive elements Signal is dependent on the number of detected photons; ideally linearly dependent= high dynamic range Easy read-out procedure Reusable Appropriate size, comparable to an analogue film

17 CCD Cameras Principle conduction band E band gap conductor (metal) Semi conductor Isolator valence band

18 CCD Cameras Semi conductor Principle Internal photoelectric effect. Energy of the photon is used to transfer an electron from the valence band to the conduction band (semi conductors). Photodiodes E e - e - e - e - e - e - e - e - p + p + p + p +

19 CCD Architecture Silicon based integrated circuits Dense matrix of photodiodes Electrons are stored in a potential well Electrons can be transported across the chip (=read out)

20 CCD Camera Blooming

21 Principle/Architecture Types BioImaging &Optics Platform CCD Cameras Basic Back illuminated, front illuminated Data Processing Frame transfer, interline transfer, full frame

22 CCD Camera Quantum Efficiency

23 CCD Architecture

24 CCD Architecture

25 CCD Architecture

26 CCD Architecture

27 Spectral Detection Complementary metal oxide semiconductor (CMOS) Unacceptable performance until 1990 Advantages Low power consumption Single voltage power supply

28 Digital imaging Outlook Principle of digital imaging Different detection devices Photomultiplier Photodiode, CCD Camera etc. Application in light microscopy Do s and don'ts Pitfalls

29 Resolution/Pixel Size Same area Less pixels Larger pixel size (in the image) Less sampling frequency Lateral resolution Nyquist theorem Undersampling/oversampling R δ = λ 0.61 NA

30 Objective (numerical aperture) BioImaging &Optics Platform Resolution/Pixel Size Resolution Limit (microns) Projected Size on CCD (microns) Required Pixel Size (microns) 4x (0.20) x (0.45) x (0.75) x (0.85) x (1.30) x (0.95) x (1.40) x (0.90) x (1.25) x (1.40)

31 CCD camera Binning Binning: - increases effective pixel size -Decreases sampling frequency -Increases read-out speed

32 CCD camera Noise/Background Sources of noise: Detector noise Dark noise Read noise Photon noise (shot noise) N N N tot 2 Sig 2 Cam = N 2 Sig = QE P = N + 2 Dark N + 2 Cam N 2 Read Noise=signal fluctuation background

33 CCD camera Signal to Noise Ratio Photonflux: 10 4 photons/s SNR: ~ 5 for a typical CCD camera Exposure time: 0.1 s

34 CCD camera Signal to Noise Ratio

35 CCD camera Noise

36 CCD Camera Dynamic Range/Noise

37 CCD Camera Dynamic Range

38 CCD Camera Dynamic Range

39 BioImaging &Optics Platform EM CCD

40 EM CCD

41 Camera Relative gain BioImaging &Optics Platform Readout noise Absolute gain Absolute noise, e - Relative noise, e CCD EMCCD Absolute readout noise increase with gain Relative readout noise: CCD - does not depend on gain EMCCD - decrease with gain Camera offset 42

42 SNR of CCD and EMCCD 43

43 CCD Camera Summary Photons elevate electrons from the valence to the conduction band High Quantum efficiency Large linear range. Spatial resolution is influenced by the pixel size of the camera EM CCD cameras for low light applications

44 More about digital imaging 1. Lecture Biomicroscopy I + II, Prof. Theo Lasser, EPFL 2. Internet a) b) b) Web sites of camera vendors, e.g. Hamamatsu Rooper Andor 3. PT-BIOP EPFL, SV-AI 0241, SV-AI

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP DIGITAL IMAGING

BIOIMAGING AND OPTICS PLATFORM EPFL SV PTBIOP DIGITAL IMAGING DIGITAL IMAGING Internal Course 2015 January, 27 th DIGITAL IMAGING OUTLOOK 1600 1700 1800 1900 2000 Digital Camera (Kodak, 1975) HUMAN EYE Visual Pigments Protein + Retinal 13 cis/trans Photoreaction

More information

Technical Basis for optical experimentation Part #4

Technical Basis for optical experimentation Part #4 AerE 545 class notes #11 Technical Basis for optical experimentation Part #4 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Light sensing and recording Lenses

More information

Spectroscopic equipment. Multispectral Imaging

Spectroscopic equipment. Multispectral Imaging Spectroscopic equipment Multispectral Imaging Basic spectroscopic arrangement Source Sample Analyzer Detector Sun Lamps Lasers LEDs Synchrotron Plants Forests Tissue Cells Flames Chemical compounds etc.

More information

Detector systems for light microscopy

Detector systems for light microscopy Detector systems for light microscopy The human eye the perfect detector? Resolution: 0.1-0.3mm @25cm object distance Spectral sensitivity ~400-700nm Has a dynamic range of 10 decades Two detectors: rods

More information

Lab2: Single Photon Interference

Lab2: Single Photon Interference Lab2: Single Photon Interference Xiaoshu Chen* Department of Mechanical Engineering, University of Rochester, NY, 14623 ABSTRACT The wave-particle duality of light was verified by multi and single photon

More information

in Astronomy CCD cameras Charlie Santori Aug. 24, 2012

in Astronomy CCD cameras Charlie Santori Aug. 24, 2012 Introduction to signal and noise in Astronomy CCD cameras Charlie Santori Aug. 24, 2012 Outline 1. Introduction to CCDs 2. Signal and noise in CCDs 3. Comparison of a few CCD cameras Electronic detectors

More information

Time-of-flight basics

Time-of-flight basics Contents 1. Introduction... 2 2. Glossary of Terms... 3 3. Recovering phase from cross-correlation... 4 4. Time-of-flight operating principle: the lock-in amplifier... 6 5. The time-of-flight sensor pixel...

More information

Back Illuminated Scientific CMOS

Back Illuminated Scientific CMOS Prime 95B Scientific CMOS Camera Datasheet CMOS, EMCCD AND CCD CAMERAS FOR LIFE SCIENCES Back Illuminated Scientific CMOS Discovery depends on every photon Primary applications: Super-Resolution Microscopy

More information

Cameras and Image Sensors

Cameras and Image Sensors Intelligent Control Systems Cameras and Image Sensors Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/ Basic Motivation

More information

Scintillators and photodetectors. 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons

Scintillators and photodetectors. 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons Scintillators and photodetectors 1. Generation of Optical Photons 2. Transport of Optical Photons 3. Detection of Optical Photons 1) Generation of Optical Photons A) Organic (molecular) scintillators Advantages:

More information

Cameras and Image Sensors

Cameras and Image Sensors Intelligent Control Systems Cameras and Image Sensors Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/ Basic Motivation

More information

E40M LEDs, Time Multiplexing. M. Horowitz, J. Plummer, R. Howe 1

E40M LEDs, Time Multiplexing. M. Horowitz, J. Plummer, R. Howe 1 E40M LEDs, Time Multiplexing M. Horowitz, J. Plummer, R. Howe 1 Reading Course Reader 2.6 LEDs Course Reader 5.8 - Multiplexing LEDs https://learn.adafruit.com/all-about-leds http://dangerousprototypes.com/docs/

More information

Image Diode APPLICATIONS KEY ATTRIBUTES

Image Diode APPLICATIONS KEY ATTRIBUTES The is a proximity focussed diode vacuum photo-tube, otherwise known as a Generation 1 Proximity Image Intensifier. Image Diodes do not contain Microchannel Plate (MCP) electron multipliers. Instead, light

More information

John Monti Vice President Pixim, Inc.

John Monti Vice President Pixim, Inc. John Monti Vice President Pixim, Inc. www.pixim.com monti@pixim.com 1 Professional Education for the Security Industry AIA Provider Statement Reed Construction Data is a Registered Provider with The American

More information

Hikvision DarkFighter Technology

Hikvision DarkFighter Technology WHITE PAPER Hikvision DarkFighter Technology Stunning color video in near darkness 2 Contents 1. Background... 3 2. Key Technologies... 3 2.1 DarkFighter Night Vision Sensor... 3 2.2 Darkeye Lens... 4

More information

High Resolution BSI Scientific CMOS

High Resolution BSI Scientific CMOS CMOS, EMCCD AND CCD CAMERAS FOR LIFE SCIENCES High Resolution BSI Scientific CMOS Prime BSI delivers the perfect balance between high resolution imaging and sensitivity with an optimized pixel design and

More information

Single Photon Interference

Single Photon Interference December 19, 2006 D. Lancia P. McCarthy Classical Interference Intensity Distribution Overview Quantum Mechanical Interference Probability Distribution Which Path? The Effects of Making a Measurement Wave-Particle

More information

Physical and Technical Background

Physical and Technical Background Physical and Technical Background Last Class: 1. Historical Background 2. Introduction of Particle Image Velocimetry 3. Principle of PIV 4. Major Technologies and Milestones 5. Applications Today s Contents:

More information

Wave Particle Duality with Single Photon Interference

Wave Particle Duality with Single Photon Interference Wave Particle Duality with Single Photon Interference Gerardo I. Viza 1, 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 In the experiments of the Mach-Zehnder Interferometer

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

2D-CMOS Detector ELECTRON DETECTOR WITH HIGH SPEED CMOS. Key Features

2D-CMOS Detector ELECTRON DETECTOR WITH HIGH SPEED CMOS. Key Features ELECTRON DETECTOR WITH HIGH SPEED CMOS CAMERA AND Graphics PROCESSING UNIT Key Features MCP Chevron assembly with fast phosphorous screen High speed CMOS camera Parallel true pulse counting by Graphics

More information

E40M LEDs, Time Multiplexing. M. Horowitz, J. Plummer, R. Howe 1

E40M LEDs, Time Multiplexing. M. Horowitz, J. Plummer, R. Howe 1 E40M LEDs, Time Multiplexing M. Horowitz, J. Plummer, R. Howe 1 Reading Course Reader 2.6 LEDs Course Reader 5.8 - Multiplexing LEDs https://learn.adafruit.com/all-about-leds http://dangerousprototypes.com/docs/

More information

SPECIAL-PURPOSE DIODES. Dr. Paulraj M P, Associate Professor, Blok A, School of Mechatronic Engineering

SPECIAL-PURPOSE DIODES. Dr. Paulraj M P, Associate Professor, Blok A, School of Mechatronic Engineering SPECIAL-PURPOSE DIODES 1 CONTENTS 3-1 zener diodes 3-2 zener diodes applications 3-3 varactor diodes 3-4 optical diodes 3-5 other types of diodes 3-6 trouble shooting 2 OBJECTIVES Discuss the basic characteristics

More information

Development of Ultrafast CXRS system in Heliotron J. Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016

Development of Ultrafast CXRS system in Heliotron J. Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016 1 Development of Ultrafast CXRS system in Heliotron J Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016 2 Outline 1. Introduction 2. Charge exchange Recombination Spectroscopy (CXRS)

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

LECTURE 26: Interference ANNOUNCEMENT. Interference. Interference: Phase Differences

LECTURE 26: Interference ANNOUNCEMENT. Interference. Interference: Phase Differences ANNOUNCEMENT *Exam : Friday December 4, 0, 8 AM 0 AM *Location: Elliot Hall of Music *Covers all readings, lectures, homework from Chapters 9 through 33. *The exam will be multiple choice. Be sure to bring

More information

Ulrik Söderström 17 Jan Image Processing. Introduction

Ulrik Söderström 17 Jan Image Processing. Introduction Ulrik Söderström ulrik.soderstrom@tfe.umu.se 17 Jan 2017 Image Processing Introduction Image Processsing Typical goals: Improve images for human interpretation Image processing Processing of images for

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Detectors for Future Light Sources. Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, Hamburg

Detectors for Future Light Sources. Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, Hamburg Detectors for Future Light Sources Gerhard Grübel Deutsches Elektronen Synchrotron (DESY) Notke-Str. 85, 22607 Hamburg Overview Radiation from X-Ray Free Electron lasers (XFEL, LCLS) Ultrafast detectors

More information

IMAGE DE-NOISING IN WAVELET DOMAIN

IMAGE DE-NOISING IN WAVELET DOMAIN IMAGE DE-NOISING IN WAVELET DOMAIN Aaditya Verma a, Shrey Agarwal a a Department of Civil Engineering, Indian Institute of Technology, Kanpur, India - (aaditya, ashrey)@iitk.ac.in KEY WORDS: Wavelets,

More information

sensicam qe cooled digital 12bit CCD camera system

sensicam qe cooled digital 12bit CCD camera system sensicam qe cooled digital 12bit CCD camera system super quantum efficiency up to 65% extremely low noise, down to 4e - rms 12bit dynamic range thermo-electrical cooling (Peltier) down to -12 C high resolution

More information

CP467 Image Processing and Pattern Recognition

CP467 Image Processing and Pattern Recognition CP467 Image Processing and Pattern Recognition Instructor: Hongbing Fan Introduction About DIP & PR About this course Lecture 1: an overview of DIP DIP&PR show What is Digital Image? We use digital image

More information

A picture can say more than 1000 words comparing camera images. Jürgen Bretschneider, 2015

A picture can say more than 1000 words comparing camera images. Jürgen Bretschneider, 2015 A picture can say more than 1000 words comparing camera images Jürgen Bretschneider, 2015 Allied Vision Profile Foundation: 1989, Headquarters: Stadtroda (Germany) Employees: > 300 (2015) Know how: Development

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

Product Information Version 1.1. ZEISS Axiocam 503 mono Your Flexible and Sensitive 3 Megapixel Microscope Camera for Live Cell Imaging

Product Information Version 1.1. ZEISS Axiocam 503 mono Your Flexible and Sensitive 3 Megapixel Microscope Camera for Live Cell Imaging Product Information Version 1.1 ZEISS Axiocam 503 mono Your Flexible and Sensitive 3 Megapixel Microscope Camera for Live Cell Imaging ZEISS Axiocam 503 mono Sensor Model Sensor Pixel Count Pixel Size

More information

OPTOELECTRONICS SENSORIC

OPTOELECTRONICS SENSORIC OPTOELECTRONICS SENSORIC Chip Scale Package Monolithic Structure CCD and CMOS Technology on a single Chip ESPROS Photonics AG ESPROS Photonics AG offers a range of opto-electronical com-ponents for industrial

More information

Double Slit Experiment: One Photon at a time. Abstract

Double Slit Experiment: One Photon at a time. Abstract Double Slit Experiment: One Photon at a time Arthur Gerald Russakoff Division of Science Pennsylvania State University at Erie, Behrend College Erie, PA 16563-0203 (Dated: March 28, 2008) Abstract Particle

More information

Diffraction and Interference

Diffraction and Interference Experiment #32 Diffraction and Interference Goals: Perform a quantitative investigation of two-slit interference Explore use of a photodiode to measure light intensity References 1. I. G. Main, Vibrations

More information

Range Sensors (time of flight) (1)

Range Sensors (time of flight) (1) Range Sensors (time of flight) (1) Large range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic sensors, infra-red sensors

More information

Luminous. Optoelectronic Device Simulator 4/15/05

Luminous. Optoelectronic Device Simulator 4/15/05 Optoelectronic Device Simulator 4/15/05 Contents Overview Key Benefits Applications Charge Coupled Devices (CCDs) Separate Absorption Multiplication (SAM) reach through avalanche photo detectors High speed

More information

4.2 Megapixel Scientific CMOS Camera

4.2 Megapixel Scientific CMOS Camera CMOS, EMCCD AND CCD CAMERAS FOR LIFE SCIENCES 4.2 Megapixel Scientific CMOS Camera Photometrics Prime is the first intelligent scientific CMOS (scmos) camera to incorporate a powerful FPGA-based Embedded

More information

GONG Hα Instrument. J. Harvey & GONG Team

GONG Hα Instrument. J. Harvey & GONG Team GONG Hα Instrument J. Harvey & GONG Team Outline Overview Optical design Hα Filter Camera Mechanical Remaining issues September 22, 2009 GONG H-alpha Review 2 Instrument Design Goals No significant impact

More information

Reflectance & Lighting

Reflectance & Lighting Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Last lecture in a nutshell Need for lenses (blur from pinhole) Thin lens equation Distortion and aberrations Vignetting CS5A, Winter 007 Computer

More information

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

Accuracy requirements in the mechanical assembly of photonic crystals. Martin Deterre Corey Fucetola Sebastien Uzel

Accuracy requirements in the mechanical assembly of photonic crystals. Martin Deterre Corey Fucetola Sebastien Uzel Accuracy requirements in the mechanical assembly of photonic crystals Martin Deterre Corey Fucetola Sebastien Uzel Agenda Introduction to photonic crystals: theory, background, applications Photonic crystal

More information

Photonic Technologies for LiDAR in Autonomous/ADAS. Jake Li (Market Specialist SiPM & Automotive) Hamamatsu Corporation

Photonic Technologies for LiDAR in Autonomous/ADAS. Jake Li (Market Specialist SiPM & Automotive) Hamamatsu Corporation Photonic Technologies for LiDAR in Autonomous/ADAS Jake Li (Market Specialist SiPM & Automotive) 03-2018 Hamamatsu Corporation Outline of Presentation 1. Introduction to Hamamatsu 2. Autonomous Levels

More information

Instruction Manual for Modelling of Trap Detectors. Helsinki University of Technology. Metrology Research Institute. Instruction Manual for

Instruction Manual for Modelling of Trap Detectors. Helsinki University of Technology. Metrology Research Institute. Instruction Manual for Page 1 (10) Helsinki University of Technology Metrology Research Institute Instruction Manual for Modelling Version: 2.2 Date of Issue: December 21, 2005 Page 2 (10) Table of Contents 1. INTRODUCTION 3

More information

Physical or wave optics

Physical or wave optics Physical or wave optics In the last chapter, we have been studying geometric optics u light moves in straight lines u can summarize everything by indicating direction of light using a ray u light behaves

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Single Photon Interference

Single Photon Interference University of Rochester OPT253 Lab 2 Report Single Photon Interference Author: Nicholas Cothard Peter Heuer Professor: Dr. Svetlana Lukishova September 25th 2013 1 Abstract Wave-particle duality can be

More information

Single Photon Interference Christopher Marsh Jaime Vela

Single Photon Interference Christopher Marsh Jaime Vela Single Photon Interference Christopher Marsh Jaime Vela Abstract The purpose of this experiment was to study the dual wave-particle nature of light. Using a Mach-Zehnder and double slit interferometer,

More information

Introduction to Light

Introduction to Light Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer from the source to the observer. Images in mirrors Reflection

More information

Pixel Crosstalk and Correlation with Modulation Transfer Function of CMOS Image Sensor

Pixel Crosstalk and Correlation with Modulation Transfer Function of CMOS Image Sensor Pixel Crosstalk and Correlation with Modulation Transfer Function of CMOS Image Sensor M.Estribeau*, P.Magnan** SUPAERO Integrated Image Sensors Laboratory avenue Edouard Belin, 4 Toulouse, France ABSTRACT

More information

BSI scmos. High Quantum Efficiency. Cooled Scientific CMOS Camera

BSI scmos. High Quantum Efficiency. Cooled Scientific CMOS Camera 95 BSI scmos High Quantum Efficiency Cooled Scientific CMOS Camera Backside-illuminated scmos technology Opening a new era of high sensitivity imaging applications! The Dhyana 95 is a highly sensitive

More information

Computer Vision. The image formation process

Computer Vision. The image formation process Computer Vision The image formation process Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 The image

More information

FEATURES BENEFITS 1024 x 1024 Imaging Array High resolution imaging and spectroscopy

FEATURES BENEFITS 1024 x 1024 Imaging Array High resolution imaging and spectroscopy PI-MAX3:1024i The PI-MAX3:1024i from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1k x 1k interline CCD fiberoptically coupled

More information

PI-MAX 4: 1024i-RF. Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming.

PI-MAX 4: 1024i-RF. Compatible with Windows 8/7/XP, and Linux; Universal programming interfaces for easy custom programming. The PI-MAX4: 1024i-RF from Princeton Instruments is the ultimate scientific, intensified CCD camera (ICCD) system, featuring a 1k x 1k interline CCD fiberoptically coupled to Gen III filmless intensifiers.

More information

HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR

HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR HIGH SPEED TDI EMBEDDED CCD IN CMOS SENSOR P. Boulenc 1, J. Robbelein 1, L. Wu 1, L. Haspeslagh 1, P. De Moor 1, J. Borremans 1, M. Rosmeulen 1 1 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium Email: pierre.boulenc@imec.be,

More information

Optical Diffraction and Interference using Single Photon Counting

Optical Diffraction and Interference using Single Photon Counting Optical Diffraction and Interference using Single Photon Counting Optical Diffraction and Interference using Single Photon Counting In this experiment the wave and quantum properties of light can be studied

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

TRiCAM APPLICATIONS KEY FEATURES. Time Resolved intensified CAMera. TRiCAM 13001A01 31/10/2013

TRiCAM APPLICATIONS KEY FEATURES. Time Resolved intensified CAMera. TRiCAM 13001A01 31/10/2013 TRiCAM Time Resolved intensified CAMera The TRiCAM is a compact Intensified CCD camera for scientific and industrial applications that require 1) lowlight level imaging, 2) ultra-short exposures through

More information

LIFA KEY FEATURES APPLICATIONS. Fluorescence Lifetime Attachment LIFA 15001A02 16/03/2015

LIFA KEY FEATURES APPLICATIONS. Fluorescence Lifetime Attachment LIFA 15001A02 16/03/2015 LIFA Fluorescence Lifetime Attachment LIFA 151A2 16/3/215 The LIFA is a dedicated system for Fluorescence Lifetime Imaging Microscopy (FLIM). It allows the generation of lifetime images on any widefield

More information

L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova

L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova L. Pina, A. Fojtik, R. Havlikova, A. Jancarek, S.Palinek, M. Vrbova Faculty of Nuclear Sciences, Czech Technical University, Brehova 7, 115 19 Prague, Czech Republic CD EXPERIMENTAL ARRANGEMENT SPECTRAL

More information

MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR

MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR MONOLITHIC NEAR INFRARED IMAGE SENSORS ENABLED BY QUANTUM DOT PHOTODETECTOR PAWEŁ E. MALINOWSKI, E. GEORGITZIKIS, J. MAES, M. MAMUN, O. ENZING, F. FRAZZICA, J.VAN OLMEN, P. DE MOOR, P. HEREMANS, Z. HENS,

More information

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation

HOLOEYE Photonics. HOLOEYE Photonics AG. HOLOEYE Corporation HOLOEYE Photonics Products and services in the field of diffractive micro-optics Spatial Light Modulator (SLM) for the industrial research R&D in the field of diffractive optics Micro-display technologies

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Modeling and Estimation of FPN Components in CMOS Image Sensors

Modeling and Estimation of FPN Components in CMOS Image Sensors Modeling and Estimation of FPN Components in CMOS Image Sensors Abbas El Gamal a, Boyd Fowler a,haomin b,xinqiaoliu a a Information Systems Laboratory, Stanford University Stanford, CA 945 USA b Fudan

More information

SPIcam: an overview. Alan Diercks Institute for Systems Biology 23rd July 2002

SPIcam: an overview. Alan Diercks Institute for Systems Biology 23rd July 2002 SPIcam: an overview Alan Diercks Institute for Systems Biology diercks@systemsbiology.org 23rd July 2002 1 Outline Overview of instrument CCDs mechanics instrument control performance construction anecdotes

More information

Interference with polarized light

Interference with polarized light Interference with polarized light Summary of the previous lecture (see lecture 3 - slides 12 to 25) With polarized light E 1 et E 2 are complex amplitudes: E 1 + E 2 e iϕ 2 = E 1 2 + E 2 2 + 2 Re(E 1 *

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Two slit interference - Prelab questions

Two slit interference - Prelab questions Two slit interference - Prelab questions 1. Show that the intensity distribution given in equation 3 leads to bright and dark fringes at y = mλd/a and y = (m + 1/2) λd/a respectively, where m is an integer.

More information

The Evolution of Digital Imaging: From CCD to CMOS

The Evolution of Digital Imaging: From CCD to CMOS The Evolution of Digital Imaging: From CCD to CMOS A Micron White Paper Digital imaging began with the invention of the chargecoupled device (CCD) in 1969. Since then, the technologies used to convert

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Single-particle electron microscopy (cryo-electron microscopy) CS/CME/BioE/Biophys/BMI 279 Nov. 16 and 28, 2017 Ron Dror

Single-particle electron microscopy (cryo-electron microscopy) CS/CME/BioE/Biophys/BMI 279 Nov. 16 and 28, 2017 Ron Dror Single-particle electron microscopy (cryo-electron microscopy) CS/CME/BioE/Biophys/BMI 279 Nov. 16 and 28, 2017 Ron Dror 1 Last month s Nobel Prize in Chemistry Awarded to Jacques Dubochet, Joachim Frank

More information

Frequently Asked Questions: Princeton Instruments excelon TM CCD and EMCCD Cameras

Frequently Asked Questions: Princeton Instruments excelon TM CCD and EMCCD Cameras Frequently Asked Questions: Princeton Instruments excelon TM CCD and EMCCD Cameras Updated: Sep 2010 Includes information on excelon TM Back-illuminated Deep Depletion Cameras 1. What is excelon TM? excelon

More information

PROGRES GRYPHAX ARKTUR vs. ProgRes SpeedXTcore3

PROGRES GRYPHAX ARKTUR vs. ProgRes SpeedXTcore3 Product comparison: PROGRES GRYPHAX ARKTUR vs. ProgRes SpeedXTcore3 Explore the micro universe with revolutionary 3 & 8 MPix. The advanced solution for routine applications INDEX Sensor... 3 Quantum efficiency

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1.

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1. Range Sensors (time of flight) (1) Range Sensors (time of flight) (2) arge range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic

More information

Ion Beam Profiling Using a Novel Electronic Imaging Detector

Ion Beam Profiling Using a Novel Electronic Imaging Detector Ion Beam Profiling Using a Novel Electronic Imaging Detector *Bruce N Laprade and Richard A Prunier BURLE Electro-Optics Sturbridge MA Paper 1700-2400 Presented at The 2004 Pittsburgh Conference March

More information

Lab 12 - Interference-Diffraction of Light Waves

Lab 12 - Interference-Diffraction of Light Waves Lab 12 - Interference-Diffraction of Light Waves Equipment and Safety: No special safety equipment is required for this lab. Do not look directly into the laser. Do not point the laser at other people.

More information

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca 3. Image formation, Fourier analysis and CTF theory Paula da Fonseca EM course 2017 - Agenda - Overview of: Introduction to Fourier analysis o o o o Sine waves Fourier transform (simple examples of 1D

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Specifications Summary 1. Array Size (pixels) Pixel Size. Sensor Size. Dark Current 2. Pixel Well Depth (typical) e e -

Specifications Summary 1. Array Size (pixels) Pixel Size. Sensor Size. Dark Current 2. Pixel Well Depth (typical) e e - AVAILABLE WITH LOW NOISE & HIGH DYNAMIC RANGE sensor options Apogee Alta Series System Features 1 High Resolution Sensors 1.0 Megapixel sensor with large 24 mm pixels deliver a large field of view with

More information

PI-MAX 4: 1024 x 256

PI-MAX 4: 1024 x 256 The PI-MAX4: 1024 x 256 from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1024 x 253 pixel spectroscopy CCD fiber-coupled to

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

LIFA. SPECIFICATIONs. Fluorescence Lifetime Attachment LIFA14001A02 25/02/2014

LIFA. SPECIFICATIONs. Fluorescence Lifetime Attachment LIFA14001A02 25/02/2014 LIFA Fluorescence Lifetime Attachment The LIFA is a dedicated system for Fluorescence Lifetime Imaging Microscopy (FLIM). It allows the generation of lifetime images on any widefield fluorescence microscope

More information

Two-Dimensional image sensors

Two-Dimensional image sensors Two-Dimensional image sensors for hyperspectral imaging applications in VIS and SWIR Hamamatsu Photonics Deutschland GmbH Sales Components Florian Schropp Agenda 1 Hamamatsu Introduction 2 SWIR: 2D InGaAs

More information

Product Information Version 1.0. ZEISS Axiocam 506 mono Your High Resolution Microscope Camera for Live Cell Imaging Fast, Flexible, and Sensitive

Product Information Version 1.0. ZEISS Axiocam 506 mono Your High Resolution Microscope Camera for Live Cell Imaging Fast, Flexible, and Sensitive Product Information Version 1.0 ZEISS Axiocam 506 mono Your High Resolution Microscope Camera for Live Cell Imaging Fast, Flexible, and Sensitive ZEISS Axiocam 506 mono Sensor Model Sensor Pixel Count

More information

AUTOFOCUS SENSORS & MICROSCOPY AUTOMATION IR LASER SCANNING CONFOCAL MICROSCOPE IRLC DEEP SEE. Now See Deeper than ever before

AUTOFOCUS SENSORS & MICROSCOPY AUTOMATION IR LASER SCANNING CONFOCAL MICROSCOPE IRLC DEEP SEE. Now See Deeper than ever before AUTOFOCUS SENSORS & MICROSCOPY AUTOMATION IR LASER SCANNING CONFOCAL MICROSCOPE IRLC DEEP SEE Now See Deeper than ever before Review and inspection of non visible subsurface defects Non visible and subsurface

More information

pco.1600 cooled digital 14 bit CCD camera system

pco.1600 cooled digital 14 bit CCD camera system 1600 cooled digital 14 bit CCD camera system excellent resolution (1600 1200 pixel) 14 bit dynamic range frame rate of 30 fps at full resolution image memory in camera (camram up to 4 GB) excellent low

More information

Video frame rates and higher to efficiently synchronize with high repetition rate lasers

Video frame rates and higher to efficiently synchronize with high repetition rate lasers PI-MAX3:1024 x 256 The PI-MAX3:1024 x 256 from Princeton Instruments is the next generation, fully-integrated scientific intensified CCD camera (ICCD) system featuring a 1024 x 256 spectroscopy CCD fiber-coupled

More information

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to:

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to: LECTURE #6: OPTICAL PROPERTIES OF SOLIDS Basic question: How do solids interact with light? The answers are linked to: Properties of light inside a solid Mechanisms behind light reflection, absorption

More information

Electronic Devices. Special Purpose Diodes. Chapter Three. Dr. Hisham Alrawashdeh

Electronic Devices. Special Purpose Diodes. Chapter Three. Dr. Hisham Alrawashdeh Electronic Devices Chapter Three Special Purpose Diodes Dr. Hisham Alrawashdeh Chapter Three Special Purpose Diodes Introduction Chapter 2 was devoted to general-purpose and rectifier diodes, which are

More information

Optics Wave Behavior in Optics Diffraction

Optics Wave Behavior in Optics Diffraction Optics Wave Behavior in Optics Diffraction Lana Sheridan De Anza College June 15, 2018 Last time Interference of light: the Double-Slit experiment multiple slit interference diffraction gratings Overview

More information

Coherent Diffraction Imaging with Nano- and Microbeams

Coherent Diffraction Imaging with Nano- and Microbeams Diffraction Imaging with Nano- and Microbeams Why does lensless need? Mark A Pfeifer Cornell High Energy Synchrotron Source Cornell University Ithaca, NY 14850 map322@cornell.edu XLD 2011 June 28, 2011

More information

EXPERIMENTAL HIGH SPEED CMOS IMAGE SENSOR SYSTEM & APPLICATIONS

EXPERIMENTAL HIGH SPEED CMOS IMAGE SENSOR SYSTEM & APPLICATIONS EXPERIMENTAL HIGH SPEED CMOS IMAGE SENSOR SYSTEM & APPLICATIONS Ali Ozer Ercan, Feng Xiao, Xinqiao Liu SukHwan Lim, Abbas El Gamal and Brian Wandell Stanford University IEEE Sensors 2002 Conference 1 Background

More information

DV887 (back illuminated)

DV887 (back illuminated) IMAGING Andor s ixon DV887 back illuminated EMCCD has single photon detection capability without an image intensifier, combined with greater than 90% QE of a back-illuminated sensor. Containing a 512x512

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information