Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM

Size: px
Start display at page:

Download "Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM"

Transcription

1 Name of Course : E1-E2 CFA Chapter 15 Topic : DWDM Date of Creation :

2 DWDM 1.0 Introduction The emergence of DWDM is one of the most recent and important phenomena in the development of fiber optic transmission technology. Dense wavelength-division multiplexing (DWDM) revolutionized transmission technology by increasing the capacity signal of embedded fiber. One of the major issues in the networking industry today is tremendous demand for more and more bandwidth. Before the introduction of optical networks, the reduced availability of fibers became a big problem for the network providers. However, with the development of optical networks and the use of Dense Wavelength Division Multiplexing (DWDM) technology, a new and probably, a very crucial milestone is being reached in network evolution. The existing SONET/SDH network architecture is best suited for voice traffic rather than today s high-speed data traffic. To upgrade the system to handle this kind of traffic is very expensive and hence the need for the development of an intelligent all-optical network. Such a network will bring intelligence and scalability to the optical domain by combining the intelligence and functional capability of SONET/SDH, the tremendous bandwidth of DWDM and innovative networking software to spawn a variety of optical transport, switching and management related products. 2.0 Development of DWDM Technology Early WDM began in the late 1980s using the two widely spaced wavelengths in the 1310 nm and 1550 nm (or 850 nm and 1310 nm) regions, sometimes called wideband WDM. The early 1990s saw a second generation of WDM, sometimes called narrowband WDM, in which two to eight channels were used. These channels were now spaced at an interval of about 400 GHz in the 1550-nm window. By the mid-1990s, dense WDM (DWDM) systems were emerging with 16 to 40 channels and spacing from 100 to 200 GHz. By the late 1990s DWDM systems had evolved to the point where they were capable of 64 to 160 parallel channels, densely packed at 50 or even 25 GHz intervals. As fig. 1 shows, the progression of the technology can be seen as an increase in the number of wavelengths accompanied by a decrease in the spacing of the wavelengths. Along with increased density of wavelengths, systems also advanced in their flexibility of configuration, through add-drop functions, and management capabilities. BSNL, India For Internal Circulation Only Page:1

3 3.0 Varieties of WDM Figure 1 Evolution of DWDM Early WDM systems transported two or four wavelengths that were widely spaced. WDM and the follow-on technologies of CWDM and DWDM have evolved well beyond this early limitation. 3.1 WDM Traditional, passive WDM systems are widespread with 2, 4, 8, 12, and 16 channel counts being the normal deployments. This technique usually has a distance limitation of less than 100 km. 3.2 CWDM Today, coarse WDM (CWDM) typically uses 20-nm spacing (3000 GHz) of up to 18 channels. The CWDM Recommendation ITU-T G provides a grid of wavelengths for target distances up to about 50 km on single mode fibers as specified in ITU-T Recommendations G.652, G.653 and G.655. The CWDM grid is made up of 18 wavelengths defined within the range 1270 nm to 1610 nm spaced by 20 nm. BSNL, India For Internal Circulation Only Page:2

4 3.3 DWDM Dense WDM common spacing may be 200, 100, 50, or 25 GHz with channel count reaching up to 128 or more channels at distances of several thousand kilometers with amplification and regeneration along such a route. 4.0 DWDM System Function DWDM stands for Dense Wavelength Division Multiplexing, an optical technology used to increase Bandwidth over existing fiber optic backbones. Dense wavelength division multiplexing systems allow many discrete transports channels by combining and transmitting multiple signals simultaneously at different wavelengths on the same fiber. In effect, one fiber is transformed into multiple virtual fibers. So, if you were to multiplex 32 STM-16 signals into one fiber, you would increase the carrying capacity of that fiber from 2.5 Gb/s to 80 Gb/s. Currently, because of DWDM, single fibers have been able to transmit data at speeds up to 400Gb/s. A key advantage to DWDM is that it's protocol and bit rate-independent. DWDMbased networks can transmit data in SDH, IP, ATM and Ethernet etc. Therefore, DWDMbased networks can carry different types of traffic at different speeds over an optical channel. DWDM is a core technology in an optical transport network. Dense WDM common spacing may be 200, 100, 50, or 25 GHz with channel count reaching up to 128 or more channels at distances of several thousand kilometers with amplification and regeneration along such a route. 1 2 : Fig. 2 Block Diagram of a DWDM System BSNL, India For Internal Circulation Only Page:3

5 The concepts of optical fiber transmission, loss control, packet switching, network topology and synchronization play a major role in deciding the throughput of the network. 5.0 Transmission Windows Today, usually the second transmission window (around 1300 nm) and the third and fourth transmission windows from 1530 to 1565 nm (also called conventional band) and from 1565 to 1625 nm (also called Long Band) are used. Technological reasons limit DWDM applications at the moment to the third and fourth window. The losses caused by the physical effects on the signal due by the type of materials used to produce fibers limit the usable wavelengths to between 1280 nm and 1650 nm. Within this usable range the techniques used to produce the fibers can cause particular wavelengths to have more loss so we avoid the use of these wavelengths as well. 6.0 DWDM System Components Figure 3 shows an optical network using DWDM techniques that consists of five main components: 1. Transmitter (transmit transponder): - Changes electrical bits to optical pulses - Is frequency specific - Uses a narrowband laser to generate the optical pulse 2. Multiplexer/ demultiplexer: - Combines/separates discrete wavelengths 3. Amplifier: - Pre-amplifier boosts signal pulses at the receive side - Post-amplifier boosts signal pulses at the transmit side (post amplifier) and on the receive side (preamplifier) - In line amplifiers (ILA) are placed at different distances from the source to provide recovery of the signal before it is degraded by loss. - EDFA (Eribium Doped Fiber Amplifier) is the most popular amplifier. 4. Optical fiber (media): - Transmission media to carry optical pulses - Many different kinds of fiber are used - Often deployed in sheaths of fibers 5. Receiver (receive transponder) - Changes optical pulses back to electrical bits - Uses wideband laser to provide the optical pulse BSNL, India For Internal Circulation Only Page:4

6 Figure 3: DWDM System Components 5.0 Benefits of DWDM Increases bandwidth (speed and distance) Does not require replacement or upgrade their existing legacy systems Provides "next generation" technologies to meet growing data needs Less costly in the long run because increased fiber capacity is automatically available; don't have to upgrade all the time 6.0 Conclusion DWDM promises to solve the "fiber exhaust" problem and is expected to be the central technology in the all-optical networks of the future. This increase means that the incoming optical signals are assigned to specific wavelengths within a designated frequency band, and then multiplexed onto one fiber. This process allows for multiple video, audios, and data channels to be transmitted over one fiber while maintaining system performance and enhancing transport systems. This technology responds to the growing need for efficient and capable data transmission by working with different formats, such as SONET/SDH, while increasing bandwidth. xxxx BSNL, India For Internal Circulation Only Page:5

A Survey of DWDM Networks, its Development and Future Scope in Telecommunication Domain

A Survey of DWDM Networks, its Development and Future Scope in Telecommunication Domain A Survey of DWDM Networks, its Development and Future Scope in Telecommunication Domain Mohit Borthakur Student, Dept. of Electronics Engineering, Vishwakarma Institute of Technology, Pune, India ABSTRACT:

More information

TECHNOLOGY PAPER ON HIGH CAPACITY DWDM NETWORK

TECHNOLOGY PAPER ON HIGH CAPACITY DWDM NETWORK DOCUMENT NO.: PBT 132 Copyright Commtel D. N. S. (India) Pvt. Ltd. TABLE OF CONTENTS 1 INTRODUCTION... 3 2 SCOPE... 3 3 DWDM TECHNOLOGY... 3 4 FIBERS SUPPORTING DWDM... 5 5 DWDM ARCHITECTURES... 6 6 NOKIA

More information

WDM Industrial Products

WDM Industrial Products Faulty of Engineering Dept. of Elect. & Computer Engineering EE5912 High Speed Networks WDM Industrial Products Lecturer: Dr. Mohan Gurusamy Names Matric Numbers Email Wei Nan HT042584N weinan@nus.edu.sg

More information

Optical networking technology

Optical networking technology 1 Optical networking technology Technological advances in semiconductor products have essentially been the primary driver for the growth of networking that led to improvements and simplification in the

More information

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok Lambda Networks DWDM Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok vara@kmitnb.ac.th Treads in Communication Information: High Speed, Anywhere,

More information

Design of High capacity, reliable, efficient Long distance communication network. using DWDM

Design of High capacity, reliable, efficient Long distance communication network. using DWDM Design of High capacity, reliable, efficient Long distance communication network using DWDM V.Ranjani 1, R.Rajeshwari 2, R.Ranjitha 3, P.Nalini 4 1. B.E Student, 2. B.E Student 3. B.E Student, 4. Assistant

More information

Module 11 - Fiber Optic Networks and the Internet

Module 11 - Fiber Optic Networks and the Internet Module 11 - Fiber Optic Networks and the Internet Dr. Alan Kost Associate Research Professor Of Sciences, University Of Arizona Dr. Alan Kost is an Associate Research Professor of Sciences in the University

More information

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan RESEARCH ARTICLE Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan SharadaOhatkar*, Sanjay Thakare**, RachnaChavan*, Mugdha Kulkarni *,

More information

Alcatel-Lucent 1675 LambdaUnite MultiService Switch

Alcatel-Lucent 1675 LambdaUnite MultiService Switch Alcatel-Lucent 1675 LambdaUnite MultiService Switch Versatile switching platform designed to meet today s network requirements and to drive future network trends LambdaUnite MultiService Switch (MSS) is

More information

REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES. Duane Webber Cisco Systems, Inc.

REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES. Duane Webber Cisco Systems, Inc. REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES Duane Webber Cisco Systems, Inc. Abstract Today's Cable Operator optical infrastructure designs are becoming more important as customers

More information

Wavelength-Switched to Flex-Grid Optical Networks

Wavelength-Switched to Flex-Grid Optical Networks Book Chapter Review-Evolution from Wavelength-Switched to Flex-Grid Optical Networks Tanjila Ahmed Agenda ØObjective ØIdentifying the Problem ØSolution: Flex-Grid Network ØFixed-grid DWDM Architecture

More information

Arista 7500E DWDM Solution and Use Cases

Arista 7500E DWDM Solution and Use Cases ARISTA WHITE PAPER Arista DWDM Solution and Use Cases The introduction of the Arista 7500E Series DWDM solution expands the capabilities of the Arista 7000 Series with a new, high-density, high-performance,

More information

IS WDM READY FOR LOCAL NETWORKS?

IS WDM READY FOR LOCAL NETWORKS? IS WDM READY FOR LOCAL TWORKS? by Brent Allen and Solomon Wong Nortel Networks, OPTera Metro Solutions KANATA, Canada Wavelength division multiplexing (WDM) technology, in the form of photonic networking,

More information

Open Cloud Interconnect: Use Cases for the QFX10000 Coherent DWDM Line Card

Open Cloud Interconnect: Use Cases for the QFX10000 Coherent DWDM Line Card Open Cloud Interconnect: Use Cases for the QFX10000 DWDM Delivering Scale, Security, and Resiliency to Metro, Regional, and Long-Haul Data Center Interconnect 1 Open Cloud Interconnect: Use Cases for the

More information

Introduction To Optical Networks Optical Networks: A Practical Perspective

Introduction To Optical Networks Optical Networks: A Practical Perspective Introduction To Optical Networks Optical Networks: A Practical Perspective Galen Sasaki Galen Sasaki University of Hawaii 1 Galen Sasaki University of Hawaii 2 Galen Sasaki University of Hawaii 3 Telecommunications

More information

FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES

FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES Experimental Astronomy (2004) 17: 213 220 C Springer 2005 FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES D.H.P. MAAT and G.W. KANT ASTRON, P.O. Box 2, 7990 AA Dwingeloo,

More information

Next Generation Requirements for DWDM network

Next Generation Requirements for DWDM network Next Generation Requirements for DWDM network Roman Egorov Verizon Laboratories May 3, 2011 Verizon copyright 2011. NG Requirements for DWDM network: Outline Optical Transport Network Metro vs. Long-Haul

More information

Benefits of Metropolitan Mesh Optical Networks

Benefits of Metropolitan Mesh Optical Networks Tellabs 4951 Indiana Avenue Lisle, Illinois 60532 U.S.A. Tel: +1.630.378.8800 Fax: +1.630.852.7346 www.tellabs.com Benefits of Metropolitan Mesh Optical Networks Bert Buescher, senior product marketing

More information

Transport is now key for extended SAN applications. Main factors required in SAN interconnect transport solutions are:

Transport is now key for extended SAN applications. Main factors required in SAN interconnect transport solutions are: E Transport is now key for extended SAN applications. Main factors required in SAN interconnect transport solutions are: Native support for all SAN protocols including ESCON, Fibre Channel and Gigabit

More information

A Compact, Low-power Consumption Optical Transmitter

A Compact, Low-power Consumption Optical Transmitter Optical Transmitter WDM Variable Wavelength A Compact, Low-power Consumption Optical Transmitter We have developed a compact, low-power e- optical transmitter intended for constructing regional transmission

More information

The Evolution of Optical Transport Networks

The Evolution of Optical Transport Networks The Evolution of Optical Transport Networks Rod C. Alferness Chief Technology Officer - Optical Networking Group Lucent Technologies SPARTAN Symposium - 5/20/98 Page 1 Network Architecture Dynamics...

More information

Chapter - 7. Multiplexing and circuit switches

Chapter - 7. Multiplexing and circuit switches Chapter - 7 Multiplexing and circuit switches Multiplexing Multiplexing is used to combine multiple communication links into a single stream. The aim is to share an expensive resource. For example several

More information

CISCO WDM SERIES OF CWDM PASSIVE DEVICES

CISCO WDM SERIES OF CWDM PASSIVE DEVICES DATA SHEET CISCO WDM SERIES OF CWDM PASSIVE DEVICES Cisco Systems introduces its second generation of coarse wavelength-division multiplexing (CWDM) passive devices boasting increased functions and improved

More information

Coarse and Dense Wavelength Division Multiplexing

Coarse and Dense Wavelength Division Multiplexing Coarse and Dense Wavelength Division Multiplexing There are two main types of technology for wavelength division multiplexing (WDM): coarse (CWDM) and dense (DWDM). They both use multiple wavelengths of

More information

CWDM CASE STUDY DESIGN GUIDE. Line Systems, Inc. uses iconverter CWDM Multiplexers to overlay Ethernet onto SONET rings

CWDM CASE STUDY DESIGN GUIDE. Line Systems, Inc. uses iconverter CWDM Multiplexers to overlay Ethernet onto SONET rings DESIGN GUIDE CWDM CASE STUDY Line Systems, Inc. uses iconverter CWDM Multiplexers to overlay Ethernet onto SONET rings 140 Technology Drive, Irvine, CA 92618 USA 800-675-8410 +1 949-250-6510 www.omnitron-systems.com

More information

Fibre Optic Communications - Networking

Fibre Optic Communications - Networking Fibre Optic Communications - Networking Professor Chris Chatwin Module: Fibre Optic Communications MSc/MEng Digital Communication Systems UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 1 st June

More information

Chapter 8: Multiplexing

Chapter 8: Multiplexing NET 456 High Speed Networks Chapter 8: Multiplexing Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c) Pearson Education - Prentice

More information

Name of Course : E1-E2 CFA. Chapter 14. Topic : NG SDH & MSPP

Name of Course : E1-E2 CFA. Chapter 14. Topic : NG SDH & MSPP Name of Course : E1-E2 CFA Chapter 14 Topic : NG SDH & MSPP Date of Creation : 28.03.2011 NGN SDH and MSPP 1. Introduction: Innovation, the lifeline to survival in the telecommunication market, has spurred

More information

CONVERGE EXTEND SWITCH AGGREGATE CONNECT CONNECT SWITCH CONVERGE EXTEND AGGREGATE. BTI 7000 Series BTI Product Brochure. the network you need.

CONVERGE EXTEND SWITCH AGGREGATE CONNECT CONNECT SWITCH CONVERGE EXTEND AGGREGATE. BTI 7000 Series BTI Product Brochure. the network you need. SWITCH SWITCH BTI 7000 Series Product Brochure BTI 7000 the network you need. the network you need. the simplicity you want The optical network edge where services connect users must scale rapidly to address

More information

OPTIMIZATION THE ARCHITECTURES OF THE CATV NETWORKS TO PROVIDING THE VIDEO-ON-DEMAND SERVICE

OPTIMIZATION THE ARCHITECTURES OF THE CATV NETWORKS TO PROVIDING THE VIDEO-ON-DEMAND SERVICE OPTIMIZATION THE ARCHITECTURES OF THE CATV NETWORKS TO PROVIDING THE VIDEO-ON-DEMAND SERVICE Lidia Totkova Jordanova 1, Jordan Iliev Nenkov 2 Faculty of Communications and Communications Technologies,

More information

Brocade approved solutions for 16/10/8G FC SAN connectivity

Brocade approved solutions for 16/10/8G FC SAN connectivity Brocade approved solutions for 16/10/8G FC SAN connectivity Using Wavelength Division Multiplexing to expand network capacity Smartoptics provides qualified embedded CWDM and DWDM solutions for Brocade

More information

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies.

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies. CHAPTER 12 This chapter explains Cisco ONS 15454 dense wavelength division multiplexing (DWDM) topologies. Note The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature.

More information

AllWave FIBER BENEFITS EXECUTIVE SUMMARY. Metropolitan Interoffice Transport Networks

AllWave FIBER BENEFITS EXECUTIVE SUMMARY. Metropolitan Interoffice Transport Networks AllWave FIBER BENEFITS EXECUTIVE SUMMARY Metropolitan Interoffice Transport Networks OFS studies and other industry studies show that the most economic means of handling the expected exponential growth

More information

Expanding your network horizons

Expanding your network horizons Expanding your network horizons 2. Expanding your network horizons Smartoptics offers optical transmission solutions making networks more powerful. Expanding bandwidth without the upfront investment or

More information

Optical networking: is the Internet of the future already here?

Optical networking: is the Internet of the future already here? Optical networking: is the Internet of the future already here? Emilie CAMISARD Renater Optical technologies engineer - Advanced IP Services e-mail: camisard@renater.fr 23/11/04 ATHENS - Optical networking

More information

Wide Area Networks :

Wide Area Networks : Wide Area Networks : Backbone Infrastructure Ian Pratt University of Cambridge Computer Laboratory Outline Demands for backbone bandwidth Fibre technology DWDM Long-haul link design Backbone network technology

More information

Optical Fiber Communications. Optical Networks- unit 5

Optical Fiber Communications. Optical Networks- unit 5 Optical Fiber Communications Optical Networks- unit 5 Network Terminology Stations are devices that network subscribers use to communicate. A network is a collection of interconnected stations. A node

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum PCS FMRadi o/ TV Short wave Radi o AM Broadcast Ul trasoni c Soni c Vi si ble Li ght Infrared Li ght Ul travi ol et X- Rays Frequency 1 khz 1 M Hz 1 G Hz 1 THz 1 Y Hz 1 ZHz Wavelength

More information

Standardization Activities for the Optical Transport Network

Standardization Activities for the Optical Transport Network Standardization Activities for the Optical Transport Network Takuya Ohara and Osamu Ishida Abstract The standardized technology for the Optical Transport Network (OTN) is evolving drastically. ITU-T SG15

More information

Sharing Direct Fiber Channels Between Protection and Enterprise Applications Using Wavelength Division Multiplexing

Sharing Direct Fiber Channels Between Protection and Enterprise Applications Using Wavelength Division Multiplexing Sharing Direct Fiber Channels Between Protection and Enterprise Applications Using Wavelength Division Multiplexing Jonathan Sykes, Dewey Day, and Kevin Fennelly Pacific Gas and Electric Company Veselin

More information

Circuit Emulation Service

Circuit Emulation Service Best in class Network Modernization Approach Circuit Emulation enables telecom operators to translate legacy systems using TDM signals such as E1/, E3/DS3, STM-n/OC-n to appropriate packet formats and

More information

METRO/ENTERPRISE WDM PLATFORM

METRO/ENTERPRISE WDM PLATFORM F L A S H W A V E METRO/ENTERPRISE WDM PLATFORM SCALABLE OPTICAL TRANSPORT Metro optical transport networks are increasingly defined by the unpredictable convergence of voice, data and video technologies.

More information

Optical Transport Platform

Optical Transport Platform Optical Transport Platform Bandwidth expansion on demand MICROSENS fiber optic solutions - intelligent, reliable, high-performance Optical Transport Platform The MICROSENS Optical Transport Platform provides

More information

Simple Optical Network Architectures

Simple Optical Network Architectures Simple Optical Network Architectures Point to Point Link The simplest optical communication system is that linking two points. The length of such links may be a small as 100 m for say, a computer data

More information

Why Service Providers Should Consider IPoDWDM for 100G and Beyond

Why Service Providers Should Consider IPoDWDM for 100G and Beyond Why Service Providers Should Consider IPoDWDM for 100G and Beyond Executive Summary The volume of traffic on service providers networks is growing dramatically and correspondingly increasing cost pressures.

More information

Can You Haul Me Now? Bart Filipiak Market Development Manager 18 March 2009 Piedmont SCTE

Can You Haul Me Now? Bart Filipiak Market Development Manager 18 March 2009 Piedmont SCTE Can You Haul Me Now? Bart Filipiak Market Development Manager 18 March 2009 Piedmont SCTE What is Cellular? 2 Wireless Evolution 2G Digital communications aka PCS GSM (TDMA- AT&T, T-Mobile) CDMA One iden

More information

SFP GBIC XFP. Application Note. Cost Savings. Density. Flexibility. The Pluggables Advantage

SFP GBIC XFP. Application Note. Cost Savings. Density. Flexibility. The Pluggables Advantage SFP GBIC XFP The Pluggables Advantage interfaces in the same general vicinity. For example, most major data centers have large Ethernet (and Gigabit Ethernet) networks with copper, multimode and single-mode

More information

Cloud Interconnect: DWDM Integrated Solution For Secure Long Haul Transmission

Cloud Interconnect: DWDM Integrated Solution For Secure Long Haul Transmission Cloud Interconnect: DWDM Integrated Solution For Secure Long Haul Transmission The phenomenal growth in mobile, video streaming and Cloud services is driving the need for higher bandwidth within datacenters.

More information

Cisco MDS 9000 Family Pluggable Transceivers

Cisco MDS 9000 Family Pluggable Transceivers Cisco MDS 9000 Family Pluggable Transceivers The Cisco Small Form-Factor Pluggable (), and X2 devices for use on the Cisco MDS 9000 Family are hot-swappable transceivers that plug into ports on the Cisco

More information

SWITCHlambda Update Felix Kugler, SWITCH

SWITCHlambda Update Felix Kugler, SWITCH SWITCHlambda Update Felix Kugler, SWITCH 2003 SWITCH Topics SWITCHlan network topology & technology 10Gigabit Ethernet testing on DWDM links Single Fiber Gigabit Ethernet 2 SWITCHlan topology by end of

More information

Cisco Prisma D-PON: Your DOCSIS-Based Fiber-to-the-Home Solution

Cisco Prisma D-PON: Your DOCSIS-Based Fiber-to-the-Home Solution Cisco Prisma D-PON: Your DOCSIS-Based Fiber-to-the-Home Solution Introduction Today s consumers live in a brave new world of media technology. They channel surf program guides, not channels; they pause,

More information

Introduction to Networks

Introduction to Networks Introduction to Networks Network Topology How we interconnect network users Network Hierarchy The connection between network topology and geographical size Telecommunication (Phone Networks) Circuit Switching

More information

A Review of Traffic Management in WDM Optical Networks: Progress and Challenges

A Review of Traffic Management in WDM Optical Networks: Progress and Challenges www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 6 Issue 8 August 2017, Page No. 22309-22313 Index Copernicus value (2015): 58.10 DOI: 10.18535/ijecs/v6i8.13

More information

Networks 15.2 Multiplexing Technologies Access Networks 15.5 Common Peripheral Interfaces

Networks 15.2 Multiplexing Technologies Access Networks 15.5 Common Peripheral Interfaces Chapter 15 Computer and Multimedia Networks 15.11 Basics of Computer and Multimedia Networks 15.2 Multiplexing Technologies 15.3 LAN and WAN 15.4 Access Networks 15.5 Common Peripheral Interfaces 15.6

More information

Designing Modern Optical Transport Networks

Designing Modern Optical Transport Networks Designing Modern Optical Transport Networks Course Description Fiber optic systems are a key part of new communications services. Their success depends upon good design. This course provides a basic understanding

More information

International Standardization Activities on Optical Interfaces

International Standardization Activities on Optical Interfaces International Standardization Activities on Optical Interfaces Masahito Tomizawa, Akira Hirano, Shigeki Ishibashi, and Takeshi Sakamoto Abstract This article reviews international standardization activities

More information

Communication Networks

Communication Networks Communication Networks Chapter 3 Multiplexing Frequency Division Multiplexing (FDM) Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency

More information

Lowering the Costs of Optical Transport Networking

Lowering the Costs of Optical Transport Networking Lowering the Costs of Optical Transport Networking Deploying your own network even in a slowing economy with shrinking budgets! Rob Adams, VP Product Marketing/Product Line Management Who is Ekinops Private

More information

High Speed Migration 100G & Beyond

High Speed Migration 100G & Beyond High Speed Migration 100G & Beyond Moses Ngugi Field Application Engineer 5th September 2017 BANDWIDTH GROWTH Mobile Data IP Video Global Cloud IP Traffic Global IP Traffic Cisco CAGR: 50+% CAGR: 35%+

More information

BWDM CWDM DWDM WDM TECHNOLOGY

BWDM CWDM DWDM WDM TECHNOLOGY BWDM CWDM DWDM WDM TECHNOLOGY INTRODUCTION User s of today s voice, video, and data networks are becoming more complex requiring more bandwidth and faster transmission rates over ever increasing distances.

More information

Network Topologies & Error Performance Monitoring in SDH Technology

Network Topologies & Error Performance Monitoring in SDH Technology Network Topologies & Error Performance Monitoring in SDH Technology Shiva Sharma Electronics and Communications Department Dronacharya College of Engineering Gurgaon, Haryana Shiva.92@hotmail.com Abstract

More information

Next Generation Broadband Networks

Next Generation Broadband Networks Next Generation Broadband Networks John Harper Vice President, IOS Routing Apricot 2005 1 Next Generation Broadband Networks The broadband opportunity, in Asia and worldwide Cisco R&D for the broadband

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about backbone networks After this lecture, you should know WDM, PDH, SDH and ATM understand

More information

OptiDriver 100 Gbps Application Suite

OptiDriver 100 Gbps Application Suite OptiDriver Application Suite INTRODUCTION MRV s OptiDriver is designed to optimize both 10 Gbps and applications with the industry s most compact, low power, and flexible product line. Offering a variety

More information

Lecture 2 Physical Layer - Multiplexing

Lecture 2 Physical Layer - Multiplexing DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Multiplexing Mei Yang Based on Lecture slides by William Stallings 1 MULTIPLEXING multiple links on 1 physical line common on long-haul, high

More information

High Performance Networks

High Performance Networks R O M A N I A N E D U C A T I O N N E T W O R K Ro High Performance works Technologies and Services for Romanian GRID Octavian Rusu 1 Agenda Trends in networking Customer empowered networks High capacities

More information

1. INTRODUCTION light tree First Generation Second Generation Third Generation

1. INTRODUCTION light tree First Generation Second Generation Third Generation 1. INTRODUCTION Today, there is a general consensus that, in the near future, wide area networks (WAN)(such as, a nation wide backbone network) will be based on Wavelength Division Multiplexed (WDM) optical

More information

Kgomotso Setlhapelo, PrEng, MSAIEE

Kgomotso Setlhapelo, PrEng, MSAIEE Migrating from TDM (SDH) Based Telecommunications Transport Network to DWDM/OTN, to support both Operational Technology (OT) and Information Technology (IT) Traffic Kgomotso Setlhapelo, PrEng, MSAIEE Objective

More information

A Scalable CWDM/TDM-PON network with future-proof elastic bandwidth

A Scalable CWDM/TDM-PON network with future-proof elastic bandwidth A Scalable CWDM/TDM-PON network with future-proof elastic bandwidth STAMATIOS V. KARTALOPOULOS, PhD Williams Professor in Telecommunications Networking ECE Department, TCOM graduate program The University

More information

Understanding TeleCom Networks Today II The World of Data

Understanding TeleCom Networks Today II The World of Data Understanding The World of Data Course Description Explore the world of data 2.5/3G, Optical, Frame Relay, ATM Networks, Wireless and more... Networks are converging. No more discrete data and voice networks

More information

Fast and Easy CWDM Network Assessment, Using ITU-T G.695 application codes

Fast and Easy CWDM Network Assessment, Using ITU-T G.695 application codes Application Note Fast and Easy CWDM Network Assessment, Using ITU-T G.695 application codes MU909020A Network Master Optical Channel Analyzer Introduction Although Coarse wavelength-division multiplexing

More information

OPCOM100 series CWDM System

OPCOM100 series CWDM System Datasheet OPCOM100 Series CWDM System OPCOM100 series are Raisecom's Coarse Wavelength Division Multiplexing devices. The CWDM product line is developed and designed for fully utilizing the existing fiber

More information

Brochure. WDM Solutions. Methods for Optimizing Fiber Capacity. Transition Networks Brochure.

Brochure. WDM Solutions. Methods for Optimizing Fiber Capacity. Transition Networks Brochure. Brochure WDM Solutions Methods for Optimizing Fiber Capacity Transition Networks Brochure Introduction to WDM Overview Demands on today s voice, video, and data networks are becoming more complex requiring

More information

Part 2! Physical layer! Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! 19/04/16

Part 2! Physical layer! Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! 19/04/16 Part 2 Part2: Lecture 01 Optical technologies Optical networks: Technologies Hybrid networking, network virtualization Traffic engineering (Marijke Kaat) OpenFlow and SURFnet (Ronald van der Pol) Physical

More information

Arista AgilePorts INTRODUCTION

Arista AgilePorts INTRODUCTION ARISTA TECHNICAL BULLETIN AgilePorts over DWDM for long distance 40GbE INSIDE AGILEPORTS Arista AgilePorts allows four 10GbE SFP+ to be combined into a single 40GbE interface for easy migration to 40GbE

More information

S Optical Networks Course Lecture 7: Optical Network Design

S Optical Networks Course Lecture 7: Optical Network Design S-72.3340 Optical Networks Course Lecture 7: Optical Network Design Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9 451

More information

OPTICAL EXPRESS The Key to Facilitating Cost-Effective and Efficient Network Growth

OPTICAL EXPRESS The Key to Facilitating Cost-Effective and Efficient Network Growth WHITE PAPER OPTICAL EXPRESS The Key to Facilitating Cost-Effective and Efficient Network Growth Driven by a new generation of high-bandwidth consumer and business services and applications, the demand

More information

FLEXING NEXT GENERATION OPTICAL MUSCLES

FLEXING NEXT GENERATION OPTICAL MUSCLES FLEXING NEXT GENERATION OPTICAL MUSCLES A Perspective on Flexi-rate Innovation and True 400G From high-capacity data center connectivity to LTE-enabled mobility, the foundation of our modern communications

More information

100G DWDM QSFP Datasheet

100G DWDM QSFP Datasheet 100G DWDM QSFP Datasheet Product Overview The Arista Dense Wavelength-Division Multiplexing (DWDM) 100G QSFP pluggable module (Figure 1) offers cost effective solution for metro Data Center Interconnect

More information

MX Ring. WDM - MUX/DeMUX. MUX/DeMUX. Features Full native mode performance Optical connectors Passive model requires no power.

MX Ring. WDM - MUX/DeMUX. MUX/DeMUX. Features Full native mode performance Optical connectors Passive model requires no power. WDM - MUX/DeMUX MX20-3155 Dual Channel WDM MUX/DeMUX 5 MX20-3155 is a dual channel, passive, protocol transparent, WDM multiplexer/demultiplexer which utilizes two popular WDM lambda channels of 1310nm

More information

Company Introduction. SmartOptics products now make optical networking, especially 4G, 8G and 10G connectivity, simple and affordable.

Company Introduction. SmartOptics products now make optical networking, especially 4G, 8G and 10G connectivity, simple and affordable. ctive SN WDM Distance Networking Extension Solutions Company Introduction SmartOptics is the only external transceiver vendor to be Product portfolio: approved and accepted in all latest rocade FC switches.

More information

Passive Optical Networks: Fundamental Deployment Considerations

Passive Optical Networks: Fundamental Deployment Considerations white paper p age 1 of 7 Passive Optical Networks: Fundamental Deployment Considerations Abstract This paper provides a brief introduction to the subject of Passive Optical Networks (PONs) and discusses

More information

Plexxi LightRail White Paper

Plexxi LightRail White Paper White Paper CWDM and Limited Fiber Plant Installations Introduction This document contains information about using the CWDM capabilities of the Plexxi Switch hardware & Control software components within

More information

Introduction to Optical Networks

Introduction to Optical Networks Introduction to Optical Networks P. Michael Henderson mike@michael-henderson.us 1 Agenda The physics of light Laser and photodetector operation Characteristics of optical fiber Optical amplifiers SONET

More information

EKINOPS 360. Dynamic Optical Transport for Metro, Regional and Long Haul SMALL FORM FACTOR LOW-POWER CONSUMPTION LEADING EDGE TECHNOLOGY

EKINOPS 360. Dynamic Optical Transport for Metro, Regional and Long Haul SMALL FORM FACTOR LOW-POWER CONSUMPTION LEADING EDGE TECHNOLOGY D ETAILED P RODUCT B ROCHURE SMALL FORM FACTOR LOW-POWER CONSUMPTION LEADING EDGE TECHNOLOGY Dynamic Optical Transport for Metro, Regional and Long Haul Economical 40G and 100G in the Near Term Lowering

More information

QUESTION: 1 You have been asked to establish a design that will allow your company to migrate from a WAN service to a Layer 3 VPN service. In your des

QUESTION: 1 You have been asked to establish a design that will allow your company to migrate from a WAN service to a Layer 3 VPN service. In your des Vendor: Cisco Exam Code: 352-001 Exam Name: ADVDESIGN Version: Demo www.dumpspdf.com QUESTION: 1 You have been asked to establish a design that will allow your company to migrate from a WAN service to

More information

OPTera LH *A * Repeater Network Application Guide. What s inside... NTY311AX. Optical Networks Products

OPTera LH *A * Repeater Network Application Guide. What s inside... NTY311AX. Optical Networks Products NTY311AX Optical Networks Products OPTera LH Repeater Network Application Guide Standard Rel 1.2 and 1.5 Issue 3 March 2000 What s inside... Introduction Network features OAM&P features Engineering rules

More information

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering Question Bank Subject Code : EC459 Subject Name : Optical Networks Class : IV Year B.Tech (ECE)

More information

MRV Communications Inspiring Optical Networks for over 20 Years

MRV Communications Inspiring Optical Networks for over 20 Years Product Overview MRV Communications Inspiring Optical Networks for over 20 Years MRV Communications is a global provider of optical communications systems, providing Carrier Ethernet, WDM transport and

More information

Connect to wavelength management

Connect to wavelength management Connect to wavelength management As consumers purchase more and more devices (cell phones, televisions, laptops, etc.) communication networks supporting these devices need to evolve to supply enough bandwidth

More information

A Novel Optimization Method of Optical Network Planning. Wu CHEN 1, a

A Novel Optimization Method of Optical Network Planning. Wu CHEN 1, a A Novel Optimization Method of Optical Network Planning Wu CHEN 1, a 1 The engineering & technical college of chengdu university of technology, leshan, 614000,china; a wchen_leshan@126.com Keywords:wavelength

More information

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks Internet Traffic Characteristics Bursty Internet Traffic Statistical aggregation of the bursty data leads to the efficiency of the Internet. Large Variation in Source Bandwidth 10BaseT (10Mb/s), 100BaseT(100Mb/s),

More information

MetroWAVE CWDM REFERENCE GUIDE

MetroWAVE CWDM REFERENCE GUIDE MetroWAVE CWDM REFERENCE GUIDE INTRODUCTION WAVELENGTH DIVISION MULTIPLEXING Wavelength Division Multiplexing (WDM) is an optical network technology in which different service interfaces are allocated

More information

TeraWave Fiber Fiber for the Long Haul

TeraWave Fiber Fiber for the Long Haul TeraWave Fiber Fiber for the Long Haul David Mazzarese John George Robert Lingle March 2014 OFS Technical Marketing and Professional Services Long Haul Network Capacity Reaching Limits Advanced Fibers

More information

5U CWDM Managed Platform SML-5000

5U CWDM Managed Platform SML-5000 CWDM Managed Platform 5U CWDM Managed Platform 5000 The SigmaLinks5000 is a flexible, cost-effective optical transport system, designed to multiplex, de-multiplex and switch high-speed data for storage,

More information

The Analysis of SARDANA HPON Networks Using the HPON Network Configurator

The Analysis of SARDANA HPON Networks Using the HPON Network Configurator The Analysis of SARDANA HPON Networks Using the HPON Network Configurator Rastislav ROKA Institute of Telecommunications, Faculty of Electrical Engineering and Information Technology, Slovak University

More information

Scaling the Compute and High Speed Networking Needs of the Data Center with Silicon Photonics ECOC 2017

Scaling the Compute and High Speed Networking Needs of the Data Center with Silicon Photonics ECOC 2017 Scaling the Compute and High Speed Networking Needs of the Data Center with Silicon Photonics ECOC 2017 September 19, 2017 Robert Blum Director, Strategic Marketing and Business Development 1 Data Center

More information

ERicsson pau 140o family photonic attachment unit

ERicsson pau 140o family photonic attachment unit ERicsson pau 140o family photonic attachment unit ERicsson pau The Ericsson Photonic Attachment Unit (PAU) family provides a variety of DWDM networking functions for building the photonic network layer

More information

OPTICAL TRANSCEIVERS. Harnessing more network power

OPTICAL TRANSCEIVERS. Harnessing more network power OPTICAL TRANSCEIVERS Harnessing more network power 2. 3. Expanding your network horizons Smartoptics expands your network horizons. Through optical transmission solutions tailored to each organization

More information

WHITE PAPER. Photonic Integration

WHITE PAPER. Photonic Integration WHITE PAPER Photonic Integration In the world of microprocessors, we have seen tremendous increases in computational power with simultaneous decreases in cost and power consumption resulting from integration

More information