Combining Spatial and Social Awareness in D2D Opportunistic Routing

Size: px
Start display at page:

Download "Combining Spatial and Social Awareness in D2D Opportunistic Routing"

Transcription

1 IEEE COMMUNICATIONS MAGAZINE 1 Combining Spatial and Social Awareness in D2D Opportunistic Routing Ivan O. Nunes, Clayson Celes, Igor Nunes, Pedro O. S. Vaz de Melo, Antonio A. F. Loureiro Department of Computer Science Federal University of Minas Gerais Brazil Abstract Social-aware algorithms have remarked themselves as the most successful strategies for cost-effective content delivery in mobile opportunistic networks. However, these strategies do not consider the importance of users geographical locations nor the spatial properties of human mobility. Given this fact, in this work we propose to combine spatial and social properties to improve the cost-effectiveness of content delivery in opportunistic Deviceto-Device (D2D) networks. We leverage and describe four spatial and social properties and characterize them in a real-world dataset. As a proof of concept of employing those properties, we propose, a forwarding algorithm that combines social awareness, points of interest within a region, and users individual mobility patterns to cost-effectively deliver messages in opportunistic D2D networks. We compare to the state-of-the-art social-aware algorithm, namely, and with a modified version of that incorporates static relay nodes. Our experiments, conducted using both real-world (NCCU) and state-of-art synthetic (SWIM) traces, confirm that the combination of social and spatial awareness can increase the delivery performance. Keywords Opportunistic Routing, Device-to-Device Communication, Social Networking, Mobility. I. INTRODUCTION Opportunistic mobile networks have attracted a lot of attention and several algorithms have been proposed to enable cost-effective and timely delivery of data. In such networks, a given content is forwarded device-by-device, from the source to the destination, using the intermittently connected structure of mobile networks. More recently, there was an increasing use of high data rate applications in cellular networks that make use of heavy multimedia content such as videos, music, games, and social media. Opportunistic forwarding has been proposed to facilitate the high data rate transmissions among nearby users in these scenarios, offering the possibility of offloading the traffic demands of a base station. This type of communication might be used to deliver contents such as video advertisements and noncritical updates of applications. In such cases, timely delivery is not essential. This is known as opportunistic Device-to-Device (D2D) communication offloading in cellular networks [1], [2]. The goal of forwarding algorithms for opportunistic D2D cellular networks is to deliver as many messages as possible maintaining a low network overhead. Considering these metrics, [3], the most successful strategy for opportunistic cost-effective forwarding, relies on information about social communities and nodes centrality, which can be approximated by the node popularity within the mobile network. However, and previous social-aware strategies do not consider any geographic feature of the scenario in question, such as its Points of Interest (PoI), nor the users mobility patterns. The recently released NCCU trace [4] brings a remarkable opportunity to investigate this open issue, since it is the first available real-world dataset to monitor, not only users proximity contacts, but also their geo-locations. In the literature, there are other real traces, but none of them presents all these properties. In other words, based on the characterization of the NCCU trace we can obtain insights to design real-world protocols that take advantage and consider human mobility. With that in mind, in this work we propose to combine spatial features and social awareness, recorded in the NCCU trace, with the goal of improving the cost-effectiveness of opportunistic forwarding. We describe two spatial and two social features and characterize them in the NCCU trace. As a proof of concept, we use such properties to design (Social-Aware, Mobility, and PoI Routing) that, to the best of our knowledge, is the first opportunistic routing strategy to combine mobility, PoIs, and social-awareness to provide costeffective content delivery in intermittent networks. We evaluate using two traces: NCCU and the synthetic mobility model SWIM [5]. The latter allows the performance evaluation of a large network. works by forwarding messages to nodes of higher mobility, until the message reaches a static relay point. Static relay points are strategically deployed at the most popular PoIs and forward their received content to nodes that belong to the social community whose destination node is also a member. Within such community, the message is forwarded to the most popular nodes until it reaches the destination node. Our experiments show that, by exploring the combination of spatial and social features, improves delivery ratio, reduces the network overhead, and enables faster delivery of messages. These results reinforce our assumption that a better understanding of real mobility traces can provide valuable insights in the design of D2D opportunistic routing. II. BACKGROUND AND RELATED WORK D2D refers to the direct transmission of content between devices without the need of sending all data through a base

2 IEEE COMMUNICATIONS MAGAZINE 2 station, as in traditional cellular networks [1]. D2D communication can be classified in two basic types: 1-hop transmission, in which a message goes directly from the source to the destination, if they are close enough to each other; and multihop transmission, where the message must be opportunistically routed, device-by-device, from the source to the destination. The latter solution is more complex since it depends on the intermittent communication structure of a mobile network, being suitable for communications that tolerate large delivery times. This concept was initially introduced in the context of opportunistic networks, but can naturally be applied to D2D networks, acting as a bandwidth offload mechanism for the download demands of the base stations [1]. At first, oblivious solutions (in which no context information is considered) were proposed for such networks. Examples of forwarding strategies in this category are Flooding (or epidemic propagation) and Spray and Wait [6]. However, these strategies are not practical since the number of content retransmissions grow extremely fast as the number of nodes in the network increases. As a consequence, several opportunistic communication solutions were proposed to achieve costeffective delivery [1], [3], [7], [8], [9], [10]. In this case, the goal is to achieve the highest possible delivery ratio with the lowest possible network overhead. Delivery ratio is measured as the percentage of opportunistically routed messages successfully delivered to their destinations. These messages are those that the base station will not need to deliver itself, thus using less bandwidth. Network overhead is measured by the average number of times content needs to be D2D-transmitted for the message to get to its destination. A high number of transmissions may negatively impact the users experience by, for example, increasing the devices energy expenditure. Considering cost-effective solutions, the most successful approaches for opportunistic forwarding are the probabilistic and social-aware strategies. The use of a probabilistic approach was firstly introduced with the PROPHET algorithm [9]. Its main idea is to assign a higher importance to pairwise node contacts that happened more recently, in an attempt to predict future pair contacts. This algorithm achieved great success, but years later was outperformed by [3], which uses the community structure of mobile social networks of encounters, together with the knowledge about the nodes popularity, to define its forwarding policy. proposed a costeffective forwarding algorithm in terms of successful message delivery and low network overhead. More recently, a trend in the design of protocols consists in combining features to improve the decision-making process of routing. For example, SCORP [8] and Oi [7] combine users social ties with their interests for social-aware opportunistic routing. In [10], we have proposed GROUPS-Net, an algorithm that outperformed by combining social awareness with a probabilistic approach using group meetings as a measure of social context. An extensive review of opportunistic routing strategies is provided in [11]. Although aforementioned solutions have incrementally reduced the overhead and improved the delivery ratio, they do not combine spatial and social features to perform D2D routing. As mentioned earlier, human mobility presents spatial and social features that once characterized can be used to design new opportunistic forwarding algorithms. In this work, we discuss these features and their importance, and propose a novel protocol, namely, that makes use of such features. To the best of our knowledge, is the first forwarding algorithm to consider the combination of both spatial and social features. In Table I we show a summary of the solutions we have discussed. Property Algorithm Probabilistic Social PoI Individual Model Mobility Flooding Spray and Wait [6] [9] SCORP [8] [3] GROUPS-Net [10] TABLE I. PROPERTIES CONSIDERED IN THE MAIN OPPORTUNISTIC FORWARDING PROTOCOLS III. SPATIAL AND SOCIAL FEATURES The main contribution of this work is to show that it is worth combining information extracted from the user s geo-locations with social context to improve the state-of-the-art forwarding strategies. In this section, we individually explain four spatial and social features present in human mobility and revealed in a real trace we characterize and explore. A. The NCCU Trace The usual goal of using mobility traces in the evaluation of communication protocols is to capture the performance of such protocols in real-world scenarios, allowing more reliable analysis. Synthetic mobility models cannot capture all properties of human mobility and, therefore, may lead to biased results. In the case of opportunistic networking, this is especially harmful, because most of the existing mobility models do not capture the impact of human social bonds in the mobility. In this work, we combine mobility and social properties, based on the characteristics captured from a real-world mobility trace. The NCCU trace registered 115 users moving on a campus throughout a 15-day period. An Android application collected their GPS data, application usage, Wi-Fi access points, and proximity information captured via Bluetooth. These data were registered once every 10 minutes and contacts were detected when two users were less than 10 meters apart. To the best our knowledge, NCCU is the first public dataset that recorded pairwise contact information and users geo-locations within a dense mobility scenario. The NCCU trace provides a new opportunity to combine multiple features in several types of mobility studies. In this work, we are especially interested in providing insights on how to use spatial and social features to design an opportunistic forwarding algorithm for cost-effective routing in D2D networks. With that goal, we extract NCCU users mobility, popularity, PoIs, and social bonds. Below, we discuss each one of these properties and how they can be explored.

3 IEEE COMMUNICATIONS MAGAZINE 3 (a) Popularity of network users (b) Nine social communities detected from the (c) Trajectories of users with different radius of NCCU contact graph using the clique percolation gyrations method (each color represents a different community) (d) Users radius of gyration (P.D.F.) (e) Heat map of the NCCU mobility trace depicting the most popular places (f) Strategic deployment of four relay points with reach radius of 30m (red circles) Fig. 1. Mobility, PoIs and social features computed from the NCCU trace B. Social Awareness as Popularity Currently, the most successful approaches for opportunistic forwarding are the social-aware strategies [1]. These solutions aim to identify the most popular nodes in order to use them when forwarding messages. In summary, most popular nodes (persons) are those who meet others more often. The C- Window metric [3] measures nodes popularity as the average number of different nodes encountered throughout time windows of fixed length, e.g., 24 hours. C-Window presented high correlation (up to 0.95 correlation) with the node s betweenness centrality in the mobile network [3]. Nodes betweenness centrality in opportunistic networks is defined as the number of times a given node belongs to the shortest path (the one with fewer re-transmissions) between two nodes. Thus, it makes perfect sense to use such information to decide whether to forward or not a message to an encountered node, i.e., a message should be preferentially forwarded to more popular nodes. In human society, people have different levels of popularity. Hence, the main idea here is to use such heterogeneity to design more efficient forwarding schemes. For instance, Figure 1(a) presents the NCCU trace users popularity measured with the C-Window technique. It is possible to notice that few nodes have very high popularity, which means that a message forwarded to these strategically selected nodes have a high probability of reaching a given destination rapidly and with lower network overhead. C. Social Communities A second interesting approach to consider in the design of social-aware applications is the use of social communities. Communities in graphs are defined as groups of more densely interconnected nodes. By using social graphs, in which nodes are the network users and edges weights the number of meetings between pairs of nodes, it is possible to detect social communities. Among the algorithms for community detection in graphs, the Clique Percolation Method (CPM) [12] has remarked itself as one of the most effective methods, if set with

4 IEEE COMMUNICATIONS MAGAZINE 4 the correct parameters [13]. Figure 1(b) depicts nine social communities detected from the NCCU social contact graph using the CPM. The use of social communities in opportunistic forwarding is interesting because a given message has a much higher probability to be delivered to the destination once it gets to any member of a community where the destination belongs to. As we observe in Figure 1(b), nodes within communities are more densely interconnected, as intuitively expected, and according to the definition of communities in graphs. D. Users Individual Mobility Several studies about human mobility have shown that people have different mobility patterns, which are mostly influenced by their daily routines. In this regard, a more detailed understanding of people s mobility can provide significant insights toward the design of opportunistic routing solutions. There are studies in the literature that propose a single parameter to characterize the individual mobility of people. Radius of gyration [14] quantifies the dynamic mobility of a person in relation to the center of mass of his/her movements. Radius of gyration (r g ) of a given person is computed as in Equation 1, where n is the total number of recorded positions for a given user, p i represents the ith position recorded for the user, and p center is the center of mass of the user s recorded displacements, obtained as in Equation 2. r g = 1 n (p i p center ) 2, (1) n i=1 p center = 1 n n p i. (2) i=1 Figure 1(d) depicts the Probability Distribution Function (P.D.F.) of users radius of gyrations in the NCCU trace. We can see that most users have small radius of gyration (between 100 and 250 meters) and a few of them present a much higher mobility (above 400 meters). The radius of gyration is associated with the user s displacement, and, thus, it makes sense to forward messages to nodes with higher radius of gyration to increase the geographical coverage of a message in the network without needing to transmit copies of the messages to many nodes. Figure 1(c) presents the trajectories of three different users of the NCCU trace. User 50 exemplifies a person with high radius of gyration, covering a considerable region. Conversely, User 43 has a low radius of gyration, covering a limited region. E. Points of Interest Despite people presenting different behaviors, their mobility has some spatial-temporal intersections. For instance, it is common to see very distinct people (e.g., students, executives and retirees) being attracted constantly to the same geographical location (e.g., train station). Such locations, called Points of Interest (PoI), may be used for the deployment of static relay nodes. Each static relay node consists of a low-computational power device with communication and storage capabilities, similar to access points, but with no need for Internet connection. Its role in the network is to store and forward messages according to a given forwarding policy. Due to these characteristics, they have low financial cost. Figure 1(e) shows the heat map of the frequency of visitations in the NCCU campus. Considering this frequency, Figure 1(f) depicts the strategic deployment of four relay points with communication radius of 30 m (red circles). As we can observe, they were deployed at the most visited PoIs in the NCCU campus. As motivation, in Figure 2, we evaluate the performance of the flooding forwarding strategy when different numbers of relay points are added. The performance is measured by the delivery ratio (Figure 2(a)) and delivery time (Figure 2(b)). In the flooding forwarding strategy, every time a node holding a message meets another node that does not have it, the message is propagated. Flooding represents the upper bound for the delivery ratio, but drastically increases the network overhead. Nevertheless, notice that even in this simple strategy the deployment of static relay points presents benefits. Below, we discuss better ways to use static relay points to improve the delivery ratio without increasing the network overhead. It is important to mention that previous evaluations of the performance of static relay points, in opportunistic networks, only used synthetic mobility models [15]. However, as already discussed, those models do not capture human sociability, and, thus, the work in [15] did not consider the combination of PoIs with social awareness. IV. COMBINING FEATURES TOWARD COST-EFFECTIVE FORWARDING In the following, we present, which uses social communities and social popularity metrics as they were introduced in the original scheme [3], and adds the individual mobility and PoI properties to them in a clever way, helping to achieve high delivery ratio and reducing the network overhead. Since we want to quantify the improvement of adding these properties, we first present a brief overview of the algorithm. A. Algorithm [3] identifies social communities by looking at densely interconnected nodes in the aggregated contact graph, obtained from a given trace, using CPM [12]. Each node in the network must belong to at least one community. Nodes that do not belong to any community are assigned to a pseudocommunity of one node. This is necessary for the forwarding algorithm operation. Moreover, each node gets a measure of its global popularity in the network (GlobalRank) and a local measurement of popularity, which is valid within that node s community (LocalRank). Using these parameters, the forwarding strategy works as follows: At each encounter, a given node transmits its content if the encountered node has a higher GlobalRank or if the encountered node belongs to a community of which the final destination is a member.

5 IEEE COMMUNICATIONS MAGAZINE 5 (a) Delivery ratio (b) Delivery time distributions as boxplots Fig. 2. Effect of introducing relay points in the flooding forwarding Once the message is inside the final destination s community, the forwarding process occurs if the LocalRank of the encountered node is higher than the LocalRank of the node that has the message. This procedure goes on until the message reaches the final destination. Both the GlobalRank and the LocalRank are calculated using the C-Window technique that better approximates the node centrality within the mobile network. B. combines all social and spatial features that we have discussed earlier. To explore information about PoIs, static relay points are deployed at the most frequently visited places in the region of interest. The addition of the relay points by itself could be harmful, since it would drastically increase the number of message copies in the network, generating more network overhead. Because of that, combines PoIs and communities awareness to define the relay points forwarding policy. Instead of forwarding a message to any node that gets inside its transmission radius, a relay point only forwards messages to nodes that belong to the destination community, i.e., the community whose destination node is part of. Since relay points are placed in most popular areas (SAM- PLER s PoI feature), they will probably be in contact range with many different network nodes. Thus, the idea is to have them assuming the role of extremely popular nodes that accelerate the message forwarding to the destination community. As relay points have higher popularity, every mobile node always forwards a message when it meets a relay point. An obvious shortcoming of relay points is that they are static. To address this issue, adds Individual Mobility awareness to the forwarding scheme. Instead of setting the nodes GlobalRank as the nodes popularity, uses the nodes radius of gyration, which measures their average displacements ( s mobility feature). Thus, a message is forwarded to nodes that have higher mobility until it gets to a relay point. Once the message is inside the destination community, the forwarding policy works as in, transmitting the message to nodes with higher popularity within that community until the message gets to the destination ( s social features). In summary, works as follows: 1) GlobalRank is set to the nodes radius of gyration (mobility awareness); 2) LocalRank is set to the nodes popularity (C-Window metric) within the destination community (social awareness); 3) The message is always forwarded if the encountered node is the destination; 4) Every time a mobile node encounters a static relay point that does not have the message yet, the message is forwarded (PoI awareness); 5) Upon encountering a node that belongs to the destination community, the relay point forwards the message (social awareness); 6) Outside the destination community, the message is forwarded if the GlobalRank of the encountered node is higher than the GlobalRank of the node that has the message (mobility awareness). This step is performed at most once by each node; 7) Inside the destination community, the message is forwarded if the LocalRank of the encountered node is higher than the LocalRank of the node that has the message (social awareness). s key ideas are quite intuitive. Nodes with higher mobility help messages to get to relay points through a mobility-based forwarding strategy (Steps 1 and 6). Since relay points are placed in very popular areas, they meet many nodes, helping the message to get inside the destination s community faster and with less overhead (Steps 4 and 5). Finally, a popularity-based forwarding scheme is used within the destination community to deliver a message to its destination node (Steps 2 and 7). Figure 3 illustrates these principles.

6 IEEE COMMUNICATIONS MAGAZINE 6 purpose, in addition to, we propose Relay-Bubble, which only accounts for PoIs. In summary, we compute each of the aforementioned metrics for the following algorithms: Original : it does not use relay points (PoI awareness) nor the node s radius of gyration (mobility awareness). Relay-Bubble: variant of we proposed with relay points (PoI awareness) to get a message inside the destination community, and uses both GlobalRank and LocalRank as the node s popularity. : uses relay points (PoI awareness) to get a message inside the destination community, the radius of gyration as the GlobalRank (mobility awareness) and the LocalRank as the node s popularity (C-Window metric). : for completeness we also consider in our analysis, since it is the most cost-effective forwarding algorithm that does not use social information. In addition to NCCU, we also conducted the same experiment in the SWIM synthetic trace [5], with the goal of evaluating the performance of the algorithms in a larger scale network. SWIM is a state-of-the-art trace containing 700 nodes and capable of simulating mobility and social communities among its nodes. Fig. 3. Principles of the algorithm V. PERFORMANCE ANALYSIS A. Experimental methodology With the goal of comparatively evaluating and, we used the following traditional metrics: Delivery ratio: evaluates the percentage of successfully delivered messages for different values of Time To Live (TTL). Number of transmissions: measures the network overhead, i.e., the number of device-to-device transmissions that each algorithm performs for different TTLs. Delivery Time: measures the average time a message takes to get from the source node to its destination node. The algorithms were tested for different numbers of relay points. For each test campaign, we considered every possible (origin, destination) pair 1 for each algorithm and for each number of relay points. We have also evaluated separately the contribution of the relay points and the combination of relay points with the use of the radius of gyration in the GlobalRank parameter. With that 1 Since all possible (origin, destination) pairs were emulated, the experiments results are deterministic. Therefore, confidence intervals are not presented. B. Comparative Evaluation The algorithms were evaluated with several different numbers of relay points covering the k most popular PoIs. The results for k = 5, 10 are presented in Figure 4 for the NCCU trace and in Figure 5 for the SWIM trace. The first interesting observation is that s performance was significantly lower than the performance of the other three algorithms. In all considered scenarios, had lower delivery ratio, higher network overhead, and high delay to deliver messages. The only exception is Relay Bubble s overhead, the highest in the SWIM dataset, discussed later on. In both traces, takes more time to start delivering the first messages and when that happens the network overhead also starts to increase rapidly. This result confirms that the use of social awareness gives a drastic advantage, allowing protocols to perform much more efficiently. Considering the three social-aware strategies, the experiments in the NCCU trace show that Relay-Bubble has a performance similar to, with respect to the delivery ratio and transmission delay. Both of them present faster delivery when compared to (Figures 4(c) and 4(f)). Relay- Bubble also presents slightly faster delivery with 5 relay points when compared to. However, the most significant contrast between Relay-Bubble and is observed in the network overhead (Figures 4(b) and 4(e)). When comparing the number of transmissions that each algorithm performs over time, we notice that, for all considered numbers of relay points, Relay-Bubble is the most expensive strategy. On the other hand, due to the mobility awareness incorporated into, it achieves the fast delivery and high delivery ratio presented by Relay-Bubble with much lower network overhead.

7 IEEE COMMUNICATIONS MAGAZINE 7 Delivery Ratio (%) # of Transmissions/Message Avg. Delivery time(h) Message TTL (a) Delivery 5 Relay Points (b) Transmissions 5 Relay Points (c) Delay 5 Relay Points Delivery Ratio (%) # of Transmissions/Message Avg. Delivery time(h) Message TTL (d) Delivery 10 Relay Points (e) Transmissions 10 Relay Points (f) Delay 10 Relay Points Fig. 4. Performance comparison of, Relay-Bubble and in the NCCU dataset Indeed, the key for s cost-effectiveness is the combination of all those spatial and social features. The experiments show that Relay-Bubble overcomes in delivery ratio and delay, even with a few relay points. Since both algorithms forward messages based only on node s popularity, the usage of relay points, deployed at PoIs, enhances the chances of a message to get to the target community faster, but at the price of a higher network overhead. As described before, once the message gets to a relay point, works just like Relay-Bubble. Hence, the difference in the results is due to the usage of the node s radius of gyration (mobility awareness) in the forwarding policy, when the message is outside the destination community. Since nodes with a higher radius of gyration have a better geographical coverage, using it increases the chances of delivering the messages to a relay point with fewer re-transmissions, reducing the network overhead without compromising the delivery ratio and messages average delay. In the SWIM trace, s overhead becomes even lower than s. This is because in this scenario, with more nodes, and Relay-Bubble (both use popularity-based forwarding strategies when outside the destination community) tend to re-transmit more messages. On the other hand, s mobility-based forwarding maintains the network overhead lower when the network scale is increased. In contrast to the results presented in the NCCU trace, exhibits slower delivery in this scenario. It happens because the SWIM mobility model does not account for regions of higher popularity within the mobility trace. Indeed, the distribution of nodes positions in the SWIM trace is much more uniform than the one presented in real traces (see Figure 1(e)). This effect is confirmed when we look at Figures 5(c) and 5(f) and see that increasing the number of relay points from five to ten does not help to decrease the delay. It is worth mentioning that, even in this disadvantageous synthetic scenario with no PoIs, presents competitive results due to its low overhead. VI. FINAL REMARKS In this work, we have introduced the use of spatial information together with social awareness to improve the costeffectiveness of D2D opportunistic routing. We have discussed spatial and social properties of mobility and how these properties can be retrieved from mobility traces and used in opportunistic routing. As a proof of concept, we proposed SAM- PLER, a simple scheme that combines four different features: nodes popularity, individual mobility patterns, PoIs, and social communities. exemplifies how the combination of such features can provide significant improvements, enabling higher content delivery while reducing network overhead and average delivery time of messages.

8 IEEE COMMUNICATIONS MAGAZINE 8 Delivery Ratio (%) # of Transmissions/Message Avg. Delivery time(h) Message TTL (a) Delivery 5 Relay Points (b) Transmissions 5 Relay Points (c) Delay 5 Relay Points Delivery Ratio (%) # of Transmissions/Message Avg. Delivery time(h) Message TTL (d) Delivery 10 Relay Points (e) Transmissions 10 Relay Points (f) Delay 10 Relay Points Fig. 5. Performance comparison of, Relay-Bubble and in the SWIM synthetic trace Considering the combination of spatial and social domains, several limitations and open issues arise. We here highlight the importance of collecting and publishing new large-scale real-world mobility traces, what is not the current scenario. This would allow further investigation of combined socialaware and spatial-aware strategies and better validation of such strategies under different scenarios. Considering social features, we need to further investigate new features with advantages to communities. In [10], for instance, the use of group meetings awareness is proposed as an alternative measure of social context, because community detection is a hard task to perform in real-world distributed networks. Another future direction is to explore PoIs semantics, i.e., motivations behind users transitions among PoIs. Finally, as in any system that relies on geo-positioning, strategies must be proposed to obtain the position information in an energyefficient way. ACKNOWLEDGMENT The authors would like to thank CNPq and FAPEMIG agencies for their financial support. REFERENCES [1] Y. Li, T. Wu, P. Hui, D. Jin, and S. Chen, Social-aware D2D Communications: Qualitative Insights and Quantitative Analysis, IEEE Communications Magazine, vol. 52, no. 6, pp , [2] I. O. Nunes, P. Vaz de Melo, and A. A. F. Loureiro, Leveraging D2D Multi-Hop Communication Through Social Group Meetings Awareness, IEEE Wireless Communications Magazine, vol. 23, no. 4, pp , [3] P. Hui, J. Crowcroft, and E. Yoneki, : Social-based Forwarding in Delay-Tolerant Networks, IEEE Transactions on Mobile Computing, vol. 10, no. 11, pp , [4] T.-C. Tsai and H.-H. Chan, NCCU Trace: Social-network-aware Mobility Trace, IEEE Communications Magazine, vol. 53, no. 10, pp , [5] S. Kosta, A. Mei, and J. Stefa, Large-Scale Synthetic Social Mobile Networks with SWIM, IEEE Transactions on Mobile Computing, vol. 13, no. 1, pp , [6] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks, in Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-tolerant Networking. ACM, 2005, pp [7] L. Amaral, R. Sofia, P. Mendes, and W. Moreira, Oi!-Opportunistic Data Transmission Based on Wi-Fi Direct, in 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2016, pp [8] W. Moreira, P. Mendes, and S. Sargento, Social-aware Opportunistic Routing Protocol Based on Users Interactions and Interests, in International Conference on Ad Hoc Networks. Springer, 2013, pp [9] A. Lindgren, A. Doria, and O. Schelén, Probabilistic Routing in Intermittently Connected Networks, ACM SIGMOBILE Mobile Computing and Communications Review, vol. 7, no. 3, pp , [10] I. O. Nunes, C. Celes, P. Vaz de Melo, and A. A. F. Loureiro,

9 IEEE COMMUNICATIONS MAGAZINE [11] [12] [13] [14] [15] GROUPS-NET: Group meetings aware routing in multi-hop D2D networks, Computer Networks, vol. 127, pp , V. F. Mota, F. D. Cunha, D. F. Macedo, J. M. Nogueira, and A. A. Loureiro, Protocols, Mobility Models and Tools in Opportunistic Networks: A Survey, Computer Communications, vol. 48, pp. 5 19, G. Palla, I. Dere nyi, I. Farkas, and T. Vicsek, Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society, Nature, vol. 435, no. 7043, pp , L. Peel, Estimating Network Parameters for Selecting Community Detection Algorithms, in th Conference on Information Fusion (FUSION). IEEE, 2010, pp M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabasi, Understanding Individual Human Mobility Patterns, Nature, vol. 453, no. 7196, pp , S. Shahbazi, S. Karunasekera, and A. Harwood, Improving Performance in Delay/Disruption Tolerant Networks Through Passive Relay Points, Wireless Networks, vol. 18, no. 1, pp. 9 31, Ivan Oliveira Nunes is currently a networked systems Ph.D. student at the University of California Irvine (UCI). He received his M.Sc. degree in Computer Science from the Federal University of Minas Gerais (UFMG), Brazil, in 2016, and his B.Sc. degree in Computer Engineering from the Federal University of Espirito Santo (UFES), Brazil, in His current research interests include networking, mobile and ubiquitous computing, security, and embedded systems. Clayson Celes is currently a computer science Ph.D. candidate at Federal University of Minas Gerais (UFMG), Brazil. He received his M.Sc. degree in Computer Science from UFMG in 2013 and his B.Sc. degree in Computer Science from the State University of Ceara (UECE), Brazil, in His research areas are mobile computing, vehicular networks, and ubiquitous computing. Igor Nunes is currently a Computer Engineering student at Federal University of Espirito Santo (UFES), Brazil. His research interests include statistical models, machine learning, computing systems and ubiquitous computing. Pedro O.S. Vaz de Melo is an assistant professor in the Computer Science Department (DCC) of Federal University of Minas Gerais (UFMG). He got his Ph.D. from UFMG with a one year period as a visiting researcher in Carnegie Mellon University and a five-month period as a visiting researcher at INRIA Lyon. His research interest is mostly focused on knowledge discovery and data mining in complex and distributed systems. View publication stats 9 Antonio A. F. Loureiro holds a Ph.D. degree in Computer Science from the University of British Columbia, Canada. Currently, he is a full professor at UFMG. His main research areas are mobile computing, vehicular networks, wireless sensor networks, and distributed algorithms. In the last 15 years he has published regularly in international conferences and journals related to those areas, and also presented keynotes and tutorials at international conferences.

ST-Drop: A Novel Buffer Management Strategy for D2D Opportunistic Networks

ST-Drop: A Novel Buffer Management Strategy for D2D Opportunistic Networks ST-Drop: A Novel Buffer Management Strategy for D2D Opportunistic Networks Michael D. Silva, Ivan O. Nunes, Raquel A.F. Mini, Antonio A. F. Loureiro Department of Computer Science, Universidade Federal

More information

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks

BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks 1 BUBBLE RAP: Social-Based Forwarding in Delay-Tolerant Networks Pan Hui, Jon Crowcroft, Eiko Yoneki Presented By: Shaymaa Khater 2 Outline Introduction. Goals. Data Sets. Community Detection Algorithms

More information

A Joint Replication-Migration-based Routing in Delay Tolerant Networks

A Joint Replication-Migration-based Routing in Delay Tolerant Networks A Joint -Migration-based Routing in Delay Tolerant Networks Yunsheng Wang and Jie Wu Dept. of Computer and Info. Sciences Temple University Philadelphia, PA 19122 Zhen Jiang Dept. of Computer Science West

More information

Archna Rani [1], Dr. Manu Pratap Singh [2] Research Scholar [1], Dr. B.R. Ambedkar University, Agra [2] India

Archna Rani [1], Dr. Manu Pratap Singh [2] Research Scholar [1], Dr. B.R. Ambedkar University, Agra [2] India Volume 4, Issue 3, March 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Performance Evaluation

More information

WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks

WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks WaterChat: A Group Chat Application Based on Opportunistic Mobile Social Networks Tzu-Chieh Tsai, Ting-Shen Liu, and Chien-Chun Han Department of Computer Science, National Chengchi University, Taipei,

More information

DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES

DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES DATA FORWARDING IN OPPORTUNISTIC NETWORK USING MOBILE TRACES B.Poonguzharselvi 1 and V.Vetriselvi 2 1,2 Department of Computer Science and Engineering, College of Engineering Guindy, Anna University Chennai,

More information

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay

Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay Conference on Advances in Communication and Control Systems 2013 (CAC2S 2013) Comparing Delay Tolerant Network Routing Protocols for Optimizing L-Copies in Spray and Wait Routing for Minimum Delay Anjula

More information

Performance of Efficient Routing Protocol in Delay Tolerant Network: A Comparative Survey. Namita Mehta 1 and Mehul Shah 2

Performance of Efficient Routing Protocol in Delay Tolerant Network: A Comparative Survey. Namita Mehta 1 and Mehul Shah 2 , pp.151-158 http://dx.doi.org/10.14257/ijfgcn.2014.7.1.15 Performance of Efficient Routing Protocol in Delay Tolerant Network: A Comparative Survey Namita Mehta 1 and Mehul Shah 2 1 Student, Department

More information

ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks

ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks ChitChat: An Effective Message Delivery Method in Sparse Pocket-Switched Networks Douglas McGeehan Dan Lin Sanjay Madria Department of Computer Science Missouri University of Science and Technology Rolla,

More information

Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination

Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination Evaluation of Seed Selection Strategies for Vehicle to Vehicle Epidemic Information Dissemination Richard Kershaw and Bhaskar Krishnamachari Ming Hsieh Department of Electrical Engineering, Viterbi School

More information

Design and Implementation of Improved Routing Algorithm for Energy Consumption in Delay Tolerant Network

Design and Implementation of Improved Routing Algorithm for Energy Consumption in Delay Tolerant Network IJIRST International Journal for Innovative Research in Science & Technology Volume 3 Issue 07 December 2016 ISSN (online): 2349-6010 Design and Implementation of Improved Routing Algorithm for Energy

More information

Message Transmission with User Grouping for Improving Transmission Efficiency and Reliability in Mobile Social Networks

Message Transmission with User Grouping for Improving Transmission Efficiency and Reliability in Mobile Social Networks , March 12-14, 2014, Hong Kong Message Transmission with User Grouping for Improving Transmission Efficiency and Reliability in Mobile Social Networks Takuro Yamamoto, Takuji Tachibana, Abstract Recently,

More information

Impact of Social Networks in Delay Tolerant Routing

Impact of Social Networks in Delay Tolerant Routing Impact of Social Networks in Delay Tolerant Routing Eyuphan Bulut, Zijian Wang and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking Rensselaer Polytechnic

More information

Improvement of Buffer Scheme for Delay Tolerant Networks

Improvement of Buffer Scheme for Delay Tolerant Networks Improvement of Buffer Scheme for Delay Tolerant Networks Jian Shen 1,2, Jin Wang 1,2, Li Ma 1,2, Ilyong Chung 3 1 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science

More information

Energy Consumption and Performance of Delay Tolerant Network Routing Protocols under Different Mobility Models

Energy Consumption and Performance of Delay Tolerant Network Routing Protocols under Different Mobility Models 2016 7th International Conference on Intelligent Systems, Modelling and Simulation Energy Consumption and Performance of Delay Tolerant Network Routing Protocols under Different Mobility Models Bhed Bahadur

More information

SUMMERY, CONCLUSIONS AND FUTURE WORK

SUMMERY, CONCLUSIONS AND FUTURE WORK Chapter - 6 SUMMERY, CONCLUSIONS AND FUTURE WORK The entire Research Work on On-Demand Routing in Multi-Hop Wireless Mobile Ad hoc Networks has been presented in simplified and easy-to-read form in six

More information

Exploiting Heterogeneity in Mobile Opportunistic Networks: An Analytic Approach

Exploiting Heterogeneity in Mobile Opportunistic Networks: An Analytic Approach Exploiting Heterogeneity in Mobile Opportunistic Networks: An Analytic Approach 7 th Annual IEEE Communication Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (IEEE SECON 10)

More information

IJSER. 1. Introduction. 1.1 Routing in DTN: Sukhpreet Kaur

IJSER. 1. Introduction. 1.1 Routing in DTN: Sukhpreet Kaur International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 1717 A Review of Energy Consumption on DTN Routing Protocols Sukhpreet Kaur Abstract: DTN is net of similar nets.

More information

Geographic information based Replication and Drop Routing (GeoRaDR): A Hybrid Message Transmission Approach for DTNs

Geographic information based Replication and Drop Routing (GeoRaDR): A Hybrid Message Transmission Approach for DTNs Geographic information based Replication and Drop Routing (GeoRaDR): A Hybrid Message Transmission Approach for DTNs Dr. Santhi Kumaran Associate Professor, Dept of Computer Engineering,

More information

COMPARATIVE ANALYSIS OF DIFFERENT ROUTING PROTOCOLS IN DELAY TOLERANT NETWORKS

COMPARATIVE ANALYSIS OF DIFFERENT ROUTING PROTOCOLS IN DELAY TOLERANT NETWORKS COMPARATIVE ANALYSIS OF DIFFERENT ROUTING PROTOCOLS IN DELAY TOLERANT NETWORKS Chintan B. Desai PG Student, Electronics and Communication Department, Charotar University of Science & Technology, Changa,

More information

Performance Analysis of Delay Tolerant Network Routing Protocols in Different Mobility Environments

Performance Analysis of Delay Tolerant Network Routing Protocols in Different Mobility Environments Performance Analysis of Delay Tolerant Network Routing Protocols in Different Mobility Environments Bhed Bahadur Bista Faculty of Software and Information Science Iwate Prefectural University Takizawa

More information

Friendship Based Routing in Delay Tolerant Mobile Social Networks

Friendship Based Routing in Delay Tolerant Mobile Social Networks Friendship Based Routing in Delay Tolerant Mobile Social Networks Eyuphan Bulut and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking Rensselaer Polytechnic

More information

Connectivity, Energy and Mobility Driven Clustering Algorithm for Mobile Ad Hoc Networks

Connectivity, Energy and Mobility Driven Clustering Algorithm for Mobile Ad Hoc Networks Connectivity, Energy and Mobility Driven Clustering Algorithm for Mobile Ad Hoc Networks Fatiha Djemili Tolba University of Haute Alsace GRTC Colmar, France fatiha.tolba@uha.fr Damien Magoni University

More information

Glasgow eprints Service

Glasgow eprints Service Yassein, M. B. and Ould-Khaoua, M. and Papanastasiou, S. (25) On the performance of probabilistic flooding in mobile ad hoc networks. In, th International Conference on Parallel and Distributed Systems,

More information

Community-Aware Opportunistic Routing in Mobile Social Networks

Community-Aware Opportunistic Routing in Mobile Social Networks 1682 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 7, JULY 2014 Community-Aware Opportunistic Routing in Mobile Social Networks Mingjun Xiao, Member, IEEE, Jie Wu, Fellow, IEEE, and Liusheng Huang, Member,

More information

Simulation of Epidemic, Spray and Wait and First Contact Routing Protocols in Delay Tolerant Network

Simulation of Epidemic, Spray and Wait and First Contact Routing Protocols in Delay Tolerant Network Simulation of, Spray and Wait and First Contact Routing Protocols in Delay Tolerant Network 1 Monika Aneja, 2 Vishal Garg 1 (P.G. Student JMIT, Radaur, Yamunanagar) 2 (Assistant Professor JMIT Radaur Yamunanagar)

More information

Routing Protocol Approaches in Delay Tolerant Networks

Routing Protocol Approaches in Delay Tolerant Networks Routing Protocol Approaches in Delay Tolerant Networks Shivi Shukla 1, Amit Munjal 2 and Y. N. Singh 2 AIM & ACT Dept., Banasthali Vidyapith, Rajasthan 1 EE Dept., Indian Institute of Technology, Kanpur

More information

Timely Information Dissemination with Distributed Storage in Delay Tolerant Mobile Sensor Networks

Timely Information Dissemination with Distributed Storage in Delay Tolerant Mobile Sensor Networks 27 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): 27 IEEE Infocom MiseNet Workshop Timely Information Dissemination with Distributed Storage in Delay Tolerant Mobile Sensor Networks

More information

Impact of Social Networks on Delay Tolerant Routing

Impact of Social Networks on Delay Tolerant Routing Impact of Social Networks on Delay Tolerant Routing Eyuphan Bulut, Zijian Wang and Boleslaw K. Szymanski Department of Computer Science and Center for Pervasive Computing and Networking Rensselaer Polytechnic

More information

Capacity-Aware Routing Using Throw-Boxes

Capacity-Aware Routing Using Throw-Boxes Capacity-Aware Routing Using Throw-Boxes Bo Gu, Xiaoyan Hong Department of Computer Science University of Alabama, Tuscaloosa, AL 35487 {bgu,hxy}@cs.ua.edu Abstract Deploying the static wireless devices

More information

Energy Efficient Social-Based Routing for Delay Tolerant Networks

Energy Efficient Social-Based Routing for Delay Tolerant Networks Energy Efficient Social-Based Routing for Delay Tolerant Networks Chenfei Tian,FanLi,, Libo Jiang,ZeyeWang, and Yu Wang 2, School of Computer Science, Beijing Institute of Technology, Beijing, 8, China

More information

arxiv: v1 [cs.ni] 24 Jun 2017

arxiv: v1 [cs.ni] 24 Jun 2017 GRM: Group Regularity Mobility Model Ivan O. Nunes, Clayson Celes, Michael D. Silva, Pedro O.S. Vaz de Melo, Antonio A.F. Loureiro Department of Computer Science Federal University of Minas Gerais Brazil

More information

Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks

Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks Heterogeneous Community-based Routing in Opportunistic Mobile Social Networks Yunsheng Wang Kettering University Jie Wu Temple University Mingjun Xiao University of Science and Tech. of China Daqiang Zhang

More information

REAL TIME PUBLIC TRANSPORT INFORMATION SERVICE

REAL TIME PUBLIC TRANSPORT INFORMATION SERVICE Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 7, July 2015, pg.88

More information

Delay Tolerant Networks

Delay Tolerant Networks Delay Tolerant Networks DEPARTMENT OF INFORMATICS & TELECOMMUNICATIONS NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS What is different? S A wireless network that is very sparse and partitioned disconnected

More information

PARAMETERIZATION OF THE SWIM MOBILITY MODEL USING CONTACT TRACES

PARAMETERIZATION OF THE SWIM MOBILITY MODEL USING CONTACT TRACES 1 PARAMETERIZATION OF THE SWIM MOBILITY MODEL USING CONTACT TRACES OMNeT++ Summit 2017, Bremen Zeynep Vatandas, Manikandan Venkateswaran, Koojana Kuladinithi, Andreas Timm-Giel Hamburg University of Technology

More information

TRUST FRAMEWORK FOR DATA FORWARDING IN OPPORTUNISTIC NETWORKS USING MOBILE TRACES

TRUST FRAMEWORK FOR DATA FORWARDING IN OPPORTUNISTIC NETWORKS USING MOBILE TRACES TRUST FRAMEWORK FOR DATA FORWARDING IN OPPORTUNISTIC NETWORKS USING MOBILE TRACES B.Poonguzharselvi 1 and V.Vetriselvi 2 1,2 Department of Computer Science and Engineering, College of Engineering Guindy,

More information

Social-Aware Multicast in Disruption-Tolerant Networks

Social-Aware Multicast in Disruption-Tolerant Networks IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 5, OCTOBER 2012 1553 Social-Aware Multicast in Disruption-Tolerant Networks Wei Gao, Student Member, IEEE, Qinghua Li, Student Member, IEEE, Bo Zhao, Student

More information

SMART: A Social and Mobile Aware Routing Strategy for Disruption Tolerant Networks

SMART: A Social and Mobile Aware Routing Strategy for Disruption Tolerant Networks : A Social and Mobile Aware Routing Strategy for Disruption Tolerant Networks Konglin Zhu, Wenzhong Li,, Xiaoming Fu Institute of Computer Science, University of Goettingen, Goettingen, Germany State Key

More information

Chapter 2 Mobility Model Characteristics

Chapter 2 Mobility Model Characteristics Chapter 2 Mobility Model Characteristics Abstract The salient characteristics of mobility models of mobile nodes in mobile ad hoc networks are described. We have described how the different mobility models

More information

Community-Based Adaptive Buffer Management Strategy in Opportunistic Network

Community-Based Adaptive Buffer Management Strategy in Opportunistic Network Community-Based Adaptive Buffer Management Strategy in Opportunistic Network Junhai Zhou, Yapin Lin ( ), Siwang Zhou, and Qin Liu College of Computer Science and Electronic Engineering, Hunan University,

More information

Social-Aware Routing in Delay Tolerant Networks

Social-Aware Routing in Delay Tolerant Networks Social-Aware Routing in Delay Tolerant Networks Jie Wu Dept. of Computer and Info. Sciences Temple University Challenged Networks Assumptions in the TCP/IP model are violated DTNs Delay-Tolerant Networks

More information

Simulation and Analysis of Opportunistic Routing Protocols

Simulation and Analysis of Opportunistic Routing Protocols Simulation and Analysis of Opportunistic Routing Protocols 1 The Purpose The purpose of this assignment is to gain familiarity with a network simulation tool and to get experience in basic data analysis.

More information

PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR DELAY TOLERANT NETWORKS

PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR DELAY TOLERANT NETWORKS PERFORMANCE ANALYSIS OF ROUTING PROTOCOLS FOR DELAY TOLERANT NETWORKS Sanjay Kumar, K. Suraj and Sudhakar Pandey Department of Information Technology, National Institute of Technology Raipur, India E-Mail:

More information

EFFICIENT TRAJECTORY PROTOCOL FOR MULTICASTING IN VEHICULAR AD HOC NETWORKS

EFFICIENT TRAJECTORY PROTOCOL FOR MULTICASTING IN VEHICULAR AD HOC NETWORKS EFFICIENT TRAJECTORY PROTOCOL FOR MULTICASTING IN VEHICULAR AD HOC NETWORKS Nandhini P. 1 and Ravi G. 2 1 Department of Electronics and Communication Engineering, Communication Systems, Sona College of

More information

The Novel HWN on MANET Cellular networks using QoS & QOD

The Novel HWN on MANET Cellular networks using QoS & QOD The Novel HWN on MANET Cellular networks using QoS & QOD Abstract: - Boddu Swath 1 & M.Mohanrao 2 1 M-Tech Dept. of CSE Megha Institute of Engineering & Technology for Women 2 Assistant Professor Dept.

More information

1. INTRODUCTION. Saravanan.A 1 and Dr.Sunitha Abburu 2

1. INTRODUCTION. Saravanan.A 1 and Dr.Sunitha Abburu 2 www.ijcsi.org 365 Computing Conditional Intermeeting Time in Conditional Shortest Path Routing Saravanan.A 1 and Dr.Sunitha Abburu 2 1 Adhiyamaan College of Engineering, Department of Computer Application,

More information

A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks

A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks A Graph-based Approach to Compute Multiple Paths in Mobile Ad Hoc Networks Gunyoung Koh, Duyoung Oh 1 and Heekyoung Woo 2 1 School of Electrical Engineering and Computer Science Seoul National University,

More information

Empirical Evaluation of Hybrid Opportunistic Networks

Empirical Evaluation of Hybrid Opportunistic Networks Empirical Evaluation of Hybrid Opportunistic Networks Pan Hui Joint work with Anders Lindgren and Jon Crowcroft (University of Cambridge) 1 Introduction Two trends observed Lots of work done on opportunistic

More information

TOWARD PRIVACY PRESERVING AND COLLUSION RESISTANCE IN A LOCATION PROOF UPDATING SYSTEM

TOWARD PRIVACY PRESERVING AND COLLUSION RESISTANCE IN A LOCATION PROOF UPDATING SYSTEM TOWARD PRIVACY PRESERVING AND COLLUSION RESISTANCE IN A LOCATION PROOF UPDATING SYSTEM R.Bhuvaneswari 1, V.Vijayalakshmi 2 1 M.Phil., Scholar, Bharathiyar Arts And Science College For Women, India 2 HOD

More information

Routing with Multi-Level Social Groups in Mobile Opportunistic Networks

Routing with Multi-Level Social Groups in Mobile Opportunistic Networks Routing with Multi-Level Social Groups in Mobile Opportunistic Networks Lunan Zhao Fan Li Chao Zhang Yu Wang School of Computer Science, Beijing Institute of Technology, Beijing, 100081, China. Department

More information

COLLEGE OF ARTS & SCIENCE, SULUR,COIMBATORE

COLLEGE OF ARTS & SCIENCE, SULUR,COIMBATORE EFFECTIVE SOCIAL ROUTING FRAMEWORK FOR MOBILE SOCIAL SENSING NETWORK USING MULTI HIERARCHICAL ROUTING 1. E.SATHISHKUMAR M.Sc(CS), 2. Mrs. M.SUGANYA M.Sc,Mphil. RATHNAVEL SUBRAMANIAM COLLEGE OF ARTS & SCIENCE,

More information

Content Delivery in Vehicular Ad Hoc Networks

Content Delivery in Vehicular Ad Hoc Networks CTD - 29º Concurso de Teses e Dissertações in Vehicular Ad Hoc s Fabrício A. Silva 1, Linnyer B. Ruiz 2 (Advisor), Antonio A. F. Loureiro 1 (Co-Advisor) 1 Departamento de Ciência da Computação (UFMG) 2

More information

Spray and Dynamic: Advanced Routing in Delay Tolerant Networks

Spray and Dynamic: Advanced Routing in Delay Tolerant Networks Int. J. Communications, Network and System Sciences, 2012, 5, 98-104 http://dx.doi.org/10.4236/ijcns.2012.52013 Published Online February 2012 (http://www.scirp.org/journal/ijcns) Spray and Dynamic: Advanced

More information

A ROUTING MECHANISM BASED ON SOCIAL NETWORKS AND BETWEENNESS CENTRALITY IN DELAY-TOLERANT NETWORKS

A ROUTING MECHANISM BASED ON SOCIAL NETWORKS AND BETWEENNESS CENTRALITY IN DELAY-TOLERANT NETWORKS A ROUTING MECHANISM BASED ON SOCIAL NETWORKS AND BETWEENNESS CENTRALITY IN DELAY-TOLERANT NETWORKS ABSTRACT Zhang Huijuan and Liu Kai School of Software Engineering, Tongji University, Shanghai, China

More information

Hierarchical Trust Management for Delay Tolerant Networks Using Stochastic Petrinet for Secure Routing

Hierarchical Trust Management for Delay Tolerant Networks Using Stochastic Petrinet for Secure Routing International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Hierarchical Trust Management for Delay Tolerant Networks Using Stochastic Petrinet for Secure Routing Chithra M. 1, Mr. Vimalathithan

More information

Opportunistic Routing Algorithms in Delay Tolerant Networks

Opportunistic Routing Algorithms in Delay Tolerant Networks Opportunistic Routing Algorithms in Delay Tolerant Networks Eyuphan Bulut Rensselaer Polytechnic Institute Department of Computer Science and Network Science and Technology (NeST) Center PhD Thesis Defense

More information

Mobile Cloud Multimedia Services Using Enhance Blind Online Scheduling Algorithm

Mobile Cloud Multimedia Services Using Enhance Blind Online Scheduling Algorithm Mobile Cloud Multimedia Services Using Enhance Blind Online Scheduling Algorithm Saiyad Sharik Kaji Prof.M.B.Chandak WCOEM, Nagpur RBCOE. Nagpur Department of Computer Science, Nagpur University, Nagpur-441111

More information

Application of Graph Theory in DTN Routing

Application of Graph Theory in DTN Routing Application of Graph Theory in DTN Routing Madan H. T. 1, Shabana Sultana 2 1 M. Tech. (CNE), NIE, Mysuru 2 Associate Professor, Dept. of Computer Science & Eng., NIE, Mysuru Abstract: Delay tolerant network

More information

International Journal of Advance Engineering and Research Development. Improved OLSR Protocol for VANET

International Journal of Advance Engineering and Research Development. Improved OLSR Protocol for VANET Scientific Journal of Impact Factor (SJIF): 4.72 International Journal of Advance Engineering and Research Development Volume 4, Issue 11, November -2017 Improved OLSR Protocol for VANET Ravi Shrimali

More information

SMART: Lightweight Distributed Social Map Based Routing in Delay Tolerant Networks

SMART: Lightweight Distributed Social Map Based Routing in Delay Tolerant Networks SMART: Lightweight Distributed Social Map Based Routing in Delay Tolerant Networks Kang Chen and Haiying Shen Department of Electrical and Computer Engineering Clemson University, Clemson, SC 9631 Email:

More information

Estimation based Erasure-coding Routing in Delay Tolerant Networks

Estimation based Erasure-coding Routing in Delay Tolerant Networks Estimation based Erasure-coding Routing in Delay Tolerant Networks Yong Liao, Kun Tan, Zhensheng Zhang, Lixin Gao Dep. of Electrical & Computer Eng. Microsoft Research Asia San Diego Research Center University

More information

HCS: hierarchical cluster-based forwarding scheme for mobile social networks

HCS: hierarchical cluster-based forwarding scheme for mobile social networks Wireless Netw (2015) 21:1699 1711 DOI 10.1007/s11276-014-0876-x HCS: hierarchical cluster-based forwarding scheme for mobile social networks Sun-Kyum Kim Ji-Hyeun Yoon Junyeop Lee Sung-Bong Yang Published

More information

Tracking Human Mobility using WiFi signals

Tracking Human Mobility using WiFi signals Tracking Human Mobility using WiFi signals Supplementary Information Piotr Sapiezynski Arkadiusz Stopczynski Radu Gatej Sune Lehmann Inferring location of routers. In the article we use a deliberately

More information

COMFA: Exploiting Regularity of People Movement for Message Forwarding in Community-based Delay Tolerant Networks

COMFA: Exploiting Regularity of People Movement for Message Forwarding in Community-based Delay Tolerant Networks COMFA: Exploiting Regularity of People Movement for Message Forwarding in Community-based Delay Tolerant Networks Long Vu, Quang Do, Klara Nahrstedt Department of Computer Science, University of Illinois

More information

High Throughput in MANET Using relay algorithm and rebroadcast probability

High Throughput in MANET Using relay algorithm and rebroadcast probability RESEARCH ARTICLE OPEN ACCESS High Throughput in MANET Using relay algorithm and rebroadcast probability Mr. Marvin Mark M Dept of Electronics and Communication, Francis Xavier Engineering College, Tirunelveli-627003,

More information

A Comparative Simulation of Opportunistic Routing Protocols Using Realistic Mobility Data Obtained from Mass Events

A Comparative Simulation of Opportunistic Routing Protocols Using Realistic Mobility Data Obtained from Mass Events A Comparative Simulation of Opportunistic Routing Protocols Using Realistic Mobility Data Obtained from Mass Events Arno Barzan, Bram Bonné, Peter Quax, Wim Lamotte Hasselt University - tul - iminds Wetenschapspark

More information

Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s

Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s M. Nagaratna Assistant Professor Dept. of CSE JNTUH, Hyderabad, India V. Kamakshi Prasad Prof & Additional Cont. of. Examinations

More information

A More Realistic Energy Dissipation Model for Sensor Nodes

A More Realistic Energy Dissipation Model for Sensor Nodes A More Realistic Energy Dissipation Model for Sensor Nodes Raquel A.F. Mini 2, Antonio A.F. Loureiro, Badri Nath 3 Department of Computer Science Federal University of Minas Gerais Belo Horizonte, MG,

More information

Quantitative Performance Evaluation of DSDV and OLSR Routing Protocols in Wireless Ad-hoc Networks

Quantitative Performance Evaluation of DSDV and OLSR Routing Protocols in Wireless Ad-hoc Networks Quantitative Performance Evaluation of DSDV and OLSR Routing Protocols in Wireless Ad-hoc Networks E. Suresh Babu P S V Srinivasa Rao M Srinivasa Rao C Nagaraju Assoc. Prof. of CSE K L University, Vijayawada.

More information

UMOBILE ACM ICN 2017 Tutorial Opportunistic wireless aspects in NDN

UMOBILE ACM ICN 2017 Tutorial Opportunistic wireless aspects in NDN UMOBILE ACM ICN 2017 Tutorial Opportunistic wireless aspects in NDN ACM ICN 2017 Berlin 26.09.2017 Paulo Mendes, COPELABS / University Lusofona (paulo.mendes@ulusofona.pt) Omar Aponte, COPELABS / University

More information

Combined Mobile Ad-hoc and Delay/Disruption-tolerant Routing

Combined Mobile Ad-hoc and Delay/Disruption-tolerant Routing This is an authors' version of the manuscript. Final version published in Proc. 13th International Conference on Ad-Hoc Networks and Wireless (ADHOC-NOW '14). Springer LNCS 8487, pp. 1-14, 2014. The final

More information

Routing Issues & Performance Of Different Opportunistic Routing Protocols In Delay Tolerant Network

Routing Issues & Performance Of Different Opportunistic Routing Protocols In Delay Tolerant Network Routing Issues & Performance Of Different Opportunistic Routing Protocols In Delay Tolerant Network Ankur Upadhyay Department of Computer Science & Engineering School of Engineering & Technology, IFTM

More information

Elimination Of Redundant Data using user Centric Data in Delay Tolerant Network

Elimination Of Redundant Data using user Centric Data in Delay Tolerant Network IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 9 February 2015 ISSN (online): 2349-6010 Elimination Of Redundant Data using user Centric Data in Delay Tolerant

More information

Dynamic Design of Cellular Wireless Networks via Self Organizing Mechanism

Dynamic Design of Cellular Wireless Networks via Self Organizing Mechanism Dynamic Design of Cellular Wireless Networks via Self Organizing Mechanism V.Narasimha Raghavan, M.Venkatesh, Divya Sridharabalan, T.Sabhanayagam, Nithin Bharath Abstract In our paper, we are utilizing

More information

Evaluation of Information Dissemination Characteristics in a PTS VANET

Evaluation of Information Dissemination Characteristics in a PTS VANET Evaluation of Information Dissemination Characteristics in a PTS VANET Holger Kuprian 1, Marek Meyer 2, Miguel Rios 3 1) Technische Universität Darmstadt, Multimedia Communications Lab Holger.Kuprian@KOM.tu-darmstadt.de

More information

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, August 18, ISSN

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, August 18,   ISSN International Journal of Computer Engineering and Applications, ANALYZING IMPACT OF FACTORS ON ROUTING DECISIONS IN OPPORTUNISTIC MOBILE NETWORKS Sonam Kumari 1, Dr. Itu Snigdh 2 Department of Computer

More information

Study on Indoor and Outdoor environment for Mobile Ad Hoc Network: Random Way point Mobility Model and Manhattan Mobility Model

Study on Indoor and Outdoor environment for Mobile Ad Hoc Network: Random Way point Mobility Model and Manhattan Mobility Model Study on and Outdoor for Mobile Ad Hoc Network: Random Way point Mobility Model and Manhattan Mobility Model Ibrahim khider,prof.wangfurong.prof.yinweihua,sacko Ibrahim khider, Communication Software and

More information

Ad hoc networking using Wi-Fi during natural disasters: overview and improvements.

Ad hoc networking using Wi-Fi during natural disasters: overview and improvements. Ad hoc networking using Wi-Fi during natural disasters: overview and improvements. Matthijs Gielen University of Twente P.O.Box 217, 7500AE Enschede The Netherlands m.w.gielen@student.utwente.nl ABSTRACT

More information

Recommendation System for Location-based Social Network CS224W Project Report

Recommendation System for Location-based Social Network CS224W Project Report Recommendation System for Location-based Social Network CS224W Project Report Group 42, Yiying Cheng, Yangru Fang, Yongqing Yuan 1 Introduction With the rapid development of mobile devices and wireless

More information

Spatial and Temporal Aware, Trajectory Mobility Profile Based Location Management for Mobile Computing

Spatial and Temporal Aware, Trajectory Mobility Profile Based Location Management for Mobile Computing Spatial and Temporal Aware, Trajectory Mobility Profile Based Location Management for Mobile Computing Jianting Zhang Le Gruenwald The University of Oklahoma, School of Computer Science, Norman, OK, 73019

More information

Performance Evaluation of Routing Protocols in Wireless Mesh Networks. Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela

Performance Evaluation of Routing Protocols in Wireless Mesh Networks. Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela Performance Evaluation of Routing Protocols in Wireless Mesh Networks Motlhame Edwin Sejake, Zenzo Polite Ncube and Naison Gasela Department of Computer Science, North West University, Mafikeng Campus,

More information

InterestSpread: An Efficient Method for Content Transmission in Mobile Social Networks

InterestSpread: An Efficient Method for Content Transmission in Mobile Social Networks : An Efficient Method for Content Transmission in Mobile Social Networks ABSTRACT Ning Wang Dept. of Computer and Information Sciences Temple University Philadelphia PA 9 ning.wang@temple.edu In Mobile

More information

CLUSTERING BASED ROUTING FOR DELAY- TOLERANT NETWORKS

CLUSTERING BASED ROUTING FOR DELAY- TOLERANT NETWORKS http:// CLUSTERING BASED ROUTING FOR DELAY- TOLERANT NETWORKS M.Sengaliappan 1, K.Kumaravel 2, Dr. A.Marimuthu 3 1 Ph.D( Scholar), Govt. Arts College, Coimbatore, Tamil Nadu, India 2 Ph.D(Scholar), Govt.,

More information

Crowdsourcing mobile networks

Crowdsourcing mobile networks Crowdsourcing mobile networks Katia Jaffrès-Runser University of Toulouse, INPT-ENSEEIHT, IRIT lab, IRT Team Jiaotong University, Shanghai Fête Nationale / Bastille day, July 14, 2015 N7 Engineering school,

More information

Impact of Social Structure on Forwarding Algorithms in Opportunistic Networks

Impact of Social Structure on Forwarding Algorithms in Opportunistic Networks Impact of Social Structure on Forwarding Algorithms in Opportunistic Networks Ning Wang #, Eiko Yoneki #2 # Computer Laboratory, University of Cambridge United Kingdom ning.wang@cl.cam.ac.uk 2 eiko.yoneki@cl.cam.ac.uk

More information

Buffer Management in Delay Tolerant Networks

Buffer Management in Delay Tolerant Networks Buffer Management in Delay Tolerant Networks Rachana R. Mhatre 1 And Prof. Manjusha Deshmukh 2 1,2 Information Technology, PIIT, New Panvel, University of Mumbai Abstract Delay tolerant networks (DTN)

More information

Modulation-Aware Energy Balancing in Hierarchical Wireless Sensor Networks 1

Modulation-Aware Energy Balancing in Hierarchical Wireless Sensor Networks 1 Modulation-Aware Energy Balancing in Hierarchical Wireless Sensor Networks 1 Maryam Soltan, Inkwon Hwang, Massoud Pedram Dept. of Electrical Engineering University of Southern California Los Angeles, CA

More information

Lightweight caching strategy for wireless content delivery networks

Lightweight caching strategy for wireless content delivery networks Lightweight caching strategy for wireless content delivery networks Jihoon Sung 1, June-Koo Kevin Rhee 1, and Sangsu Jung 2a) 1 Department of Electrical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon,

More information

Strength of Co-authorship Ties in Clusters: a Comparative Analysis

Strength of Co-authorship Ties in Clusters: a Comparative Analysis Strength of Co-authorship Ties in Clusters: a Comparative Analysis Michele A. Brandão and Mirella M. Moro Universidade Federal de Minas Gerais, Belo Horizonte, Brazil micheleabrandao@dcc.ufmg.br, mirella@dcc.ufmg.br

More information

A Survey on Clustered-Aggregation Routing Techniques in Wireless Sensor Networks

A Survey on Clustered-Aggregation Routing Techniques in Wireless Sensor Networks A Survey on Clustered-Aggregation Routing Techniques in Wireless Sensor Networks Sushma K M, Manjula Devi T H [PG Student], [Associate Professor] Telecommunication Department Dayananda Sagar College of

More information

Introduction to Mobile Ad hoc Networks (MANETs)

Introduction to Mobile Ad hoc Networks (MANETs) Introduction to Mobile Ad hoc Networks (MANETs) 1 Overview of Ad hoc Network Communication between various devices makes it possible to provide unique and innovative services. Although this inter-device

More information

Constructing Time-Varying Contact Graphs for Heterogeneous Delay Tolerant Networks

Constructing Time-Varying Contact Graphs for Heterogeneous Delay Tolerant Networks Globecom 2012 - Wireless Networking Symposium Constructing Time-Varying Contact Graphs for Heterogeneous Delay Tolerant Networks Xiaoyan Hong, Bo Gu, Yuguang Zeng, Jingyuan Zhang Department of Computer

More information

Integrated Routing Protocol for Opportunistic Networks

Integrated Routing Protocol for Opportunistic Networks Integrated Routing Protocol for Opportunistic Networks Anshul Verma Computer Science and Engineering Dept. ABV-Indian Institute of Information Technology and Management, Gwalior, India E-mail: anshulverma87@gmail.com

More information

A DTN Packet Forwarding Scheme Inspired by Thermodynamics

A DTN Packet Forwarding Scheme Inspired by Thermodynamics A DTN Packet Forwarding Scheme Inspired by Thermodynamics Mehdi Kalantari and Richard J. La Department of Electrical and Computer Engineering University of Maryland {mehkalan, hyongla}@umd.edu Abstract

More information

Information Brokerage

Information Brokerage Information Brokerage Sensing Networking Leonidas Guibas Stanford University Computation CS321 Information Brokerage Services in Dynamic Environments Information Brokerage Information providers (sources,

More information

Social-Similarity-based Multicast Algorithm in Impromptu Mobile Social Networks

Social-Similarity-based Multicast Algorithm in Impromptu Mobile Social Networks Social-Similarity-based Multicast Algorithm in Impromptu Mobile Social Networks Yuan Xu, Xiao Chen Department of Computer Science, Texas State University, San Marcos, TX, USA Email: y x3@txstate.edu, xc@txstate.edu

More information

CHAPTER 5 PROPAGATION DELAY

CHAPTER 5 PROPAGATION DELAY 98 CHAPTER 5 PROPAGATION DELAY Underwater wireless sensor networks deployed of sensor nodes with sensing, forwarding and processing abilities that operate in underwater. In this environment brought challenges,

More information

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks RESEARCH ARTICLE An Industrial Employee Development Application Protocol Using Wireless Sensor Networks 1 N.Roja Ramani, 2 A.Stenila 1,2 Asst.professor, Dept.of.Computer Application, Annai Vailankanni

More information

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks

A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks A Location-based Directional Route Discovery (LDRD) Protocol in Mobile Ad-hoc Networks Stephen S. Yau, Wei Gao, and Dazhi Huang Dept. of Computer Science and Engineering Arizona State University Tempe,

More information