PH880 Topics in Physics

Size: px
Start display at page:

Download "PH880 Topics in Physics"

Transcription

1 PH880 Topics in Physics Modern Optical Imaging (Fall 2010) KAIST PH880 11/10/2010

2 Overview of week 11 Monday: Digital Holographic Tomography Optical Coherence Tomography Wednesday: PhotoacousticTomography KAIST PH880 11/10/2010

3 Rotating the beam angle + high speed (Feld Group, MIT, Nat. Methods, 2006) KAIST PH880 11/10/2010

4 Projection (Radon) Diffraction (exact) k y f max k z SEM diffraction Radon KAIST PH880 11/10/2010

5 KAIST PH880 11/10/2010 Time-domain OCT

6 Coherence gating

7 Optical Coherence Microscopy KAIST PH880 11/10/2010 J A Izatt et al, OPTICS LETTERS / Vol. 19, No. 8 / April 15, 1994

8 Optical Coherence Microscopy OCT: Low NA b Δx x Lt Lateral resolution lti 4λ f Δ x = π d Depth of ffocus OCM: High NA b Δx 2 x b= 2z = π Δ R 2λ f=focal length d= lens diameter 8

9 Fourier-domain OCT no scanning of reference mirror the spectrum of the backscattered sample light amplitude FercherAF, HitzenbergerCK, DrexlerW, Kamp G, Strasser I, LiHC1993b Medical Optical Tomography: Functional Imaging and Monitoring vol IS 11, ed G M uller et al (Bellingham: SPIE Press) pp

10 Parallel OCT set-up with a 2D detector array Bourquin S, Seitz P and Salathe R P 2001 El Lett

11 Overview of week 11 Monday: Digital Holographic Tomography Optical Coherence Tomography Wednesday: Photoacoustic Tomography* KAIST PH880 11/10/2010 * Slides are modified from L Wang s lecture slides

12 High Relative Resolution: Depth-to-Resolution Ratio > 100 Modality Max depth Axial resolution Depth / Resolution Confocal/two-photon microscopy ~ mm ~1-2 microns >100 Optical coherence tomography ~1 mm ~10 microns >100 Magnetic resonance imaging / Ultrasonography ~ mm ~1 mm >100 X-ray CT ~200 mm ~0.1 mm >100

13 Photoacoustic imaging of cancer in vivo Melanoma Melanoma 1 mm Melanoma Histology B-scan image at 764 nm Melanoma 1 mm KAIST PH880 11/10/2010 Nature Biotech. 24, 848 (2006).

14 Photoacoustic Tomography: principle (1) Laser pulse (<ANSI limit: e.g., 20 mj/cm 2 ) (2) Local heating (~ mk) (4) Ultrasonic detection (scattering/100) (3) Ultrasonic emission (~ mbar) Physical Review E 71, (2005). Phys. Rev. Letters 92, (2004). Lihong Wang group, Washington University

15 Photoacoustic Tomography: principle 1. Short laser pulse (~ ns range) is spatially broadened and then used to irradiate biological tissue 2. Produces a temperature rise (~ mk in short time frame) 3. Thermo-elastic expansion causes emission of acoustic wave (discovered by Alexander Graham Bell) 4. Acoustic wave is measured by wideband ultrasonic transducers 5. Acquired signal is combined mathematically to reconstruct the distribution of optical energy absorption KAIST PH880 11/10/2010 V Ntziachristos et al, Nature Biotechnology, 23 3, (2005)

16 Reflection-mode Photoacoustic Microscopy: Illustration Sphere Ph hotoacousti ic signal Surface Sphere Time

17 Reflection mode Dark field Confocal Photoacoustic Microscopy: System Tunable laser Nd:YAG pump laser Motor driver Photodiode Translation stages Amplifier Optical illumination Ultrasonic transducer Conical llens Sample holder Base AD Computer Mirror Heater & temperature controller Dual lfoci Annular illumination i with a dark center Sample Optics Letters 30, 625 (2005) Nature Biotech. 24, 848 (2006).

18 Imaging Depth and Resolution in Photoacoustic microscopy 3 mm B scan of a black double stranded cotton thread embedded in rat Imaging depth: ~3 mm Axial resolution: ~15 microns Depth/resolution: ~200 pixels Lateral resolution: ~45 microns Acquisition time: 2 ms/a scan No signal averaging Optics Letters 30, 625 (2005).

19 Volumetric Imaging of Rat Microvasculature In Vivo Maximum amplitude projection onto the skin 1 mm Volume: 10 mm x 8 mm x 3 mm Optics Express 14, 9317 (2006).

20 Imaging of Skin: Burn in Pigs Acute thermal (175 o C, 20 s) burn in pig skin in vivo. Postmortem imaging at 584 nm optical wavelength. Photograph Healthy Coagulated ated tissue tissue Photoacoustic image B scan image Hyperemic bowl 1 mm 1 mm Hyperemic ring Histology Hyperemic bowl 1 mm itude [a.u.] PA ampl Burn depth ~1.7 mm Hyperemic bowl Skin surface Distance [mm] J Biomed Optics 11, (2006).

21 Imaging of Hemoglobin Oxygen Total hemoglobin concentration Saturation (SO 2 ) In Vivo SO 2 in segmented venules and arterioles Histology mm Arterial microsphere perfusion A 1 4 V Nature Biotech. 24, 848 (2006). 1 mm

22 Hemodynamics In Vivo (578, 584, 590, and 596 nm) Total hemoglobin Oxygen saturation Arteries and veins 1 mm Imaged SO Change in oxygenation Artery Vein Hypoxia Normoxia Hyperoxia Physiological states monitor SO2 change over time. Appl. Phys. Lett. 90, (2007).

23 In Vivo Genetic Imaging: Gene Expression in Gliosarcoma Tumor in Rat 1. LacZ (gene) 2. Bt Beta galactosidase t (enzyme ) 3. X gal (colorless substrate) 4. Blue product Image of blood vessels at 584 nm wavelength Image of expression of LacZ reporter gene at 635 nm wavelength Composite image 1 mm J Biomed Optics 12(2), (2007).

24 Imaging of Human Palm In Vivo Photo Maximum amplitude projection onto the skin Skin surface 0.3 mm 0.13 mm Skin surface B scan image mm Optical absorption Stratum corneum Nature Biotech. 24, 848 (2006).

25 Reading List 1. Ntziachristos i V, Ripoll J, Wang L, & Weissleder R (2005) Looking and listening i to light: the evolution of whole body photonic imaging. Nature biotechnology 23(3): KAIST PH880 11/10/2010

Implementing the probe beam deflection technique for acoustic sensing in photoacoustic and ultrasound imaging

Implementing the probe beam deflection technique for acoustic sensing in photoacoustic and ultrasound imaging Implementing the probe beam deflection technique for acoustic sensing in photoacoustic and ultrasound imaging Ronald A. Barnes Jr. The University of Texas at San Antonio This work is a collaboration between

More information

Light and tissue: 2. Two-photon, Optical Coherence Tomography, Photoacoustics

Light and tissue: 2. Two-photon, Optical Coherence Tomography, Photoacoustics Light and tissue: 2 Two-photon, Optical Coherence Tomography, Photoacoustics Last lecture: Absorption and Scattering Last lecture: Mean free path Mean free path Transport mean free path Ntziachristos (2010)

More information

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography

University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography University of Lübeck, Medical Laser Center Lübeck GmbH Optical Coherence Tomography. Theory Dr. Gereon Hüttmann / 009 What is OCT? ( for the MD ) Lichtquelle Probe Detektor Display OCT is Ultrasound with

More information

Optical Sectioning. Bo Huang. Pharmaceutical Chemistry

Optical Sectioning. Bo Huang. Pharmaceutical Chemistry Optical Sectioning Bo Huang Pharmaceutical Chemistry Approaches to 3D imaging Physical cutting Technical difficulty Highest resolution Highest sensitivity Optical sectioning Simple sample prep. No physical

More information

Optical coherence tomography with the "Spectral Radar" - Fast optical analysis in volume scatterers by short coherence interferometry

Optical coherence tomography with the Spectral Radar - Fast optical analysis in volume scatterers by short coherence interferometry Optical coherence tomography with the "Spectral Radar" - Fast optical analysis in volume scatterers by short coherence interferometry M. Bail, G. Häusler, J. M. Herrmann, M. W. Lindner, R. Ringler Physics

More information

High Resolution Multi-modal in vivo Imaging Platform

High Resolution Multi-modal in vivo Imaging Platform High Resolution Multi-modal in vivo Imaging Platform The world s only customizable imaging platform combining ultra high frequency ultrasound and photoacoustics Experience the next generation of in vivo

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 4 Computed Tomography Lucas C. Parra, parra@ccny.cuny.edu some slides inspired by lecture notes of Andreas H. Hilscher at Columbia University.

More information

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES

HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Progress In Electromagnetics Research Letters, Vol. 2, 115 123, 2008 HOLOGRAPHIC FEMTOSECOND LASER PROCESSING AND THREE-DIMENSIONAL RECORDING IN BIOLOGICAL TISSUES Y. Hayasaki Department of Optical Science

More information

Outline. Introduction to photoacoustic computed tomography (PACT) Imaging models and iterative image reconstruction. Success with small animal imaging

Outline. Introduction to photoacoustic computed tomography (PACT) Imaging models and iterative image reconstruction. Success with small animal imaging Outline Advantages of PACT Photoacoustic Computed Tomography with Applications to Breast Imaging Mark A. Anastasio Department of Biomedical Engineering Washington University in St. Louis St. Louis, MO

More information

NIH Public Access Author Manuscript IEEE Photonics J. Author manuscript; available in PMC 2010 October 14.

NIH Public Access Author Manuscript IEEE Photonics J. Author manuscript; available in PMC 2010 October 14. NIH Public Access Author Manuscript Published in final edited form as: IEEE Photonics J. 2010 February 17; 2(1): 57 66. doi:10.1109/jphot.2010.2042801. Fast and robust deconvolution-based image reconstruction

More information

Development and validation of a short-lag spatial coherence theory for photoacoustic imaging

Development and validation of a short-lag spatial coherence theory for photoacoustic imaging Development and validation of a short-lag spatial coherence theory for photoacoustic imaging Michelle T. Graham 1 and Muyinatu A. Lediju Bell 1,2 1 Department of Electrical and Computer Engineering, Johns

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

HIGH-PERFORMANCE TOMOGRAPHIC IMAGING AND APPLICATIONS

HIGH-PERFORMANCE TOMOGRAPHIC IMAGING AND APPLICATIONS HIGH-PERFORMANCE TOMOGRAPHIC IMAGING AND APPLICATIONS Hua Lee and Yuan-Fang Wang Department of Electrical and Computer Engineering University of California, Santa Barbara ABSTRACT Tomographic imaging systems

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) Overview of week 8 Monday Nonlinear Microscopy Wednesday No class (Mid term week) Quantum Optics Electro- magnetic Optics Wave Optics Ray Optics

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

Efficient Signal Processing Algorithms for Optical Doppler Tomography Literature Survey

Efficient Signal Processing Algorithms for Optical Doppler Tomography Literature Survey Efficient Signal Processing Algorithms for Optical Doppler Tomography Literature Survey University of Texas at Austin Department of Electrical and Computer Engineering Milos Milosevic Wade Schwartzkopf

More information

Effect of Sensor Directionality on Photoacoustic Imaging: A Study Using the k-wave Toolbox

Effect of Sensor Directionality on Photoacoustic Imaging: A Study Using the k-wave Toolbox Effect of Sensor Directionality on Photoacoustic Imaging: A Study Using the k-wave Toolbox B.T. Cox and B.E. Treeby Department of Medical Physics and Bioengineering, University College London, Gower Street,

More information

Other Laser Surgery Laser Tonsillectomy Use CO 2 with mirror bouncing system Operation takes 15 minutes, no pain Cauterizes blood vessels & Lymphatic

Other Laser Surgery Laser Tonsillectomy Use CO 2 with mirror bouncing system Operation takes 15 minutes, no pain Cauterizes blood vessels & Lymphatic Other Laser Surgery Laser Tonsillectomy Use CO 2 with mirror bouncing system Operation takes 15 minutes, no pain Cauterizes blood vessels & Lymphatic vessels no blood in throat Patient eat & drink just

More information

Techniques of Noninvasive Optical Tomographic Imaging

Techniques of Noninvasive Optical Tomographic Imaging Techniques of Noninvasive Optical Tomographic Imaging Joseph Rosen*, David Abookasis and Mark Gokhler Ben-Gurion University of the Negev Department of Electrical and Computer Engineering P. O. Box 653,

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

Lecture 6: Medical imaging and image-guided interventions

Lecture 6: Medical imaging and image-guided interventions ME 328: Medical Robotics Winter 2019 Lecture 6: Medical imaging and image-guided interventions Allison Okamura Stanford University Updates Assignment 3 Due this Thursday, Jan. 31 Note that this assignment

More information

Enhanced optical absorptance of metals using interferometric femtosecond ablation

Enhanced optical absorptance of metals using interferometric femtosecond ablation Enhanced optical absorptance of metals using interferometric femtosecond ablation K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen and T. Jaaskelainen Department of Physics and Mathematics, University of

More information

Optical Active 3D Scanning. Gianpaolo Palma

Optical Active 3D Scanning. Gianpaolo Palma Optical Active 3D Scanning Gianpaolo Palma 3D Scanning Taxonomy SHAPE ACQUISTION CONTACT NO-CONTACT NO DESTRUCTIVE DESTRUCTIVE X-RAY MAGNETIC OPTICAL ACOUSTIC CMM ROBOTIC GANTRY SLICING ACTIVE PASSIVE

More information

Supplementary Figure 1 Guide stars of progressively longer wavelengths can be used for direct wavefront sensing at increasingly large depth in the

Supplementary Figure 1 Guide stars of progressively longer wavelengths can be used for direct wavefront sensing at increasingly large depth in the Supplementary Figure 1 Guide stars of progressively longer wavelengths can be used for direct wavefront sensing at increasingly large depth in the cortex of the living mouse. Typical SH images of guide

More information

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM

OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OPTICAL COHERENCE TOMOGRAPHY:SIGNAL PROCESSING AND ALGORITHM OCT Medical imaging modality with 1-10 µ m resolutions and 1-2 mm penetration depths High-resolution, sub-surface non-invasive or minimally

More information

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM)

QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) http:// QUANTITATIVE PHASE IMAGING OF BIOLOGICAL CELLS USING OFF-AXIS METHOD OF WIDE FIELD DIGITAL INTERFERENCE MICROSCOPY (WFDIM) Pradeep Kumar Behera 1, Dalip Singh Mehta 2 1,2 Physics,Indian Institute

More information

Physics 625 Femtosecond laser Project

Physics 625 Femtosecond laser Project Physics 625 Femtosecond laser Project The purpose of this project is for each person to gain experience in designing part of a femtosecond laser system for pump-probe experiments. The system diagram is

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) Overview of week 4 Monday PSF, OTF Bright field microscopy Resolution/NA Deconvolution Wednesday : holiday Impulse response (PSF) in imaging system

More information

Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography

Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography Y. Fan, N. Lafferty, A. Bourov, L. Zavyalova, B. W. Smith Rochester Institute of Technology Microelectronic

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

4D Technology Corporation

4D Technology Corporation 4D Technology Corporation Dynamic Laser Interferometry for Company Profile Disk Shape Characterization DiskCon Asia-Pacific 2006 Chip Ragan chip.ragan@4dtechnology.com www.4dtechnology.com Interferometry

More information

Confocal Raman Imaging with WITec Sensitivity - Resolution - Speed. Always - Provable - Routinely

Confocal Raman Imaging with WITec Sensitivity - Resolution - Speed. Always - Provable - Routinely Confocal Raman Imaging with WITec Sensitivity - Resolution - Speed Always - Provable - Routinely WITec GmbH, Ulm, Germany, info@witec.de, www.witec.de A modular microscope series An Example: FLIM optical

More information

THE DICOM 2013 INTERNATIONAL CONFERENCE & SEMINAR. DICOM Fields of Use. Klaus Neuner. Brainlab AG. Software Project Manager Feldkirchen, Germany

THE DICOM 2013 INTERNATIONAL CONFERENCE & SEMINAR. DICOM Fields of Use. Klaus Neuner. Brainlab AG. Software Project Manager Feldkirchen, Germany THE DICOM 2013 INTERNATIONAL CONFERENCE & SEMINAR March 14-16 Bangalore, India DICOM Fields of Use Klaus Neuner Brainlab AG Software Project Manager Feldkirchen, Germany Introduction This presentation

More information

Coherent Diffraction Imaging with Nano- and Microbeams

Coherent Diffraction Imaging with Nano- and Microbeams Diffraction Imaging with Nano- and Microbeams Why does lensless need? Mark A Pfeifer Cornell High Energy Synchrotron Source Cornell University Ithaca, NY 14850 map322@cornell.edu XLD 2011 June 28, 2011

More information

The Future of OCT? Swept Source. Todd J. Purkiss, MD, PhD River City Retina Club July 16, 2015

The Future of OCT? Swept Source. Todd J. Purkiss, MD, PhD River City Retina Club July 16, 2015 The Future of OCT? Swept Source Todd J. Purkiss, MD, PhD River City Retina Club July 16, 2015 Background on OCT Optical Coherence Tomography Optical When a light wave meets the interface of two differing

More information

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22 Today s Outline - April 17, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 April 17, 2018 1 / 22 Today s Outline - April 17, 2018 Diffraction enhanced imaging C. Segre (IIT) PHYS 570 - Spring 2018 April 17,

More information

HOLOGRAPHIC SCANNING LASER ACOUSTIC MICROSCOPY (HOLOSLAM): A NEW QNDE TOOL. A. C. Wey, and L. W. Kessler

HOLOGRAPHIC SCANNING LASER ACOUSTIC MICROSCOPY (HOLOSLAM): A NEW QNDE TOOL. A. C. Wey, and L. W. Kessler HOLOGRAPHIC SCANNING LASER ACOUSTIC MICROSCOPY (HOLOSLAM): A NEW QNDE TOOL A. C. Wey, and L. W. Kessler Sonoscan, Inc. 530 E. Green Street Bensenville, Illinois INTRODUCTION Acoustic microscopy is the

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

Biophysical Techniques (BPHS 4090/PHYS 5800)

Biophysical Techniques (BPHS 4090/PHYS 5800) Biophysical Techniques (BPHS 4090/PHYS 5800) Instructors: Prof. Christopher Bergevin (cberge@yorku.ca) Schedule: MWF 1:30-2:30 (CB 122) Website: http://www.yorku.ca/cberge/4090w2017.html York University

More information

Orthogonal Fabry-Pérot sensor array system for minimal-artifact 3D photoacoustic tomography

Orthogonal Fabry-Pérot sensor array system for minimal-artifact 3D photoacoustic tomography Orthogonal Fabry-Pérot sensor array system for minimal-artifact 3D photoacoustic tomography Robert Ellwood, Edward Zhang, Paul Beard and Ben Cox Department of Medical Physics and Biomedical Engineering,

More information

LABORATORY SYSTEM FOR X-RAY NANOTOMOGRAPHY

LABORATORY SYSTEM FOR X-RAY NANOTOMOGRAPHY 79 LABORATORY SYSTEM FOR X-RAY NANOTOMOGRAPHY Alexander Sasov, SkyScan, Vluchtenburgstraat 3, Aartselaar B2630, Belgium, www.skyscan.be. ABSTRACT Using advanced X-ray technologies and X-ray scattering

More information

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate

Tutorial Solutions. 10 Holographic Applications Holographic Zone-Plate 10 Holographic Applications 10.1 Holographic Zone-Plate Tutorial Solutions Show that if the intensity pattern for on on-axis holographic lens is recorded in lithographic film, then a one-plate results.

More information

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications

Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications Coherent Microscopy and Optical Coherence Tomography for Biomedical Applications Jeremy M. Coupland Tel.: ++44 (0)1509 227506; Fax: ++44 (0)1509 227502; Email: j.m.coupland@lboro.ac.uk Wolfson School of

More information

Fast and Robust Deconvolution-Based Image Reconstruction for Photoacoustic Tomography in Circular Geometry: Experimental Validation

Fast and Robust Deconvolution-Based Image Reconstruction for Photoacoustic Tomography in Circular Geometry: Experimental Validation Fast and Robust Deconvolution-Based Image Reconstruction for Photoacoustic Tomography in Circular Geometry: Experimental Validation Volume 2, Number 1, February 2010 Invited Paper C. Zhang C. Li L. V.

More information

Range Sensors (time of flight) (1)

Range Sensors (time of flight) (1) Range Sensors (time of flight) (1) Large range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic sensors, infra-red sensors

More information

3D TeraHertz Tomography

3D TeraHertz Tomography 3D TeraHertz Tomography B. Recur, 3 A. Younus, 1 S. Salort, 2 P. Mounaix, 1 B. Chassagne, 2 P. Desbarats, 3 1 LOMA, Université de Bordeaux / CNRS 2 ALPhANOV, Centre Technologique Optique et Lasers, Université

More information

Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School

Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School BL19LXU Yoshihito Tanaka, Oct. 2013 Text for the class, Pump-Probe Technique for Picosecond Time-resolved X-ray Diffraction at Cheiron School Abstract The pulsed time structure of synchrotron radiation

More information

Formulas of possible interest

Formulas of possible interest Name: PHYS 3410/6750: Modern Optics Final Exam Thursday 15 December 2011 Prof. Bolton No books, calculators, notes, etc. Formulas of possible interest I = ɛ 0 c E 2 T = 1 2 ɛ 0cE 2 0 E γ = hν γ n = c/v

More information

Text for the class, Pump and probe technique for picosecond time-resolved x-ray diffraction at the Cheiron School

Text for the class, Pump and probe technique for picosecond time-resolved x-ray diffraction at the Cheiron School Yoshihito Tanaka, Kiminori Ito Oct. 3-4, 2011 Text for the class, Pump and probe technique for picosecond time-resolved x-ray diffraction at the Cheiron School 1. Introduction 1-1. Purpose The pulsed nature

More information

The University of Chicago. Center for EPR Imaging in Vivo Physiology. Image Registration. Boris Epel

The University of Chicago. Center for EPR Imaging in Vivo Physiology. Image Registration. Boris Epel The University of Chicago Center for EPR Imaging in Vivo Physiology Image Registration Boris Epel Imaging Methods are Complimentary CT MRI EPRI High resolution anatomic images Quantitative Poor soft tissue

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 1 Introduction Lucas C. Parra, parra@ccny.cuny.edu 1 Content Topics: Physics of medial imaging modalities (blue) Digital Image Processing (black) Schedule: 1. Introduction,

More information

The use of acoustic reflectors to enlarge the effective area of planar sensor arrays

The use of acoustic reflectors to enlarge the effective area of planar sensor arrays The use of acoustic reflectors to enlarge the effective area of planar sensor arrays R. Ellwood 1, E.Z. Zhang 1, P.C. Beard 1 & B.T. Cox 1 1 Department of Medical Physics and Bioengineering, University

More information

Silicon Avalanche Photodiodes in Dynamic Light Scattering

Silicon Avalanche Photodiodes in Dynamic Light Scattering Silicon Avalanche Photodiodes in Dynamic Light Scattering August 2016 Introduction This application note describes the use of the ID100 single photon counting detector for the measurement of light scattered

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle

Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle Near Field Observation of a Refractive Index Grating and a Topographical Grating by an Optically Trapped Gold Particle Hiroo UKITA and Hirotaka UEMI Ritsumeikan University, Kusatsu-shi, Shiga, 2 Japan

More information

Quantitative Phase Imaging in Microscopy

Quantitative Phase Imaging in Microscopy Invited Paper Quantitative Phase Imaging in Microscopy Colin JR Sheppard, Shan S Kou and Shalin Mehta Division of Bioengineering National University of Singapore Singapore 117574 1 Introduction There are

More information

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube T. Donath* a, F. Pfeiffer a,b, O. Bunk a, W. Groot a, M. Bednarzik a, C. Grünzweig a, E. Hempel c, S. Popescu c, M. Hoheisel

More information

Advanced materials research using the Real-Time 3D Analytical FIB-SEM 'NX9000'

Advanced materials research using the Real-Time 3D Analytical FIB-SEM 'NX9000' SCIENTIFIC INSTRUMENT NEWS 2017 Vol. 9 SEPTEMBER Technical magazine of Electron Microscope and Analytical Instruments. Technical Explanation Advanced materials research using the Real-Time 3D Analytical

More information

Mirror Example Consider a concave mirror radius -10 cm then = = Now consider a 1 cm candle s = 15 cm from the vertex Where is the image.

Mirror Example Consider a concave mirror radius -10 cm then = = Now consider a 1 cm candle s = 15 cm from the vertex Where is the image. Mirror Example Consider a concave mirror radius -10 cm then r 10 f = = = 5 cm 2 2 Now consider a 1 cm candle s = 15 cm from the vertex Where is the image 1 s 2 1 = = r s 1 1 2 + = = s s r 1 1 = 0.13333

More information

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope 3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope Brian Van Devener Topics 1.Introduction to EDS in the STEM 2.Extending EDS into three dimensions

More information

Lightsheet Z.1. Light Sheet Fluorescence Microscopy by Carl Zeiss. Fabrice Schmitt, Sales Manager Carl ZEISS France

Lightsheet Z.1. Light Sheet Fluorescence Microscopy by Carl Zeiss. Fabrice Schmitt, Sales Manager Carl ZEISS France Lightsheet Z.1 Light Sheet Fluorescence Microscopy by Carl Zeiss Fabrice Schmitt, Sales Manager Carl ZEISS France 12.12.2012 Light Sheet Fluorescence Microscopy (LSFM) Principle The Principle of Light

More information

Blue Skies Blue Eyes Blue Butterflies

Blue Skies Blue Eyes Blue Butterflies Blue Skies Blue Eyes Blue Butterflies Friday, April 19 Homework #9 due in class Lecture: Blue Skies, Blue Eyes & Blue Butterflies: Interaction of electromagnetic waves with matter. Week of April 22 Lab:

More information

Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography I: Planar Geometry

Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography I: Planar Geometry IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 21, NO. 7, JULY 2002 823 Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography I: Planar Geometry Yuan Xu, Dazi Feng, and Lihong V. Wang* Abstract

More information

Applications of adaptive optics in femtosecond laser material processing

Applications of adaptive optics in femtosecond laser material processing Applications of adaptive optics in femtosecond laser material processing STFC / Photonics KTN - Laser Applications of Adaptive Optics Professor Derryck T. Reid Ultrafast Optics Group School of Engineering

More information

Quantitative Analysis of Cardiomyocyte Dynamics with Optical Coherence Phase Microscopy

Quantitative Analysis of Cardiomyocyte Dynamics with Optical Coherence Phase Microscopy Quantitative Analysis of Cardiomyocyte Dynamics with Optical Coherence Phase Microscopy Rehman Ansari* a,c, Redouane Aherrahrou b, Zouhair Aherrahrou b, Jeanette Erdmann b, Gereon Hüttmann a, and Achim

More information

Digitalna Holografija i Primjene

Digitalna Holografija i Primjene Digitalna Holografija i Primjene Hrvoje Skenderović Institut za fiziku 5. PIF Radionica, IRB, 16.12.2014. Holography Dennis Gabor invented holography in 1948 as a method for recording and reconstructing

More information

High count rate multichannel TCSPC for optical tomography

High count rate multichannel TCSPC for optical tomography High count rate multichannel TCSPC for optical tomography Wolfgang Becker *a, Axel Bergmann a, Heidrun Wabnitz **b, Dirk Grosenick b, Adam Liebert ***b a Becker & Hickl GmbH; b Physikalisch-Technische

More information

Absorption distribution of an optical beam focused into a turbid medium

Absorption distribution of an optical beam focused into a turbid medium Absorption distribution of an optical beam focused into a turbid medium Lihong V. Wang and Gan Liang The focusing of light into a turbid medium was studied with Monte Carlo simulations. Focusing was found

More information

Time-Resolved Optical Tomography in Preclinical Studies: Propagation of Excitation and Fluorescence Photons.

Time-Resolved Optical Tomography in Preclinical Studies: Propagation of Excitation and Fluorescence Photons. Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Time-Resolved Optical Tomography in Preclinical Studies: Propagation of Excitation and Fluorescence Photons. F. Nouizi 1, R. Chabrier

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

45 µm polystyrene bead embedded in scattering tissue phantom. (a,b) raw images under oblique

45 µm polystyrene bead embedded in scattering tissue phantom. (a,b) raw images under oblique Phase gradient microscopy in thick tissue with oblique back-illumination Tim N Ford, Kengyeh K Chu & Jerome Mertz Supplementary Figure 1: Comparison of added versus subtracted raw OBM images 45 µm polystyrene

More information

Miniature Mirau interferometry for swept-source OCT imaging with applications in dermatology

Miniature Mirau interferometry for swept-source OCT imaging with applications in dermatology Miniature Mirau interferometry for swept-source OCT imaging with applications in dermatology C. Gorecki 1, S. Bargiel 1, J. Lullin 1,, J. Albero 1, N. Passilly 1, S. Perrin 1, L. Froehly 1, W.- S. Wang

More information

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting Index Algebraic equations solution by Kaczmarz method, 278 Algebraic reconstruction techniques, 283-84 sequential, 289, 293 simultaneous, 285-92 Algebraic techniques reconstruction algorithms, 275-96 Algorithms

More information

Computed tomography - outline

Computed tomography - outline Computed tomography - outline Computed Tomography Systems Jørgen Arendt Jensen and Mikael Jensen (DTU Nutech) October 6, 216 Center for Fast Ultrasound Imaging, Build 349 Department of Electrical Engineering

More information

Lecture 05. First Example: A Real Lidar

Lecture 05. First Example: A Real Lidar Lecture 05. First Example: A Real Lidar Brief review of lidar basics K Doppler lidar system architecture K lidar signal estimate from lidar equation Comparison of estimate to reality Summary Review of

More information

Classification of Hyperspectral Breast Images for Cancer Detection. Sander Parawira December 4, 2009

Classification of Hyperspectral Breast Images for Cancer Detection. Sander Parawira December 4, 2009 1 Introduction Classification of Hyperspectral Breast Images for Cancer Detection Sander Parawira December 4, 2009 parawira@stanford.edu In 2009 approximately one out of eight women has breast cancer.

More information

The role of light source in coherence scanning interferometry and optical coherence tomography

The role of light source in coherence scanning interferometry and optical coherence tomography The role of light source in coherence scanning interferometry and optical coherence tomography Dr Rong Su Research Fellow Advanced Manufacturing Research Group Manufacturing Metrology Team Precision manufacturing

More information

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Coherence Coherence appear in two ways Spatial Coherence Waves

More information

What is Frequency Domain Analysis?

What is Frequency Domain Analysis? R&D Technical Bulletin P. de Groot 9/3/93 What is Frequency Domain Analysis? Abstract: The Zygo NewView is a scanning white-light interferometer that uses frequency domain analysis (FDA) to generate quantitative

More information

Simulation of confocal microscopy through scattering media with and without time gating

Simulation of confocal microscopy through scattering media with and without time gating Magnor et al. Vol. 18, No. 11/November 2001/J. Opt. Soc. Am. B 1695 Simulation of confocal microscopy through scattering media with and without time gating Marcus Magnor Computer Graphics Laboratory, Stanford

More information

Material for Chapter 6: Basic Principles of Tomography M I A Integral Equations in Visual Computing Material

Material for Chapter 6: Basic Principles of Tomography M I A Integral Equations in Visual Computing Material Material for Chapter : Integral Equations in Visual Computing Material Basic Principles of Tomography c 00 Bernhard Burgeth 0 Source: Images Figure : Radon Transform: ttenuation http://en.wikimedia.org/wiki/image:radon_transform.png

More information

Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography

Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography Disease Markers 19 (2003,2004) 123 138 123 IOS Press Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography Lihong V. Wang Optical Imaging Laboratory,

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2007W1 SEMESTER 2 EXAMINATION 2014-2015 MEDICAL PHYSICS Duration: 120 MINS (2 hours) This paper contains 10 questions. Answer all questions in Section A and only two questions

More information

EPFL SV PTBIOP BIOP COURSE 2015 OPTICAL SLICING METHODS

EPFL SV PTBIOP BIOP COURSE 2015 OPTICAL SLICING METHODS BIOP COURSE 2015 OPTICAL SLICING METHODS OPTICAL SLICING METHODS Scanning Methods Wide field Methods Point Scanning Deconvolution Line Scanning Multiple Beam Scanning Single Photon Multiple Photon Total

More information

Simulation of Diffuse Optical Tomography using COMSOL Multiphysics

Simulation of Diffuse Optical Tomography using COMSOL Multiphysics Simulation of Diffuse Optical Tomography using COMSOL Multiphysics SAM Kirmani *1 L Velmanickam 1 D Nawarathna 1 SS Sherif 2 and IT Lima Jr 1 1 Department of Electrical and Computer Engineering North Dakota

More information

Physical & Electromagnetic Optics: Diffraction Gratings

Physical & Electromagnetic Optics: Diffraction Gratings 31/05/2018 Physical & Electromagnetic Optics: Diffraction Gratings Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Multiple

More information

MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs*

MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs* MEASUREMENT OF WIGNER DISTRIBUTION FUNCTION FOR BEAM CHARACTERIZATION OF FELs* T. Mey #, B. Schäfer and K. Mann, Laser-Laboratorium e.v., Göttingen, Germany B. Keitel, S. Kreis, M. Kuhlmann, E. Plönjes

More information

Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations

Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations Time-Resolved measurements by FEL spontaneous emission: A proposal for sub-picosecond pumps & probe structural and spectrometric investigations V. Rossi Albertini, B. Paci & P. Perfetti Istituto di Struttura

More information

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms

Computed tomography of simple objects. Related topics. Principle. Equipment TEP Beam hardening, artefacts, and algorithms Related topics Beam hardening, artefacts, and algorithms Principle The CT principle is demonstrated with the aid of simple objects. In the case of very simple targets, only a few images need to be taken

More information

Signal post processing in frequency domain OCT and OCM using a filter bank approach

Signal post processing in frequency domain OCT and OCM using a filter bank approach Signal post processing in frequency domain OCT and OCM using a filter bank approach Bernd Hofer 1,2, Boris Považay 1, Boris Hermann 1, Angelika Unterhuber 1, Gerald Matz 2, Franz Hlawatsch 2, Wolfgang

More information

SAFT DATA PROCESSING APPLIED TO LASER-ULTRASONIC INSPECTION

SAFT DATA PROCESSING APPLIED TO LASER-ULTRASONIC INSPECTION SAFT DATA PROCESSING APPLIED TO LASER-ULTRASONIC INSPECTION A. Blouin, D. Levesque, C. Neron, F. Enguehard, D. Drolet, and I-P. Monchalin National Research Council of Canada, Industrial Materials Institute,

More information

LSM510 Confocal Microscope Standard Operation Protocol Basic Operation

LSM510 Confocal Microscope Standard Operation Protocol Basic Operation LSM510 Confocal Microscope Standard Operation Protocol Basic Operation Please make sure that the COMPRESSED AIR has been TURNED ON prior to the use of the equipment. Kindly inform the administrator if

More information

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar

Cherenkov Radiation. Doctoral Thesis. Rok Dolenec. Supervisor: Prof. Dr. Samo Korpar Doctoral Thesis Time-of-Flight Time-of-Flight Positron Positron Emission Emission Tomography Tomography Using Using Cherenkov Cherenkov Radiation Radiation Rok Dolenec Supervisor: Prof. Dr. Samo Korpar

More information

Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium

Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium Lihong Wang and Steven L. Jacques A simple and quick approach is used to measure

More information

PICOSECOND TRANSIENT THERMAL IMAGING USING A CCD BASED THERMOREFLECTANCE SYSTEM

PICOSECOND TRANSIENT THERMAL IMAGING USING A CCD BASED THERMOREFLECTANCE SYSTEM Proceedings of the 14th International Heat Transfer Conference IHTC14 August 8-13, 21, Washington, DC, USA IHTC14- PICOSECOND TRANSIENT THERMAL IMAGING USING A CCD BASED THERMOREFLECTANCE SYSTEM James

More information

Real Time Process Control with Optical Coherence Tomography

Real Time Process Control with Optical Coherence Tomography Real Time Process Control with Optical Coherence Tomography 16th of June 2016, Ch. Meier Bern HUCE, University OPTOLAB of Applied Science HuCE-optoLabt Overview Short introduction to OCT Systems Resolution

More information

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca 3. Image formation, Fourier analysis and CTF theory Paula da Fonseca EM course 2017 - Agenda - Overview of: Introduction to Fourier analysis o o o o Sine waves Fourier transform (simple examples of 1D

More information

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1.

10/5/09 1. d = 2. Range Sensors (time of flight) (2) Ultrasonic Sensor (time of flight, sound) (1) Ultrasonic Sensor (time of flight, sound) (2) 4.1. Range Sensors (time of flight) (1) Range Sensors (time of flight) (2) arge range distance measurement -> called range sensors Range information: key element for localization and environment modeling Ultrasonic

More information

Quantitative evaluation of systematic imaging error due to uncertainty in tissue optical properties in high-density diffuse optical tomography

Quantitative evaluation of systematic imaging error due to uncertainty in tissue optical properties in high-density diffuse optical tomography Quantitative evaluation of systematic imaging error due to uncertainty in tissue optical properties in high-density diffuse optical tomography Yuxuan Zhan* a, Adam Eggebrecht b, Hamid Dehghani a, Joseph

More information