Heterogeneity Increases Multicast Capacity in Clustered Network

Size: px
Start display at page:

Download "Heterogeneity Increases Multicast Capacity in Clustered Network"

Transcription

1 Heterogeneity Increases Multicast Capacity in Clustered Network Qiuyu Peng Xinbing Wang Huan Tang Department of Electronic Engineering Shanghai Jiao Tong University April 15, 2010 Infocom / 32

2 Outline 1 Background Motivation Objectives 2 Network Topology Transmission Protocol Capacity Definition 3 Main results Intuitions 4 5 Infocom / 32

3 Outline Background Motivation Objectives 1 Background Motivation Objectives 2 Network Topology Transmission Protocol Capacity Definition 3 Main results Intuitions 4 5 Infocom / 32

4 Capacity of Ad Hoc Network Background Motivation Objectives Capacity of wireless ad hoc network not scalable: in a static ad hoc wireless network with n nodes, the per-node ( ) 1 [1]. capacity is limited as O n log n Interference is the main reason behind. [1] P. Gupta and P. R. Kumar, The capacity of wireless networks, in IEEE Trans. on Information Theory, Infocom / 32

5 Background Motivation Objectives Multicast Capacity of Ad Hoc Network Multicast traffic pattern is a generalized version of unicast traffic in ad hoc network: Each source sends identical packets to multiple destinations. ( ) [2] 1 The per-node throughput is limited as O nk log n if each multicast session composes of 1 source and k destinations. [2] X.-Y. Li, S.-J. Tang, and O. Frieder. Multicast capacity for large scale wireless ad hoc networks, in Proc. ACM Mobicom Infocom / 32

6 Clustered Network Background Motivation Objectives The network models studied in previous works are non-clustered and uniformly distributed ones. Most realistic networks are characterized by various clustered heterogeneity. Spatial Heterogeneity: The nodes are clustered according to some specified distributions [3]. Pattern Heterogeneity: More than one type of traffic patterns exist in the network [4]. [3] G. Alfano, M. Garetto, E. Leonardi, Capacity Scaling of Wireless Networks with Inhomogeneous Node Density: Upper Bounds, [4] M. Ji, Z. Wang, H. Sadjadpour, J. J. Garcia-Luna-Aceves, The Capacity of Ad Hoc Networks with Heterogeneous Traffic Using Cooperation Infocom / 32

7 Motivation Background Motivation Objectives Network with multicast traffic pattern can also be regarded as clustered network since nodes of the same multicast session composes of a cluster. The network heterogeneities investigated in prior works are inadequate for exploring the clustering behavior of such network. Infocom / 32

8 Background Motivation Objectives Features of Clustered Heterogeneities Heterogeneous Cluster Traffic (HCT): Clients of the same cluster (data flow) are likely to be deployed around a cluster head specified by an inhomogeneous poison process (IPP) Heterogeneous Cluster Size (HCS): Clusters may have different size (cardinality) and HCS is employed to describe the population variation for each multicast data flow Infocom / 32

9 Main Question Background Motivation Objectives Main Question What are the impacts of heterogeneous cluster traffic and size on multicast capacity in clustered network? Heterogeneous Cluster Traffic increases network capacity for all the clusters. Heterogeneous Cluster Size does not influence the network capacity. Infocom / 32

10 Outline Network Topology Transmission Protocol Capacity Definition 1 Background Motivation Objectives 2 Network Topology Transmission Protocol Capacity Definition 3 Main results Intuitions 4 5 Infocom / 32

11 General Assumption Network Topology Transmission Protocol Capacity Definition There are n s clusters and each with C j p number of clients. Both n s and p scales with n and n s p = n. The edge of the deployed region O is L = n β, which also scales with n. Infocom / 32

12 How to model HCT (I) Network Topology Transmission Protocol Capacity Definition Each cluster Client is distributed according to an inhomogeneous poisson process around their cluster head specified by a probability density function φ( ). H: cluster head C: cluster client Infocom / 32

13 How to model HCT (II) Network Topology Transmission Protocol Capacity Definition The inhomogeneous poisson process is specified by a probability density function φ( ). O φ(ξ)dξ = 1 Infocom / 32

14 How to model HCT (III) Network Topology Transmission Protocol Capacity Definition Given a probability density function φ( ), we must provide a quantitative value of its degree of heterogeneity. The expectation describes average node density: E[φ(ξ)] = 1/L 2. The variance can describe HCT and a novel variable distribution variance σ O is proposed. σ O = O ( O φ(ξ) φ(ξ )dξ ) 2 L 2 dξ = O φ 2 (ξ)dξ 1 L 2 Infocom / 32

15 How to model HCS Network Topology Transmission Protocol Capacity Definition The size of these n s clusters is not identical and for each cluster C j (1 j n s ), its size C j Θ(n 1 α ). (n s = n α ) Infocom / 32

16 Protocol Model Network Topology Transmission Protocol Capacity Definition Definition Let d ij denotes the distance between node i and node j, and R T the common transmission range, then a transmission from i to j at rate W is successful if: { d ij < R T d kj > (1 + )R T for any other k transmitting simultaneously. Infocom / 32

17 Asymptotic Capacity Network Topology Transmission Protocol Capacity Definition Definition Definition of Asymptotic Capacity: Let λ j (1 j n s ) denote the sustainable rate of data flow for cluster C j. Assume that λ = min{λ 1, λ 2,..., λ ns 1, λ ns }. Then λ = Θ(f (n)) is defined as the asymptotic network capacity if there exist constants c > c > 0, such that lim Pr(λ = cf (n) is achievable) < 1, n lim Pr(λ = n c f (n) is achievable) = 1. Infocom / 32

18 Outline Main results Intuitions 1 Background Motivation Objectives 2 Network Topology Transmission Protocol Capacity Definition 3 Main results Intuitions 4 5 Infocom / 32

19 Main results (I) Main results Intuitions Given the distribution variance σ O, λ is bounded as follows: { ( )} max{1, LσO }W λ min O(W), O. ns Infocom / 32

20 Main results (II) Main results Intuitions Given a distribution variance σ O, a set of probability density functions φ( ) can satisfy the requirement. Uniform Cluster Random Model is the right point process that can achieve the capacity upper bound in order sense. Uniform Cluster Random Model The dispersion density function is as follows: φ u (ξ) = { 1 πr 2 ξ R 0 otherwise L where R = is defined as cluster radius. It means π(1+(lσo ) 2 ) clients of each cluster are randomly and uniformly distributed in a disk of radius R centered at its cluster head. Infocom / 32

21 Fully Cluster Overlapping Main results Intuitions HCT is relative slight and each cluster is fully overlapped with other clusters. Each node is required to serve for approximately Θ( n s ) clusters and it is identical to uniform case. Infocom / 32

22 Trivial Cluster Overlapping Main results Intuitions HCT is relative severe and each cluster can be viewed as an isolated one. Each node is required to serve for a constant number of cluster so Θ(1) capacity can be achieved. Infocom / 32

23 Partial Cluster Overlapping Main results Intuitions The degree of HCT is neither too severe nor slight therefore each cluster is overlapped with only some of the clusters. Each node is required to serve for a smaller number of clusters than the case of fully cluster overlapping. The network capacity is larger than Θ( n s ). Infocom / 32

24 Outline 1 Background Motivation Objectives 2 Network Topology Transmission Protocol Capacity Definition 3 Main results Intuitions 4 5 Infocom / 32

25 Why for UCRM UCRM, which is a special type of node distribution function, can achieve maximized capacity given a fixed σ O theoretically. Can such results applicable for real world scenario? is required to approach such upper bound. Infocom / 32

26 Case σ O = Ω( n s L ) In this case, R = L = O( L π(1+l 2 (σ O ) 2 ) ns ). There are at most a constant number of clusters inside D(ξ, R) for ξ O and a simple TDMA scheme can achieve Θ(W) capacity for each cluster. Trivial Cluster Overlapping Infocom / 32

27 Case σ O = o( n s L ) In this case, R = Θ( 1 σ O ) = ω( L ns ) and the traffics in each cluster is not so aggregated because σ O is relative smaller. Scheduling policy becomes relative complicated. Infocom / 32

28 Case σ O = o( n s L ) Illustration of information highway, access point, routing protocol. Infocom / 32

29 Outline 1 Background Motivation Objectives 2 Network Topology Transmission Protocol Capacity Definition 3 Main results Intuitions 4 5 Infocom / 32

30 Result We provide a close formula of the relationship between the achievable capacity λ and the distribution variance σ O and the corresponding scheduling policy to achieve such capacity. Based on the formula, we find that HCT can increase the network capacity while HCS does not have impact on the network capacity. Infocom / 32

31 Future Work For HCS, we find it can not increase network capacity. However, it may increase the achievable capacity for small cluster because small cluster may rely on the information highway constructed by the bigger clusters. We can investigate the lower bound of the network capacity given a specified σ O. We can also discuss the impact of base stations on the network capacity in our heterogeneous cases. Infocom / 32

32 Questions? Thanks for listening. Infocom / 32

Multihop Hierarchical MIMO A Multicast Structure in wireless ad hoc networks

Multihop Hierarchical MIMO A Multicast Structure in wireless ad hoc networks Multihop Hierarchical MIMO A Multicast Structure in wireless ad hoc networks January 11, 2008 Abstract In this paper, we study multicast in large-scale wireless ad hoc networks. Consider N nodes that are

More information

NEW! Updates from previous draft Based on group mailing list discussions Added definition of optimal scalability with examples (captures idea of suffi

NEW! Updates from previous draft Based on group mailing list discussions Added definition of optimal scalability with examples (captures idea of suffi IRTF ANS WG Meeting, November 12, 2003 Notes on Scalability of Wireless Ad hoc Networks Onur Arpacioglu, Tara Small and Zygmunt J. Haas , which extends

More information

On the Scalability of Hierarchical Ad Hoc Wireless Networks

On the Scalability of Hierarchical Ad Hoc Wireless Networks On the Scalability of Hierarchical Ad Hoc Wireless Networks Suli Zhao and Dipankar Raychaudhuri Fall 2006 IAB 11/15/2006 Outline Motivation Ad hoc wireless network architecture Three-tier hierarchical

More information

Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks. Wang Wei Vikram Srinivasan Chua Kee-Chaing

Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks. Wang Wei Vikram Srinivasan Chua Kee-Chaing Using Mobile Relays to Prolong the Lifetime of Wireless Sensor Networks Wang Wei Vikram Srinivasan Chua Kee-Chaing Overview The motivation of mobile relay The performance analysis for mobile relay in the

More information

On the Impact of Mobility on Multicast Capacity of Wireless Networks

On the Impact of Mobility on Multicast Capacity of Wireless Networks On the Impact of Mobility on Multicast Capacity of Wireless Networs Jubin Jose, Ahmed Abdel-Hadi, Piyush Gupta and Sriram Vishwanath University of Texas at Austin, Austin, TX Bell Labs, Alcatel-Lucent,

More information

Multi-Rate Interference Sensitive and Conflict Aware Multicast in Wireless Ad hoc Networks

Multi-Rate Interference Sensitive and Conflict Aware Multicast in Wireless Ad hoc Networks Multi-Rate Interference Sensitive and Conflict Aware Multicast in Wireless Ad hoc Networks Asma Ben Hassouna, Hend Koubaa, Farouk Kamoun CRISTAL Laboratory National School of Computer Science ENSI La Manouba,

More information

Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks

Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks Presentation: Alexandros Manolakos EE 360 Stanford University February 13, 2012 Table of Contents What are we trying to solve?

More information

Queuing Delay and Achievable Throughput in Random Access Wireless Ad Hoc Networks

Queuing Delay and Achievable Throughput in Random Access Wireless Ad Hoc Networks Queuing Delay and Achievable Throughput in Random Access Wireless Ad Hoc Networks Nabhendra Bisnik and Alhussein Abouzeid Rensselaer Polytechnic Institute Troy, NY bisnin@rpi.edu, abouzeid@ecse.rpi.edu

More information

Furuzan Atay & Christopher Rose WINLAB, Rutgers University 73 Brett Rd.,Piscataway, NJ

Furuzan Atay & Christopher Rose WINLAB, Rutgers University 73 Brett Rd.,Piscataway, NJ Threshold-based Policies in Mobile Infostation Networks Furuzan Atay & Christopher Rose WINLAB, Rutgers University 73 Brett Rd.,Piscataway, NJ 8854-86 Email: furuzan/crose@winlab.rutgers.edu Abstract Mobility

More information

A New Combinatorial Design of Coded Distributed Computing

A New Combinatorial Design of Coded Distributed Computing A New Combinatorial Design of Coded Distributed Computing Nicholas Woolsey, Rong-Rong Chen, and Mingyue Ji Department of Electrical and Computer Engineering, University of Utah Salt Lake City, UT, USA

More information

On Benefits of Network Coding in Bidirected Networks and Hyper-networks

On Benefits of Network Coding in Bidirected Networks and Hyper-networks On Benefits of Network Coding in Bidirected Networks and Hyper-networks Zongpeng Li University of Calgary / INC, CUHK December 1 2011, at UNSW Joint work with: Xunrui Yin, Xin Wang, Jin Zhao, Xiangyang

More information

The Complexity of Connectivity in Wireless Networks. Roger WISARD

The Complexity of Connectivity in Wireless Networks. Roger WISARD The Complexity of Connectivity in Wireless Networks Roger Wattenhofer @ WISARD 2008 1 The paper Joint work with Thomas Moscibroda Former PhD student of mine Now researcher at Microsoft Research, Redmond

More information

The Capacity of Wireless Networks

The Capacity of Wireless Networks The Capacity of Wireless Networks Piyush Gupta & P.R. Kumar Rahul Tandra --- EE228 Presentation Introduction We consider wireless networks without any centralized control. Try to analyze the capacity of

More information

RECEIVER CONTROLLED MEDIUM ACCESS IN MULTIHOP AD HOC NETWORKS WITH MULTIPACKET RECEPTION

RECEIVER CONTROLLED MEDIUM ACCESS IN MULTIHOP AD HOC NETWORKS WITH MULTIPACKET RECEPTION RECEIVER CONTROLLED MEDIUM ACCESS IN MULTIHOP AD HOC NETWORKS WITH MULTIPACKET RECEPTION Gökhan Mergen and Lang Tong School of Electrical and Computer Engineering Cornell University, Ithaca, NY 14853 {mergen,ltong}@eecornelledu

More information

Scaling Laws for Throughput Capacity and Delay in Wireless Networks A Survey

Scaling Laws for Throughput Capacity and Delay in Wireless Networks A Survey Scaling Laws for Throughput Capacity and Delay in Wireless Networks A Survey T.Sreekanth #1& T.Anusha#2 #1 Asst. Professor, Dept. Of CSE, MalineniLakshmaiah Engineering College(MLEC), Singarayakonda.Prakasam,AP

More information

IMPROVING THE DATA COLLECTION RATE IN WIRELESS SENSOR NETWORKS BY USING THE MOBILE RELAYS

IMPROVING THE DATA COLLECTION RATE IN WIRELESS SENSOR NETWORKS BY USING THE MOBILE RELAYS IMPROVING THE DATA COLLECTION RATE IN WIRELESS SENSOR NETWORKS BY USING THE MOBILE RELAYS 1 K MADHURI, 2 J.KRISHNA, 3 C.SIVABALAJI II M.Tech CSE, AITS, Asst Professor CSE, AITS, Asst Professor CSE, NIST

More information

Some Optimization Trade-offs in Wireless Network Coding

Some Optimization Trade-offs in Wireless Network Coding Some Optimization Trade-offs in Wireless Network Coding Yalin Evren Sagduyu and Anthony Ephremides Electrical and Computer Engineering Department and Institute for Systems Research University of Maryland,

More information

The Design of Degree Distribution for Distributed Fountain Codes in Wireless Sensor Networks

The Design of Degree Distribution for Distributed Fountain Codes in Wireless Sensor Networks The Design of Degree Distribution for Distributed Fountain Codes in Wireless Sensor Networks Jing Yue, Zihuai Lin, Branka Vucetic, and Pei Xiao School of Electrical and Information Engineering, The University

More information

Bounds on the Benefit of Network Coding for Multicast and Unicast Sessions in Wireless Networks

Bounds on the Benefit of Network Coding for Multicast and Unicast Sessions in Wireless Networks Bounds on the Benefit of Network Coding for Multicast and Unicast Sessions in Wireless Networks Alireza Keshavarz-Haddad Rudolf Riedi Department of Electrical and Computer Engineering and Department of

More information

2 Related Work. 1 Introduction. 3 Background

2 Related Work. 1 Introduction. 3 Background Modeling the Performance of A Wireless Node in Multihop Ad-Hoc Networks Ping Ding, JoAnne Holliday, Aslihan Celik {pding, jholliday, acelik}@scu.edu Santa Clara University Abstract: In this paper, we model

More information

Near Optimal Broadcast with Network Coding in Large Sensor Networks

Near Optimal Broadcast with Network Coding in Large Sensor Networks in Large Sensor Networks Cédric Adjih, Song Yean Cho, Philippe Jacquet INRIA/École Polytechnique - Hipercom Team 1 st Intl. Workshop on Information Theory for Sensor Networks (WITS 07) - Santa Fe - USA

More information

Optimizing the Data Collection in Wireless Sensor Network

Optimizing the Data Collection in Wireless Sensor Network Optimizing the Data Collection in Wireless Sensor Network R.Latha 1,Valarmathi.M 2 1 Assistant Professor, 2 PG Scholar 1,2 Computer Application 1,2 Vel Tech High Tech DR.Rangarajan DR.Sakunthala Engineering

More information

A Cluster-Based Energy Balancing Scheme in Heterogeneous Wireless Sensor Networks

A Cluster-Based Energy Balancing Scheme in Heterogeneous Wireless Sensor Networks A Cluster-Based Energy Balancing Scheme in Heterogeneous Wireless Sensor Networks Jing Ai, Damla Turgut, and Ladislau Bölöni Networking and Mobile Computing Research Laboratory (NetMoC) Department of Electrical

More information

Stretch-Optimal Scheduling for On-Demand Data Broadcasts

Stretch-Optimal Scheduling for On-Demand Data Broadcasts Stretch-Optimal Scheduling for On-Demand Data roadcasts Yiqiong Wu and Guohong Cao Department of Computer Science & Engineering The Pennsylvania State University, University Park, PA 6 E-mail: fywu,gcaog@cse.psu.edu

More information

Capacity of Grid-Oriented Wireless Mesh Networks

Capacity of Grid-Oriented Wireless Mesh Networks Capacity of Grid-Oriented Wireless Mesh Networks Nadeem Akhtar and Klaus Moessner Centre for Communication Systems Research University of Surrey Guildford, GU2 7H, UK Email: n.akhtar@surrey.ac.uk, k.moessner@surrey.ac.uk

More information

Performance Study of Routing Algorithms for LEO Satellite Constellations

Performance Study of Routing Algorithms for LEO Satellite Constellations Performance Study of Routing Algorithms for LEO Satellite Constellations Ioannis Gragopoulos, Evangelos Papapetrou, Fotini-Niovi Pavlidou Aristotle University of Thessaloniki, School of Engineering Dept.

More information

Maximization of Time-to-first-failure for Multicasting in Wireless Networks: Optimal Solution

Maximization of Time-to-first-failure for Multicasting in Wireless Networks: Optimal Solution Arindam K. Das, Mohamed El-Sharkawi, Robert J. Marks, Payman Arabshahi and Andrew Gray, "Maximization of Time-to-First-Failure for Multicasting in Wireless Networks : Optimal Solution", Military Communications

More information

Some problems in ad hoc wireless networking. Balaji Prabhakar

Some problems in ad hoc wireless networking. Balaji Prabhakar Some problems in ad hoc wireless networking Balaji Prabhakar Background Example scenarios for ad hoc packet networks - sensor networks (many nodes, low data rates) - wireless LANs (fewer nodes, high data

More information

Joint Routing, Scheduling, and Network Coding for Wireless Multihop Networks

Joint Routing, Scheduling, and Network Coding for Wireless Multihop Networks 211 International Symposium of Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks Joint Routing, Scheduling, and Network Coding for Wireless Multihop Networks Samat Shabdanov, Catherine

More information

Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks

Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks Hui Tian, Hong Shen and Teruo Matsuzawa Graduate School of Information Science Japan Advanced Institute of Science and Technology

More information

Capacity Deficit in Mobile Wireless Ad Hoc Networks Due to Geographic Routing Overheads

Capacity Deficit in Mobile Wireless Ad Hoc Networks Due to Geographic Routing Overheads Capacity Deficit in Mobile Wireless Ad Hoc Networks Due to Geographic Routing Overheads Nabhendra Bisnik, Alhussein Abouzeid Abstract Mobility of nodes may cause routing protocols to incur large overheads

More information

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks First Author A.Sandeep Kumar Narasaraopeta Engineering College, Andhra Pradesh, India. Second Author Dr S.N.Tirumala Rao (Ph.d)

More information

PROBABILITY OF INTRUSION DETECTION IN WIRELESS SENSOR NETWORKS

PROBABILITY OF INTRUSION DETECTION IN WIRELESS SENSOR NETWORKS PROBABILITY OF INTRUSION DETECTION IN WIRELESS SENSOR NETWORKS 1 NISHA GAHLAWAT, 2 PRADEEP KUMAR 1 Department of Electronics & Communication, DCRUST Murthal, IGI Jhunndpur Sonipat, 2 Assistant Professor

More information

CAPACITY of wireless ad hoc networks is constrained. Multicast Performance With Hierarchical Cooperation

CAPACITY of wireless ad hoc networks is constrained. Multicast Performance With Hierarchical Cooperation This article has been accepted for inclusion in a future issue of this journal Content is final as presented, with the exception of pagination IEEE/ACM TRANSACTIONS ON NETWORKING 1 Multicast Performance

More information

Wireless Network Capacity. Nitin Vaidya

Wireless Network Capacity. Nitin Vaidya Wireless Network Capacity Nitin Vaidya 2009 1 Wireless Networks Why use multi-hop routes to delivery data? Is this optimal? What s the best performance achievable? Capacity analysis can help answer such

More information

Distributed Data Aggregation Scheduling in Wireless Sensor Networks

Distributed Data Aggregation Scheduling in Wireless Sensor Networks Distributed Data Aggregation Scheduling in Wireless Sensor Networks Bo Yu, Jianzhong Li, School of Computer Science and Technology, Harbin Institute of Technology, China Email: bo yu@hit.edu.cn, lijzh@hit.edu.cn

More information

Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks

Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks Efficient On-Demand Routing for Mobile Ad-Hoc Wireless Access Networks Joo-Han Song, Vincent Wong and Victor Leung Department of Electrical and Computer Engineering The University of British Columbia 56

More information

The Maximum Throughput of A Wireless Multi-Hop Path

The Maximum Throughput of A Wireless Multi-Hop Path The Maximum Throughput of A Wireless Multi-Hop Path Guoqiang Mao School of Electrical and Information Engineering The University of Sydney NSW 2006, Australia Email: guoqiang@ee.usyd.edu.au Abstract In

More information

Distributed STDMA in Ad Hoc Networks

Distributed STDMA in Ad Hoc Networks Distributed STDMA in Ad Hoc Networks Jimmi Grönkvist Swedish Defence Research Agency SE-581 11 Linköping, Sweden email: jimgro@foi.se Abstract Spatial reuse TDMA is a collision-free access scheme for ad

More information

Queuing Delay and Achievable Throughput in Random Access Wireless Ad Hoc Networks

Queuing Delay and Achievable Throughput in Random Access Wireless Ad Hoc Networks Queuing Delay and Achievable Throughput in Random Access Wireless Ad Hoc Networks Nabhendra Bisnik, Alhussein Abouzeid Rensselaer Polytechnic Institute Troy, NY 280 bisnin@rpi.edu, abouzeid@ecse.rpi.edu

More information

Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks

Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks Fault-Aware Flow Control and Multi-path Routing in Wireless Sensor Networks X. Zhang, X. Dong Shanghai Jiaotong University J. Wu, X. Li Temple University, University of North Carolina N. Xiong Colorado

More information

An Empirical Study of Performance Benefits of Network Coding in Multihop Wireless Networks

An Empirical Study of Performance Benefits of Network Coding in Multihop Wireless Networks An Empirical Study of Performance Benefits of Network Coding in Multihop Wireless Networks Dimitrios Koutsonikolas, Y. Charlie Hu, Chih-Chun Wang School of Electrical and Computer Engineering, Purdue University,

More information

Edge-Based Beaconing Schedule in Duty-Cycled Multihop Wireless Networks

Edge-Based Beaconing Schedule in Duty-Cycled Multihop Wireless Networks Edge-Based Beaconing Schedule in Duty-Cycled Multihop Wireless Networks Quan Chen, Hong Gao, Yingshu Li, Siyao Cheng, Jianzhong Li Harbin Institute of Technology, Georgia State University {chenquan,honggao,csy,lijzh}@hit.edu.cn,

More information

Infrastructure Support Increases the Capacity of Ad Hoc Wireless Networks

Infrastructure Support Increases the Capacity of Ad Hoc Wireless Networks Infrastructure Support Increases the Capacity of Ad Hoc Wireless Networks Jeong-woo Cho, Seong-Lyun Kim and Song Chong Dept. of Electrical Engineering and Computer Science, Korea Advanced Institute of

More information

Sensor Tasking and Control

Sensor Tasking and Control Sensor Tasking and Control Outline Task-Driven Sensing Roles of Sensor Nodes and Utilities Information-Based Sensor Tasking Joint Routing and Information Aggregation Summary Introduction To efficiently

More information

Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks

Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks SaeedA.AldosariandJoséM.F.Moura Electrical and Computer Engineering Department Carnegie Mellon University 5000 Forbes

More information

Delay-Throughput Tradeoff for Supportive Two-Tier Networks

Delay-Throughput Tradeoff for Supportive Two-Tier Networks Delay-Throughput Tradeoff for Supportive Two-Tier Networks arxiv:082.4826v [cs.it] 28 Dec 2008 Long Gao, Rui Zhang, Changchuan Yin, Shuguang Cui Department of Electrical and Computer Engineering Texas

More information

Performance Analysis of WLANs Under Sporadic Traffic

Performance Analysis of WLANs Under Sporadic Traffic Performance Analysis of 802.11 WLANs Under Sporadic Traffic M. Garetto and C.-F. Chiasserini Dipartimento di Elettronica, Politecnico di Torino, Italy Abstract. We analyze the performance of 802.11 WLANs

More information

Topology Control in Wireless Networks 4/24/06

Topology Control in Wireless Networks 4/24/06 Topology Control in Wireless Networks 4/4/06 1 Topology control Choose the transmission power of the nodes so as to satisfy some properties Connectivity Minimize power consumption, etc. Last class Percolation:

More information

A Cross-Layer Design for Reducing Packet Loss Caused by Fading in a Mobile Ad Hoc Network

A Cross-Layer Design for Reducing Packet Loss Caused by Fading in a Mobile Ad Hoc Network Clemson University TigerPrints All Theses Theses 8-2017 A Cross-Layer Design for Reducing Packet Loss Caused by Fading in a Mobile Ad Hoc Network William Derek Johnson Clemson University Follow this and

More information

On the Minimum k-connectivity Repair in Wireless Sensor Networks

On the Minimum k-connectivity Repair in Wireless Sensor Networks On the Minimum k-connectivity epair in Wireless Sensor Networks Hisham M. Almasaeid and Ahmed E. Kamal Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 Email:{hisham,kamal}@iastate.edu

More information

Performance Study of Adaptive Routing Algorithms for LEO Satellite Constellations under Self-Similar and Poisson Traffic

Performance Study of Adaptive Routing Algorithms for LEO Satellite Constellations under Self-Similar and Poisson Traffic Performance Study of Adaptive Routing Algorithms for LEO Satellite Constellations under Self-Similar and Poisson Traffic Ioannis Gragopoulos, Evangelos Papapetrou, Fotini-Niovi Pavlidou Aristotle University

More information

Femto-Matching: Efficient Traffic Offloading in Heterogeneous Cellular Networks

Femto-Matching: Efficient Traffic Offloading in Heterogeneous Cellular Networks Femto-Matching: Efficient Traffic Offloading in Heterogeneous Cellular Networks Wei Wang, Xiaobing Wu, Lei Xie and Sanglu Lu Nanjing University April 28, 2015 1/1 Heterogeneous Cellular Networks femto-cell

More information

Broadcast Traffic in Ad Hoc Networks with Directional Antennas

Broadcast Traffic in Ad Hoc Networks with Directional Antennas Broadcast Traffic in Ad Hoc Networks with Directional Antennas Yu Wang J.J. Garcia-Luna-Aceves Department of Computer Engineering University of California at Santa Cruz Santa Cruz, CA 9564, U.S.A. {ywang,jj}@cse.ucsc.edu

More information

Delay and Capacity Trade-offs in Mobile Ad Hoc Networks: A Global Perspective

Delay and Capacity Trade-offs in Mobile Ad Hoc Networks: A Global Perspective Delay and Capacity Trade-offs in Mobile Ad Hoc Networks: A Global Perspective Gaurav Sharma, Ravi Mazumdar, Ness Shroff School of Electrical and Computer Engineering Purdue University West Lafayette, IN

More information

Edge-Based Beaconing Schedule in Duty- Cycled Multihop Wireless Networks

Edge-Based Beaconing Schedule in Duty- Cycled Multihop Wireless Networks Edge-Based Beaconing Schedule in Duty- Cycled Multihop Wireless Networks Quan Chen, Hong Gao, Yingshu Li, Siyao Cheng, and Jianzhong Li Harbin Institute of Technology, China Quan Chen@ Harbin Institute

More information

Cooperative and Opportunistic Transmission for Wireless Ad Hoc Networks. IEEE Network, Jan./Feb., 2007 Jeng-Long Chiang Nov.

Cooperative and Opportunistic Transmission for Wireless Ad Hoc Networks. IEEE Network, Jan./Feb., 2007 Jeng-Long Chiang Nov. Cooperative and Opportunistic Transmission for Wireless Ad Hoc Networks IEEE Network, Jan./Feb., 2007 Jeng-Long Chiang Nov. 8, 2007 Outline Introduction Distributed Cooperative Rate Adaption (DCRA) DCRA

More information

Novel Cluster Based Routing Protocol in Wireless Sensor Networks

Novel Cluster Based Routing Protocol in Wireless Sensor Networks ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 32 Novel Cluster Based Routing Protocol in Wireless Sensor Networks Bager Zarei 1, Mohammad Zeynali 2 and Vahid Majid Nezhad 3 1 Department of Computer

More information

Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model

Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model Hongxing Li Department of Computer Science The University of Hong Kong Pokfulam Road, Hong Kong hxli@cs.hku.hk

More information

Capacity of Wireless Ad-hoc Networks under Ultra Wide Band with Power Constraint

Capacity of Wireless Ad-hoc Networks under Ultra Wide Band with Power Constraint 1 Capacity of Wireless Ad-hoc Networks under Ultra Wide Band with Power Constraint Honghai Zhang and Jennifer C. Hou Department of Computer Science University of Illinois at Urbana-Champaign Email:{hzhang3,jhou}@cs.uiuc.edu

More information

AMOBILE ad hoc network (MANET) consists of a collection

AMOBILE ad hoc network (MANET) consists of a collection 1354 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011 Delay and Capacity Tradeoff Analysis for MotionCast Xinbing Wang, Member, IEEE, Wentao Huang, Shangxing Wang, Jinbei Zhang, and Chenhui

More information

Measurement Based Routing Strategies on Overlay Architectures

Measurement Based Routing Strategies on Overlay Architectures Measurement Based Routing Strategies on Overlay Architectures Student: Tuna Güven Faculty: Bobby Bhattacharjee, Richard J. La, and Mark A. Shayman LTS Review February 15 th, 2005 Outline Measurement-Based

More information

(INTERFERENCE AND CONGESTION AWARE ROUTING PROTOCOL)

(INTERFERENCE AND CONGESTION AWARE ROUTING PROTOCOL) Qos of Network Using Advanced Hybrid Routing in WMN, Abstract - Maximizing the network throughput in a multichannel multiradio wireless mesh network various efforts have been devoted. The recent solutions

More information

A Communication Architecture for Large Heterogeneous Wireless Networks

A Communication Architecture for Large Heterogeneous Wireless Networks A Communication Architecture for Large Heterogeneous Wireless Networks Urs Niesen Bell Laboratories, Alcatel-Lucent Murray Hill, NJ 07974 urs.niesen@alcatel-lucent.com Piyush upta Bell Laboratories, Alcatel-Lucent

More information

A Versatile Dependent Model for Heterogeneous Cellular Networks

A Versatile Dependent Model for Heterogeneous Cellular Networks 1 A Versatile Dependent Model for Heterogeneous Cellular Networks Martin Haenggi University of Notre Dame July 7, 1 Abstract arxiv:135.97v [cs.ni] 7 May 13 We propose a new model for heterogeneous cellular

More information

Energy-efficient routing algorithms for Wireless Sensor Networks

Energy-efficient routing algorithms for Wireless Sensor Networks Energy-efficient routing algorithms for Wireless Sensor Networks Chao Peng Graduate School of Information Science Japan Advanced Institute of Science and Technology March 8, 2007 Presentation Flow Introduction

More information

QoS-Aware Hierarchical Multicast Routing on Next Generation Internetworks

QoS-Aware Hierarchical Multicast Routing on Next Generation Internetworks QoS-Aware Hierarchical Multicast Routing on Next Generation Internetworks Satyabrata Pradhan, Yi Li, and Muthucumaru Maheswaran Advanced Networking Research Laboratory Department of Computer Science University

More information

13 Sensor networks Gathering in an adversarial environment

13 Sensor networks Gathering in an adversarial environment 13 Sensor networks Wireless sensor systems have a broad range of civil and military applications such as controlling inventory in a warehouse or office complex, monitoring and disseminating traffic conditions,

More information

Comparison of pre-backoff and post-backoff procedures for IEEE distributed coordination function

Comparison of pre-backoff and post-backoff procedures for IEEE distributed coordination function Comparison of pre-backoff and post-backoff procedures for IEEE 802.11 distributed coordination function Ping Zhong, Xuemin Hong, Xiaofang Wu, Jianghong Shi a), and Huihuang Chen School of Information Science

More information

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions R.Thamaraiselvan 1, S.Gopikrishnan 2, V.Pavithra Devi 3 PG Student, Computer Science & Engineering, Paavai College

More information

A Game-Theoretic Framework for Congestion Control in General Topology Networks

A Game-Theoretic Framework for Congestion Control in General Topology Networks A Game-Theoretic Framework for Congestion Control in General Topology SYS793 Presentation! By:! Computer Science Department! University of Virginia 1 Outline 2 1 Problem and Motivation! Congestion Control

More information

Deployment of a Reinforcement Backbone Network with Constraints of Connection and Resources

Deployment of a Reinforcement Backbone Network with Constraints of Connection and Resources Deployment of a Reinforcement Backbone Network with Constraints of Connection and Resources Peng Wei, Shan Chu, Xin Wang and Yu Zhou State University of New York at Stony Brook Stony Brook, NY 11794, USA

More information

TREE CONSTRUCTION OF MULTICAST DISTRIBUTED SYSTEMS IN WIRELESS SENSOR NETWORKS (WSN)

TREE CONSTRUCTION OF MULTICAST DISTRIBUTED SYSTEMS IN WIRELESS SENSOR NETWORKS (WSN) Volume 118 No. 20 2018, 255-264 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu TREE CONSTRUCTION OF MULTICAST DISTRIBUTED SYSTEMS IN WIRELESS SENSOR NETWORKS (WSN) 1 R. Radhika, 2

More information

Characterizing the Capacity Gain of Stream Control Scheduling in MIMO Wireless Mesh Networks

Characterizing the Capacity Gain of Stream Control Scheduling in MIMO Wireless Mesh Networks Characterizing the Capacity Gain of Stream Control Scheduling in MIMO Wireless Mesh Networks Yue Wang,DahMingChiu 2, and John C.S. Lui Dept. of Computer Science & Engineering, The Chinese University of

More information

An Analysis of Wireless Network Coding for Unicast Sessions: The Case for Coding-Aware Routing

An Analysis of Wireless Network Coding for Unicast Sessions: The Case for Coding-Aware Routing An Analysis of Wireless Network Coding for Unicast Sessions: The Case for Coding-Aware Routing Sudipta Sengupta Shravan Rayanchu,2 Suman Banerjee 2 Bell Laboratories, Lucent Technologies, Murray Hill,

More information

A hierarchical network model for network topology design using genetic algorithm

A hierarchical network model for network topology design using genetic algorithm A hierarchical network model for network topology design using genetic algorithm Chunlin Wang 1, Ning Huang 1,a, Shuo Zhang 2, Yue Zhang 1 and Weiqiang Wu 1 1 School of Reliability and Systems Engineering,

More information

Star-Structure Network Coding for Multiple Unicast Sessions in Wireless Mesh Networks

Star-Structure Network Coding for Multiple Unicast Sessions in Wireless Mesh Networks Wireless Pers Commun (2013) 72:2185 2214 DOI 10.1007/s11277-013-1143-7 Star-Structure Network Coding for Multiple Unicast Sessions in Wireless Mesh Networks Alireza Shafieinejad Faramarz Hendessi Faramarz

More information

Energy-Aware Adaptive Routing for Large-Scale Ad Hoc Networks: Simulation and Study

Energy-Aware Adaptive Routing for Large-Scale Ad Hoc Networks: Simulation and Study Energy-Aware Adaptive Routing for Large-Scale Ad Hoc Networks: Simulation and Study By DAVID TRACY COUNSIL B.S. (University of California at Davis) 2005 THESIS Submitted in partial satisfaction of the

More information

Graph Theoretic Models for Ad hoc Wireless Networks

Graph Theoretic Models for Ad hoc Wireless Networks Graph Theoretic Models for Ad hoc Wireless Networks Prof. Srikrishnan Divakaran DA-IICT 10/4/2009 DA-IICT 1 Talk Outline Overview of Ad hoc Networks Design Issues in Modeling Ad hoc Networks Graph Theoretic

More information

On the Maximum Throughput of A Single Chain Wireless Multi-Hop Path

On the Maximum Throughput of A Single Chain Wireless Multi-Hop Path On the Maximum Throughput of A Single Chain Wireless Multi-Hop Path Guoqiang Mao, Lixiang Xiong, and Xiaoyuan Ta School of Electrical and Information Engineering The University of Sydney NSW 2006, Australia

More information

Topology Control in 3-Dimensional Networks & Algorithms for Multi-Channel Aggregated Co

Topology Control in 3-Dimensional Networks & Algorithms for Multi-Channel Aggregated Co Topology Control in 3-Dimensional Networks & Algorithms for Multi-Channel Aggregated Convergecast Amitabha Ghosh Yi Wang Ozlem D. Incel V.S. Anil Kumar Bhaskar Krishnamachari Dept. of Electrical Engineering,

More information

ENHANCING THE PERFORMANCE OF MANET THROUGH MAC LAYER DESIGN

ENHANCING THE PERFORMANCE OF MANET THROUGH MAC LAYER DESIGN I J I T E ISSN: 2229-7367 3(1-2), 2012, pp. 19-24 ENHANCING THE PERFORMANCE OF MANET THROUGH MAC LAYER DESIGN 1 R. MANIKANDAN, 2 K. ARULMANI AND 3 K. SELVAKUMAR Department of Computer Science and Engineering,

More information

Regional Gossip Routing for Wireless Ad Hoc Networks

Regional Gossip Routing for Wireless Ad Hoc Networks Mobile Networks and Applications 10, 61 77, 2005 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands. Regional Gossip Routing for Wireless Ad Hoc Networks XIANG-YANG LI, KOUSHA

More information

Efficient Broadcasting and Gathering in Wireless Ad-Hoc Networks

Efficient Broadcasting and Gathering in Wireless Ad-Hoc Networks Efficient Broadcasting and Gathering in Wireless Ad-Hoc Networks Melih Onus and Andréa Richa Computer Science and Engineering Department Arizona State University PO Box 875406 Tempe, AZ 85287, USA {Melih.Onus,aricha}@asu.edu

More information

Coordinated carrier aggregation for campus of home base stations

Coordinated carrier aggregation for campus of home base stations 2015 IEEE 2015 International Symposium on Wireless Communication Systems (ISWCS), Brussels (Belgium), Aug. 2015 DOI: 10.1109/ISWCS.2015.7454390 Coordinated carrier aggregation for campus of home base stations

More information

Link Scheduling in Multi-Transmit-Receive Wireless Networks

Link Scheduling in Multi-Transmit-Receive Wireless Networks Macau University of Science and Technology From the SelectedWorks of Hong-Ning Dai 2011 Link Scheduling in Multi-Transmit-Receive Wireless Networks Hong-Ning Dai, Macau University of Science and Technology

More information

A Novel Rebroadcast Technique for Reducing Routing Overhead In Mobile Ad Hoc Networks

A Novel Rebroadcast Technique for Reducing Routing Overhead In Mobile Ad Hoc Networks IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 12, Issue 6 (Jul. - Aug. 2013), PP 01-09 A Novel Rebroadcast Technique for Reducing Routing Overhead In Mobile

More information

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS YINGHUI QIU School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, 102206, China ABSTRACT

More information

End-To-End Delay Optimization in Wireless Sensor Network (WSN)

End-To-End Delay Optimization in Wireless Sensor Network (WSN) Shweta K. Kanhere 1, Mahesh Goudar 2, Vijay M. Wadhai 3 1,2 Dept. of Electronics Engineering Maharashtra Academy of Engineering, Alandi (D), Pune, India 3 MITCOE Pune, India E-mail: shweta.kanhere@gmail.com,

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

On Optimal End-to-End QoS Budget Partitioning in Network Dimensioning

On Optimal End-to-End QoS Budget Partitioning in Network Dimensioning On Optimal End-to-End QoS Budget Partitioning in Network Dimensioning Hyunjoon Cho 1, André Girard 2, and Catherine Rosenberg 3 1 School of Electrical and Computer Engineering, Purdue University, hyunjoon@purdue.edu

More information

Numerical Analysis of IEEE Broadcast Scheme in Multihop Wireless Ad Hoc Networks

Numerical Analysis of IEEE Broadcast Scheme in Multihop Wireless Ad Hoc Networks Numerical Analysis of IEEE 802.11 Broadcast Scheme in Multihop Wireless Ad Hoc Networks Jong-Mu Choi 1, Jungmin So 2, and Young-Bae Ko 1 1 School of Information and Computer Engineering Ajou University,

More information

Using Complex Network in Wireless Sensor Networks Abstract Keywords: 1. Introduction

Using Complex Network in Wireless Sensor Networks Abstract Keywords: 1. Introduction Using Complex Network in Wireless Sensor Networks Amit Munjal, Anurag Singh, Yatindra Nath Singh Electrical Engineering Department Indian Institute of Technology Kanpur Kanpur, India Email: {amitm, anuragsg,

More information

Time Slot Assignment Algorithms for Reducing Upstream Latency in IEEE j Networks

Time Slot Assignment Algorithms for Reducing Upstream Latency in IEEE j Networks Time Slot Assignment Algorithms for Reducing Upstream Latency in IEEE 802.16j Networks Shimpei Tanaka Graduate School of Information Science and Technology Osaka University, Japan sinpei-t@ist.osaka-u.ac.jp

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

SMITE: A Stochastic Compressive Data Collection. Sensor Networks

SMITE: A Stochastic Compressive Data Collection. Sensor Networks SMITE: A Stochastic Compressive Data Collection Protocol for Mobile Wireless Sensor Networks Longjiang Guo, Raheem Beyah, and Yingshu Li Department of Computer Science, Georgia State University, USA Data

More information

Introduction Multirate Multicast Multirate multicast: non-uniform receiving rates. 100 M bps 10 M bps 100 M bps 500 K bps

Introduction Multirate Multicast Multirate multicast: non-uniform receiving rates. 100 M bps 10 M bps 100 M bps 500 K bps Stochastic Optimal Multirate Multicast in Socially Selfish Wireless Networks Hongxing Li 1, Chuan Wu 1, Zongpeng Li 2, Wei Huang 1, and Francis C.M. Lau 1 1 The University of Hong Kong, Hong Kong 2 University

More information

INVESTIGATION ON THROUGHPUT OF A MULTI HOP NETWORK WITH IDENTICAL STATION FOR RANDOM FAILURE

INVESTIGATION ON THROUGHPUT OF A MULTI HOP NETWORK WITH IDENTICAL STATION FOR RANDOM FAILURE International Journal of Computer cience and Communication Vol. 2, No. 2, July-December 2011, pp. 559-564 INVETIGATION ON THROUGHPUT OF A MULTI HOP NETWORK WITH IDENTICAL TATION FOR RANDOM FAILURE Manish

More information

Mingyuan Yan, Shouling Ji, Meng Han, Yingshu Li, and Zhipeng Cai

Mingyuan Yan, Shouling Ji, Meng Han, Yingshu Li, and Zhipeng Cai Mingyuan Yan, Shouling Ji, Meng Han, Yingshu Li, and Zhipeng Cai Department of Computer Science, Georgia State University, ATL, USA School of Electrical and Computer Engineering, Georgia Institute of Technology,

More information

Application-Oriented Multimedia Streaming over Wireless Multihop Networks

Application-Oriented Multimedia Streaming over Wireless Multihop Networks Application-Oriented Multimedia Streaming over Wireless Multihop Networks Luan, Hao (Tom) BBCR Lab, ECE Department University of Waterloo May 11, 2009 1 / 21 Multimedia Streaming Display of audio-visual

More information