OPTI 513R / Optical Testing

Size: px
Start display at page:

Download "OPTI 513R / Optical Testing"

Transcription

1 OPTI 513R / Optical Testing Instructor: Dae Wook Kim Meinel Building Rm 633, University of Arizona, Tucson, AZ dkim@optics.arizona.edu Website: sites.google.com/site/opti513r/ Office Hours: for appointment Course Time: To be announced Prerequisites: OPTI 505 Course Description: Review of paraxial properties of optical systems; optical material qualification; optical aberrations; interferometry; distance/slope measuring optical sensors/instruments; deflectometry; measurement of surface shape, mid-spatial frequency error and micro roughness; testing concave/convex optics; testing of spherical surfaces and lenses; freeform/aspheric surface metrology; dynamic/instantaneous metrology. Learning Objectives: 1. Test/measure optical components and systems. 2. Evaluate optical system performance. 3. Explain basic interferometry, deflectometry, and optical sensors for optical testing. 4. Better specify optical components and systems. 5. Determine if an optics supplier can actually supply the optics you are ordering. 6. Design/produce higher-quality optical systems. Grading: 1. You will be given a mid-term exam and a final exam during the semester. (All exams will be in-class, closed book exams.) 2. The homework will be due by 12:00 noon on the date stated on each assignment sheet and it should be handed in to TA (Teaching Assistant). Credit will be reduced 25% for each day a homework assignment is late. 3. The final grade in the course will be calculated as follows: homework - 20%; mid-term exam - 30%; and final exam - 50%. Special Acknowledgement: The 513R course materials were originally prepared/created by Dr. James C. Wyant and generously handed over to Dr. Dae Wook Kim for the continuing educational mission.

2 Course References: 1. Optical Society of America Optics Infobase 2. SPIE Digital Library 3. D. Malacara, Ed. Optical Shop Testing, Third Edition 4. E. P. Goodwin and J. C. Wyant Field Guide to Interferometric Optical Testing 5. W. Smith Modern Optical Engineering Draft Outline: 1. Review of Paraxial Properties of Optical Systems 1.1 Thin Lenses Measurements Based on Image Equation Autocollimation Technique Geneva Gauge Neutralization Test Focometer 1.2 Thick Lenses Focal Collimator Reciprocal Magnification Nodal-Slide Lens Bench 2. Qualification of Optical Material 2.1 Internal Defects 2.2 Measurement of Refractive Index Spectrometer Basic Spectrometer Technique Autocollimating Goniometer Hilger Chance Refractometer Critical Angle Systems Abbe Refractometer Pulfrich Refractometer 2.3 Strain 2.4 Mechanical and Thermal Properties 3. Optical Aberrations 3.1 Sign Conventions 3.2 Aberration Free Image 3.3 Spherical Wavefront, Defocus, and Lateral Shift 3.4 Angular, Transverse, and Longitudinal Aberration 3.5 Seidel Aberrations Spherical Aberration Coma Astigmatism Field Curvature Distortion

3 3.6 Zernike Polynomials 3.7 Peak-Valley and RMS Wavefront Aberration 3.8 Strehl Ratio 3.9 Chromatic Aberrations 3.10 Aberrations Introduced by Plane Parallel Plates 3.11 Aberrations of Simple Thin Lenses 3.12 Conics Basic Properties Spherical Aberration Coma Astigmatism 3.13 General Aspheres/Freeform Surfaces 4. Interferometry for Optical Testing 4.1 Two Beam Interference 4.2 Pioneer Fizeau Interferometer 4.3 Twyman-Green Interferometer 4.4 Fizeau Interferometer Laser Source 4.5 Mach-Zehnder Interferometer 4.6 Typical Interferograms 4.7 Interferograms and Moiré Patterns 4.8 Classical techniques for inputting data into computer 4.9 Direct Phase Measurement Interferometry Phase-Stepping and Phase-Shifting Interferometry Phase Shifters Moving Mirror Diffraction Grating Bragg Cell Polarization Phase Shifters Rotating Half-Wave Plate Rotating polarizer in Circularly Polarized Beam Zeeman Laser Frequency Shifting Source Algorithms Phase-Unwrapping Phase Shifter Calibration 4.10 Vertical Scanning (Coherence Probe) Techniques 5. Distance/Slope Measuring Optical Sensors/Instruments 5.1 Distance Measuring Sensors 5.2 Laser Trackers 5.3 Scanning Pentaprism Test 6. Deflectometry for Optical Testing

4 6.1 Deflectometry Concept 6.2 Visible Deflectometry 6.3 IR Deflectometry 6.4 Deflectometry and Fringe Projection Technique 7. Measurement of Surface Quality/Micro Roughness 7.1 View transmitted or reflected light 7.2 Mechanical Probe Stylus Profilometry 7.3 AFM Atomic Force Microscope or SPM Scanning Probe Microscope 7.4 Lyot Test (Zernike Phase Contrast) 7.5 FECO Fringes of Equal Chromatic Order 7.6 Nomarski Interferometer - Differential Interference Contrast (DIC) 7.7 Interference Microscope 8. Testing Flat Surface Optical Components 8.1 Mirrors Fizeau Interferometer Twyman-Green Interferometer Ritchey-Common Test 8.2 Windows Interferometer Autocollimator 8.3 Prisms Interferometer Autocollimator 8.4 Corner Cubes 8.5 Diffraction Gratings 9. Testing of Curved Surfaces and/or Lenses 9.1 Radius of Curvature Spherometer Autostigmatic Measurement Newton's Rings 9.2 Surface Figure Test Plate Twyman-Green Interferometer (LUPI) Fizeau Interferometer (Laser source) Spherical Wave Multiple Beam Interferometer (SWIM) Shack Cube Interferometer Scatterplate Interferometer Smartt Point Diffraction Interferometer Sommargren Diffraction Interferometer Measurement of Cylindrical Surfaces Long-Wavelength Interferometry

5 Star Test Shack-Hartmann Test Foucault Knife-Edge Test Wire Test Ronchi Test Lateral Shear Interferometry Radial Shear Interferometry 10. Metrology for Aspherical/Freeform Surfaces 10.1 Aspheric Surfaces Conics Sag for Aspheres 10.2 Null Test Conventional Null Optics Computer Generated Holograms 10.3 Non-Null Test Deflectometry Scanning Pentaprism Test Lateral Shear Interferometry Radial Shear Interferometry High-Density Detector Arrays Sub-Nyquist Interferometry Long-Wavelength Interferometry Sub-aperture Stitching Interferograms 11. System Evaluation 11.1 Resolution Tests 11.2 Veiling Glare 11.3 Spread Function Measurement 11.4 Encircled Energy Measurement 11.5 Optical Transfer Function Measurement Scanning Methods Interferogram Analysis Autocorrelation Method

8.0 Testing Curved Surfaces and/or Lenses

8.0 Testing Curved Surfaces and/or Lenses 8.0 Testing Curved Surfaces and/or Lenses 8.0 Testing Curved Surfaces and/or Lenses - I n 8.1 Radius of Curvature 8.1.1 Spherometer 8.1.2 Autostigmatic Measurement 8.1.3 Newton s Rings n 8.2 Surface Figure

More information

Null test for a highly paraboloidal mirror

Null test for a highly paraboloidal mirror Null test for a highly paraboloidal mirror Taehee Kim, James H. Burge, Yunwoo Lee, and Sungsik Kim A circular null computer-generated hologram CGH was used to test a highly paraboloidal mirror diameter,

More information

9.0 Special Interferometric Tests for Aspherical Surfaces

9.0 Special Interferometric Tests for Aspherical Surfaces 9.0 Special Interferometric Tests for Aspherical Surfaces 9.0 Special Interferometric Tests for Aspherical Surfaces - I n 9.1 Aspheric Surfaces 9.1.1 Conic 9.1.2 Sag for Aspheres n 9.2 Null Test 9.2.1

More information

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus Physics 42200 Waves & Oscillations Lecture 40 Review Spring 206 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 2 You can bring one double-sided pages of notes/formulas.

More information

Measurement of Highly Parabolic Mirror using Computer Generated Hologram

Measurement of Highly Parabolic Mirror using Computer Generated Hologram Measurement of Highly Parabolic Mirror using Computer Generated Hologram Taehee Kim a, James H. Burge b, Yunwoo Lee c a Digital Media R&D Center, SAMSUNG Electronics Co., Ltd., Suwon city, Kyungki-do,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 40 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

Testing spherical surfaces: a fast, quasi-absolute technique

Testing spherical surfaces: a fast, quasi-absolute technique Testing spherical surfaces: a fast, quasi-absolute technique Katherine Creath and James C. Wyant A technique for measuring the quality of spherical surfaces that provides a quasi-absolute result is presented.

More information

Invited Paper. Katherine Creath and James C. Wyant WYKO Corporation 2650 East Elvira Road, Tucson, Arizona ABSTRACT 1. INTRODUCTION.

Invited Paper. Katherine Creath and James C. Wyant WYKO Corporation 2650 East Elvira Road, Tucson, Arizona ABSTRACT 1. INTRODUCTION. Invited Paper Absolute Measurement of Spherical Surfaces Katherine Creath and James C. Wyant WYKO Corporation 2650 East Elvira Road, Tucson, Arizona 85706 ABSTRACT The testing of spherical surfaces using

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

SWING ARM OPTICAL CMM

SWING ARM OPTICAL CMM SWING ARM OPTICAL CMM Peng Su, Chang Jin Oh, Robert E. Parks, James H. Burge College of Optical Sciences University of Arizona, Tucson, AZ 85721 OVERVIEW The swing arm profilometer described in reference

More information

Medical Photonics Lecture Optical Engineering

Medical Photonics Lecture Optical Engineering Medical Photonics Lecture Optical Engineering Lecture 13: Metrology 2018-02-01 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Schedule Optical Engineering 2017 No Subject Ref Date Detailed Content

More information

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term

Lens Design I. Lecture 3: Properties of optical systems II Herbert Gross. Summer term Lens Design I Lecture 3: Properties of optical systems II 205-04-27 Herbert Gross Summer term 205 www.iap.uni-jena.de 2 Preliminary Schedule 3.04. Basics 2 20.04. Properties of optical systems I 3 27.05.

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 11: Measurement of basic system properties 017-01-03 Herbert Gross Winter term 016 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction

More information

Medical Photonics Lecture Optical Engineering

Medical Photonics Lecture Optical Engineering Medical Photonics Lecture Optical Engineering Lecture 13: Metrology 2018-02-01 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Photometric Properties Relations of the 4 main definitions Cassarly's

More information

Freeform metrology using subaperture stitching interferometry

Freeform metrology using subaperture stitching interferometry Freeform metrology using subaperture stitching interferometry APOMA November 10-11, 2016 Presented By: Christopher Hall QED Optics Sr. Engineer, QED Technologies Copyright QED Technologies 2016 Interferometry

More information

Efficient wave-optical calculation of 'bad systems'

Efficient wave-optical calculation of 'bad systems' 1 Efficient wave-optical calculation of 'bad systems' Norman G. Worku, 2 Prof. Herbert Gross 1,2 25.11.2016 (1) Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Jena, Germany (2)

More information

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term

Lens Design I. Lecture 4: Properties of optical systems III Herbert Gross. Summer term Lens Design I Lecture 4: Properties of optical systems III 018-05-03 Herbert Gross Summer term 018 www.iap.uni-jena.de Preliminary Schedule - Lens Design I 018 1 1.04. Basics 19.04. Properties of optical

More information

Lens Design I. Lecture 1: Basics Herbert Gross. Summer term

Lens Design I. Lecture 1: Basics Herbert Gross. Summer term Lens Design I Lecture 1: Basics 2015-04-04 Herbert Gross Summer term 2016 www.iap.uni-jena.de 2 Preliminary Schedule 1 04.04. Basics 2 11.04. Properties of optical systems I 3 18.04. 4 25.04. Properties

More information

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal. Diffraction Chapter 38 Huygens construction may be used to find the wave observed on the downstream side of an aperture of any shape. Diffraction The interference pattern encodes the shape as a Fourier

More information

Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27

Lens Design. Craig Olson. Julie Bentley. Field Guide to. John E. Greivenkamp, Series Editor SPIE. SPIE Field Guides. Volume FG27 Field Guide to Lens Design Julie Bentley Craig Olson SPIE Field Guides Volume FG27 John E. Greivenkamp, Series Editor SPIE PRESS Bellingham,Washington USA vii Glossary of Symbols and Acronyms xi Fundamentals

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Apr 22, 2012 Light from distant things We learn about a distant thing from the light it generates or redirects. The lenses in our eyes create images of objects our brains can

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT Optical Metrology and NDT ME-593L, C 2018 Lecture 03 January 2018 Lasers sources Some operating characteristics: laser modes Schematic

More information

Quantitative Data Extraction using Spatial Fourier Transform in Inversion Shear Interferometer

Quantitative Data Extraction using Spatial Fourier Transform in Inversion Shear Interferometer Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Physics and Optical Engineering Graduate Theses Summer 8-2014 Quantitative Data Extraction using Spatial Fourier Transform in Inversion

More information

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA

A. K. Srivastava, K.C. Sati, Satyander Kumar alaser Science and Technology Center, Metcalfe House, Civil Lines, Delhi , INDIA International Journal of Scientific & Engineering Research Volume 8, Issue 7, July-2017 1752 Optical method for measurement of radius of curvature of large diameter mirrors A. K. Srivastava, K.C. Sati,

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

3.6 Rotational-Shearing Interferometry for Improved Target Characterization

3.6 Rotational-Shearing Interferometry for Improved Target Characterization 3.6 Rotational-Shearing Interferometry for Improved Target Characterization Inertial-fusion targets have strict requirements regarding sphericity, surface smoothness, and layer-thickness uniformity. During

More information

Handbook of Optical Systems

Handbook of Optical Systems Handbook of Optical Systems Edited by Herbert Cross Volume 1: Fundamentals of Technical Optics Herbert Gross WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA VII Contents Preface 1 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4

More information

Aberrations in Holography

Aberrations in Holography Aberrations in Holography D Padiyar, J Padiyar 1070 Commerce St suite A, San Marcos, CA 92078 dinesh@triple-take.com joy@triple-take.com Abstract. The Seidel aberrations are described as they apply to

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #2 is assigned, due Feb. 12 Travel to NSF

More information

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for

Fundamental Optics for DVD Pickups. The theory of the geometrical aberration and diffraction limits are introduced for Chapter Fundamental Optics for DVD Pickups.1 Introduction to basic optics The theory of the geometrical aberration and diffraction limits are introduced for estimating the focused laser beam spot of a

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

Formulas of possible interest

Formulas of possible interest Name: PHYS 3410/6750: Modern Optics Final Exam Thursday 15 December 2011 Prof. Bolton No books, calculators, notes, etc. Formulas of possible interest I = ɛ 0 c E 2 T = 1 2 ɛ 0cE 2 0 E γ = hν γ n = c/v

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Important announcements Homework #2 is assigned, due Feb. 11 Mid-term exam

More information

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference Diffraction Diffraction integral we use simple models that say a lot! more rigorous approach Basic optics Geometrical optics and images Interference

More information

6.0 Measurement of Surface Quality

6.0 Measurement of Surface Quality 6.0 Measurement of Surface Quality 6.0 Measurement of Surface Quality n 6.1 View transmitted or reflected light n 6.2 Mechanical Probe Stylus Profilometry n 6.3 AFM Atomic Force Microscope or SPM Scanning

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 4: Fringe projection 2016-11-08 Herbert Gross Winter term 2016 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 18.10. Introduction Introduction,

More information

Phase contrast microscopy

Phase contrast microscopy Phase contrast microscopy CJR Sheppard Division of Bioengineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Synopsis Many biological specimens behave as phase objects, that

More information

Ping Zhou. Copyright Ping Zhou A Dissertation Submitted to the Faculty of the. In Partial Fulfillment of the Requirements For the Degree of

Ping Zhou. Copyright Ping Zhou A Dissertation Submitted to the Faculty of the. In Partial Fulfillment of the Requirements For the Degree of ERROR ANALYSIS AND DATA REDUCTION FOR INTERFEROMETRIC SURFACE MEASUREMENTS by Ping Zhou Copyright Ping Zhou 29 A Dissertation Submitted to the Faculty of the COLLEGE OF OPTICAL SCIENCES In Partial Fulfillment

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 5: Interferometry and Coherence SUMMARY: In this lab you will use interference of a temporally coherent (very narrow temporal frequency bandwidth) laser beam to

More information

Winter College on Optics in Environmental Science February Adaptive Optics: Introduction, and Wavefront Correction

Winter College on Optics in Environmental Science February Adaptive Optics: Introduction, and Wavefront Correction 2018-23 Winter College on Optics in Environmental Science 2-18 February 2009 Adaptive Optics: Introduction, and Wavefront Correction Love G. University of Durham U.K. Adaptive Optics: Gordon D. Love Durham

More information

Calibration of a portable interferometer for fiber optic connector endface measurements

Calibration of a portable interferometer for fiber optic connector endface measurements Calibration of a portable interferometer for fiber optic connector endface measurements E. Lindmark Ph.D Light Source Reference Mirror Beamsplitter Camera Calibrated parameters Interferometer Interferometer

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

A RADIAL WHITE LIGHT INTERFEROMETER FOR MEASUREMENT OF CYLINDRICAL GEOMETRIES

A RADIAL WHITE LIGHT INTERFEROMETER FOR MEASUREMENT OF CYLINDRICAL GEOMETRIES A RADIAL WHITE LIGHT INTERFEROMETER FOR MEASUREMENT OF CYLINDRICAL GEOMETRIES Andre R. Sousa 1 ; Armando Albertazzi 2 ; Alex Dal Pont 3 CEFET/SC Federal Center for Technological Education of Sta. Catarina

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 4: Fringe projection 2018-11-09 Herbert Gross Winter term 2018 www.iap.uni-jena.de 2 Schedule Optical Metrology and Sensing 2018 No Date Subject Detailed Content 1 16.10.

More information

Advanced Lens Design

Advanced Lens Design Advanced Lens Design Lecture 3: Optimization II 2013-10-29 Herbert Gross Winter term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 15.10. Introduction Paraxial optics, ideal lenses, optical systems,

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 41 Review Spring 2016 Semester Matthew Jones Final Exam Date:Tuesday, May 3 th Time:7:00 to 9:00 pm Room: Phys 112 You can bring one double-sided pages of notes/formulas.

More information

Paraxial into real surfaces

Paraxial into real surfaces Paraxial into real surfaces Curvature, Radius Power lens and mirrors lens maker equation mirror and lens in contact Principle planes Real Surfaces Refractive via Fermat s Principle Calculate optical path

More information

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators

Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators Novel Magnetic Field Mapping Technology for Small and Closed Aperture Undulators Erik Wallen and Hyun-Wook Kim 06.06.2017 Outline Introduction - Measurement systems at LBNL - Activities at LBNL - Need

More information

Optics and Photonics: An Introduction

Optics and Photonics: An Introduction Optics and Photonics: An Introduction Second Edition F. Graham Smith University of Manchester, UK Terry A. King University of Manchester, UK Dan Wilkins University of Nebraska at Omaha, USA \ WILEY\ \

More information

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization Lens Aberrations - 3 lectures Spherical aberrations Coma,

More information

Fringe modulation skewing effect in white-light vertical scanning interferometry

Fringe modulation skewing effect in white-light vertical scanning interferometry Fringe modulation skewing effect in white-light vertical scanning interferometry Akiko Harasaki and James C. Wyant An interference fringe modulation skewing effect in white-light vertical scanning interferometry

More information

Development of shape measuring system using a line sensor in a lateral shearing interferometer

Development of shape measuring system using a line sensor in a lateral shearing interferometer Development of shape measuring system using a line sensor in a lateral shearing interferometer Takashi NOMURA*a, Kazuhide KAMIYA*a, Akiko NAGATA*a, Hatsuzo TASHIRO **b, Seiichi OKUDA ***c a Toyama Prefectural

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Tutorial Zemax 6: Advanced handling

Tutorial Zemax 6: Advanced handling Tutorial Zemax 6: Advanced handling 2012-09-25 6 Advanced handling 1 6.1 Multi configuration, universal plot and slider... 1 6.2 Macro for Spot Moments... 6 6.3 Multiconfiguration and folding mirror...

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Imaging and Aberration Theory

Imaging and Aberration Theory Imaging and Aberration Theory Lecture 8: Astigmastism and field curvature 03--9 Herbert Gross Winter term 03 www.iap.uni-jena.de Preliminary time schedule 4.0. Paraxial imaging paraxial optics, fundamental

More information

Section 2. Mirror and Prism Systems

Section 2. Mirror and Prism Systems 2-1 Section 2 Mirror and Prism Systems Plane Mirrors Plane mirrors are used to: Produce a deviation Fold the optical path Change the image parity Each ray from the object point obeys the law of reflection

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Fabrication of MEMS Conventional

More information

2.0 QUALIFICATION OF OPTICAL MATERIAL. Sample Schlieren Stop

2.0 QUALIFICATION OF OPTICAL MATERIAL. Sample Schlieren Stop .0 QUALIFICATION OF OPTICAL MATERIAL James C. Wyant College of Optical Sciences University of Arizona Tucson, AZ 8571 jcwyant@optics.arizona.edu Materials for optical parts are generally given some inspection

More information

Contrast Optimization: A faster and better technique for optimizing on MTF ABSTRACT Keywords: INTRODUCTION THEORY

Contrast Optimization: A faster and better technique for optimizing on MTF ABSTRACT Keywords: INTRODUCTION THEORY Contrast Optimization: A faster and better technique for optimizing on MTF Ken Moore, Erin Elliott, Mark Nicholson, Chris Normanshire, Shawn Gay, Jade Aiona Zemax, LLC ABSTRACT Our new Contrast Optimization

More information

Who s afraid of freeform optics? * Webinar 17 January 2018

Who s afraid of freeform optics? * Webinar 17 January 2018 Who s afraid of freeform optics? * Webinar 17 January 2018 Outline About the presenters Spectrum Scientific, Inc. (SSI) Challenges of using freeform optics How to use freeform optics Low cost replicas

More information

OPTI-502 Midterm Exam John E. Greivenkamp Page 1/12 Fall, 2016

OPTI-502 Midterm Exam John E. Greivenkamp Page 1/12 Fall, 2016 Page 1/12 Fall, 2016 October 19, 2016 Lecture 17 Name SOLUTIONS Closed book; closed notes. Time limit: 75 minutes. An equation sheet is attached and can be removed. A spare raytrace sheet is also attached.

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Contents. Ray Intersection Patterns Spherical Coma Field Curvature and astigmatism Distortion Aplanatic Points How to reduce aberrations

Contents. Ray Intersection Patterns Spherical Coma Field Curvature and astigmatism Distortion Aplanatic Points How to reduce aberrations Contents Ray Intersection Patterns Spherical Coma Field Curvature and astigmatism Distortion Aplanatic Points How to reduce aberrations ECE 4616 Tolis Deslis Contents Contents Ray Intersection Patterns

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Determination and compensation of the reference surface from redundant sets of surface measurements

Determination and compensation of the reference surface from redundant sets of surface measurements Determination and compensation of the reference surface from redundant sets of surface measurements François Polack and Muriel Thomasset Synchrotron SOLEIL, Saint-Aubin, FRANCE IWXM 4, Barcelona July 212

More information

Dual Mode Interferometer for Measuring Dynamic Displacement of Specular and Diffuse Components

Dual Mode Interferometer for Measuring Dynamic Displacement of Specular and Diffuse Components Dual Mode Interferometer for Measuring Dynamic Displacement of Specular and Diffuse Components Michael North Morris, Tim Horner, Markar Naradikian, Joe Shiefman 4D Technology Corporation, 3280 E. Hemisphere

More information

Self-referenced prism deflection measurement schemes with microradian precision

Self-referenced prism deflection measurement schemes with microradian precision Self-referenced prism deflection measurement schemes with microradian precision Rebecca Olson, Justin Paul, Scott Bergeson, and Dallin S. Durfee We have demonstrated several inexpensive methods that can

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term

Lens Design I. Lecture 11: Imaging Herbert Gross. Summer term Lens Design I Lecture 11: Imaging 2015-06-29 Herbert Gross Summer term 2015 www.iap.uni-jena.de 2 Preliminary Schedule 1 13.04. Basics 2 20.04. Properties of optical systrems I 3 27.05. 4 04.05. Properties

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

Feature Map. Work the way you want, faster, easier... with the same Zemax reliability. RIBBONS / EDITORS

Feature Map. Work the way you want, faster, easier... with the same Zemax reliability. RIBBONS / EDITORS Feature Map Feature Map Work the way you want, faster, easier... with the same Zemax reliability. Zemax brings a new level of productivity to optics simulation software with OpticStudio14. Built on Zemax

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 9: Advanced handling 2014-06-13 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

Fabrication of Freeform Optics

Fabrication of Freeform Optics Fabrication of Freeform Optics Todd Blalock, Kate Medicus, Jessica DeGroote Nelson Optimax Systems, Inc., 6367 Dean Parkway, Ontario, NY 14519 ABSTRACT Freeform surfaces on optical components have become

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 4: Fringe projection 2017-11-09 Herbert Gross Winter term 2017 www.iap.uni-jena.de 2 Preliminary Schedule No Date Subject Detailed Content 1 19.10. Introduction Introduction,

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 10: Advanced handling 2013-06-28 Herbert Gross Summer term 2013 www.iap.uni-jena.de 2 Preliminary Schedule 1 12.04. Introduction 2 19.04. Properties of optical systems

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Design and Correction of optical Systems

Design and Correction of optical Systems Design and Correction of optical Systems Part 3: Components Summer term 0 Herbert Gross Overview. Basics 0-04-8. Materials 0-04-5 3. Components 0-05-0 4. Paraxial optics 0-05-09 5. Properties of optical

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Tolerance on material inhomogenity and surface irregularity

Tolerance on material inhomogenity and surface irregularity Opti 521 Wenrui Cai Tolerance on material inhomogenity and surface irregularity Abstract In this tutorial, a case study on tolerance for a focusing doublet is performed by using ZEMAX. First, how to perform

More information

Alignment of a Single Surface

Alignment of a Single Surface Alignment of a Single Surface This procedure will be used (w/some variations) to align any off-axis aspheric surface to an established optical axis. Spring 2018 185 Procedure: Off-axis alignment Back of

More information

4D Technology Corporation

4D Technology Corporation 4D Technology Corporation Dynamic Laser Interferometry for Company Profile Disk Shape Characterization DiskCon Asia-Pacific 2006 Chip Ragan chip.ragan@4dtechnology.com www.4dtechnology.com Interferometry

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

Application-Specific Optical Design

Application-Specific Optical Design Application-Specific Optical Design Introduction Optical design software capabilities have advanced considerably from the late 1950s and early 1960s when computer tools first became available. Initially,

More information

Non-Interferometric Testing

Non-Interferometric Testing NonInterferometric Testing.nb Optics 513 - James C. Wyant 1 Non-Interferometric Testing Introduction In tese notes four non-interferometric tests are described: (1) te Sack-Hartmann test, (2) te Foucault

More information

Optical Design with Zemax

Optical Design with Zemax Optical Design with Zemax Lecture 10: Advanced handling II 2014-06-20 Herbert Gross Sommer term 2014 www.iap.uni-jena.de 2 Preliminary Schedule 1 11.04. Introduction 2 25.04. Properties of optical systems

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 42 Review Spring 2013 Semester Matthew Jones Final Exam Date:Tuesday, April 30 th Time:1:00 to 3:00 pm Room: Phys 112 You can bring two double-sided pages of

More information

Centration of optical elements

Centration of optical elements Centration of optical elements Ezra Milby *a, Jim Burge a a College of Optical Sciences, 163 E University Blvd, Tucson, AZ 85723 ABSTRACT Axisymmetric optical components such as lenses are frequently centered

More information

1. A detector receives one photon of green light every microsecond. What is the average power measured?

1. A detector receives one photon of green light every microsecond. What is the average power measured? General Optics Qualifying Exam 2009 Attempt any 10 of the following problems on your first time through, skip any problem you find difficult. All problems count equally. Begin each problem on a new sheet

More information

PROCEEDINGS OF SPIE. Model-free optical surface reconstruction from deflectometry data. L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, et al.

PROCEEDINGS OF SPIE. Model-free optical surface reconstruction from deflectometry data. L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, et al. PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Model-free optical surface reconstruction from deflectometry data L. R. Graves, H. Choi, W. Zhao, C. J. Oh, P. Su, et al. L. R.

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Modeling interferometers with lens design software

Modeling interferometers with lens design software Modeling interferometers with lens design software Bryan D. Stone, MEMBER SPIE Tropel Corporation 60 O Connor Road Fairport, ew York 14450 Abstract. Lens design software has been designed primarily to

More information