A deployment procedure for wireless sensor networks

Size: px
Start display at page:

Download "A deployment procedure for wireless sensor networks"

Transcription

1 A deployment procedure for wireless sensor networks Tzu-Che Huang, Hung-Ren Lai and Cheng-Hsien Ku Networks and Multimedia Institute, Institute for Information Industry Abstract Since the wireless signal is invisible and unpredictable, the deployment issue for a wireless sensor network (WSN) becomes a critical task. In this paper, a procedure of deployment for a wireless sensor network in an indoor environment is proposed. The objective of the procedure is to provide a solution guide for people who don t have sufficient wireless communication knowledge and experience in how to correctly place the wireless sensor nodes or devices in the interesting indoor environment, especially in a large-scale deployment case, and then the desired communication performance of the wireless sensor network can be achieved. The addressed deployment procedure is divided into four sub-procedures and is discussed in detail in the following. A deployment plan for an office and the real deployment testing results are then proposed to demonstrate the efficiency of the proposed deployment procedure. 1. Introduction In recent years, based on the maturity of low-power, low-cost and small-scale circuit design technology, a newly application area of wireless sensor networks for monitoring and sensing environment, detecting the events, tracking targets in the given regions and providing personal network services, is arisen very quickly. Most of the services in this newly application area need certain infrastructure to achieve the data sensing, processing and communication tasks. That is why the deployment procedure is regarded as the most important issue in wireless sensor network [1]. The traditional way in the deployment of wireless sensor networks is mostly placing sensor nodes by random or ad hoc method which is convenient and suitable for outdoor applications [2-4]. In such cases, the sensor nodes are capable of self-configuration and self-discovery. To reduce power consumption, in [5], they established a topology that act as a communication backbone. In [6], they established a virtual network whose topology of a mesh of stars which also provides communication functionality. It is represented in [5] and [6] that the backbone network is essential to wireless sensor networks while it require more effort to be established. Since our use of wireless sensor networks lies on indoor applications, we consider that a reliable communication channel should be constructed before any application-oriented devices being put into action. When it comes to sensor network deployment, we put our attention on deploying the communication backbone of sensor network while fulfilling the connection quality and coverage constraints into target area. Furthermore, the deployment planning in the proposed method, a 3-D space and 3-D antenna radio pattern are employed to make the simulation results will be more approximated the real physical environment. After planning of deployment, we also suggest some efficient testing procedure to measure the communication performance of the established networks; these are the major differences between our method and others [6-8]. The rest of the paper is organized as follows: in Section 2, the proposed deployment procedure for wireless sensor networks is addressed. In Section 3, an office deployment demonstration is illustrated to show the efficiency of the proposed deployment method. Then, we make a conclusion in the last Section. 2. The deployment procedure for WSN The proposed procedure includes four sub-procedures, which are (1) Planning Procedure; (2) Device Configuration Procedure; (3) Network Verification Procedure and (4) Requirement Completion Procedure. The whole procedure is shown in Figure 1 and the details of these procedures are described below Planning Procedure In the construction of the backbone of a wireless sensor network, we take a few things into consideration: the network connectivity, the signal coverage in the area, and the number of devices used. The most important thing we care about is the network connectivity which stands for the ability whether the packets can be successfully sent to their destination through the established networks. It must be assured that each device in the backbone network is inter-connected, since it was essential to the whole network and the applications established above. After that, we take the signal coverage and the devices used into account in the next step. 1

2 As a goal, we would like to expand the signal coverage of the backbone network to cover the whole area. Generally speaking, expanding the coverage usually increases number of devices used, raises the cost of the sensor network at the same time. The Planning Procedure is proposed to find the suitable position of each device by minimizing the number of devices used while expanding the network coverage to the whole desired region. Figure 1. The proposed deployment procedure. Figure 2. 3-D space model fetched by the planning tool. We have built an automated application program which helps the users finding the exact position where the devices should be located and fulfill the coverage constraint in the target area while limiting the amount of devices required in a reasonable number. The required inputs of the application, given by the users, are: a 3-D Space Model of target region, the Antenna Models (3-D radio patterns) of devices used and the Signal Quality Threshold (sensitivity of employed antenna) of the receiver s antenna being considered to be connected. Some other constraints can be assigned to the application, including the redundancy of the devices, the density of the devices in certain area and the area should or should not be placed with sensor devices, etc. The 3-D Space Model we are using includes information about location and material of walls and doors in target area, along with the coverage requirements. We did some experiments for measuring the transmission attenuation of the received signal strength when the signal passes through the material such as cement, glass and woods etc. It is the effort that we try to make the proposed planning procedure as approximating the practical situation as possible; however, there must be some factors that can not be measured or considered in this procedure, they are arisen from the differences between antennas, the radio pattern measurement error, the interference from environment and so on. At least, the proposed planning tool can provide a useful tool for those who have no experience in how to deploy the wireless device into the interesting area. According to the results of simulations applied in the automated application software, we are able to obtain the locations and the antenna orientation of each sensor device of network in target region. The device information generated by the software includes the location, antenna orientation, the sensitivity and the transmission power of devices Device Configuration Procedure The program running on each device being planted are identical, while there are some individual configurations need to be applied to each device before placing them on the location decided in the Planning Procedure. The required configurations are: the power level of the antenna used by each device, the operation channel of the network, and the default topology of the backbone network. Since the topology of the wireless sensor network is formed as a tree, we can configure the default topology of the backbone network by retaining a default parent identity in each device. Therefore, the parent identity of a device should have been recognized before it being configured. We use a 64bits MAC address, which is pre-configured in each device, as the unique identity. After assigning the connected parent of the device, the topology of the backbone network can be easily established. We built another tool as an aid to help users performing the procedure in a convenient way. The planning result would be fetched by the device configuration tool and users are able to sketch the 2

3 topology of the network by the information included in. Other than default topology, the operation channel of the network is also determined by users. As for the power level of each device, they are already determined in planning procedure and are also included in the planning results. After fetching the information required, the tool is switched to the configuration mode. The devices are configured one-by-one and should be in the sequence arranged by the device configuration tool in order to make sure that the parent identity of the device under configuration already existed. After all the devices are configured, the users may plant the devices into target area Network Verification Procedure We have provided yet another procedure for users to verify the performance of the deployed wireless sensor network backbone. There s a command entry on each device of which users can make use. With a hand-held mobile device attached to a network compatible component, users may examine the network with some predefined tests. We have defined the following tests to verify the validity of the network: parent connectivity, network coverage and device coverage. For a wireless backbone, the first thing we care about is the interconnection status between devices. As mentioned above, the network topology is formed as a tree, so by ensuring that each edge connection in the tree is valid, we can be sure that the network interconnection is valid. It means that if all the devices are connected to their parent, they are connected to all the devices in the network. The purpose of parent connectivity testing is to retrieve the connection status between a device and its parent. When a device received a test parent connection command from a hand-held mobile device, it will: send a number of packets to its parent, accumulate the packet lost rate, calculate the average link quality and then report the testing results back to the user for further estimation. The user will have to test the devices one-by-one. After all the devices are tested with parent connectivity test, user can get an overall connectivity status of each path in the tree-form network. Network coverage was used to verify the coverage of the network in the target region. The purpose of the network coverage test is to make sure that all packets from the target region can be successfully sent to their destination. Therefore, after the backbone network has been formed, users can discretionarily add, change and remove any end device beyond the placed nodes or can freely use mobile devices in the target region. Users are able know that which of the network devices are being sensed, along with a link quality reference value and may be connected in a particular location. The underlying operations were periodically scanning the channel being used and return the results back to user. To verify the signal coverage of the whole network, the users are recommended to traverse the whole region and make sure that all the locations of interest are covered by the network. We offered device coverage test for users to check the connection quality from a specific network device to some locations of interest. After receiving a device roar command, it will start sending packets to users mobile device with a period of ten packets per second until a device silence command is received or no acknowledge received for one minute. Users may use this test function to analyze the packet lost rate and the link quality between a network device and a specific location where they place their hand-held devices in Requirement Completion Procedure The wireless sensor network deployed based on the planning result might not be as capable as needed. It means that the network connectivity or the coverage of the network is not valid to the applications going to be applied upon the network structure. There are many reasons that would cause the incapability, like: incapable space model, invalid antenna modal, theoretic and realistic mismatch, inaccurate device planting location etc. To fix this problem, we provided the requirement completion procedure as assistance to help the users solving the problem of the network. The method provided was to insert additional devices into the network. Users are able to identify the invalid connection of the network from the results provided in network verification procedure. After identifying the invalidity connection, the next step is to choose a location to place the new additional device. The users use the network coverage test to find out a location which is able to connect both ends of the invalid connection. The location found is where the new device can be placed to improve the insufficiency of the original network. The coverage problem can also be solved by inserting a device between the nearest network device and the location of interest. If the test result obtained from network verification procedure reveals that the network was too far from being capable, the users should reverse back to Planning Procedure, modify some constraints or the Space Model, and do the first three procedures all over again. 3. Deployment for an office case We applied the proposed procedure on the wireless sensor network deployment in our office. We listed some of our testing environment below. The protocol of the wireless sensor network we used was based on IEEE standard. The testing platform was employed a Chipcon CC2420 RF transmitter and Atmel ATmega128 microcontroller. A simulated annealing like searching algorithm is utilized to locate all devices in wireless sensor network in the planning procedure. The device RF settings: transmitter power is 0 dbm and the sensitivity of receiver antenna is -94 dbm. The floor plan of the office is in Figure 3. It took us about 30 minutes to sketch the floor plan and assign 3

4 the material of the instances within. After sketching the floor plan, we masked out the regions doesn t need to be covered by the network, as in Figure 4. Few more information is needed by the planning tool, like antenna models and signal quality threshold mentioned above. It took 40 seconds for the Planning Tool to find a deployment plan on our Pentium4 3.2GHz personal computer. The result is shown in Figure 5, and the dots indicate where the devices should be placed. Figure 6 shows the signal coverage of the network simulated by the Planning Tool software. the order of devices being configured. The whole device configuration procedure took us about 6 minutes by sketching the topology and configuring the devices. The devices are placed in the respective locations after configuration. The procedure after device placement was the network verification procedure. We used the provided tool to verify the Network Validity which takes about 20 seconds for each device and about 5 minutes to verify the whole network. Figure 3. Floor plan of the office under deployment. Figure 6. The simulated signal coverage. Figure 4. Mask out the area that needs no signal. Figure 7. The network topology and configuration order. Figure 5. The deployment plan. We used the device configuration tool to form our network into a tree as in Figure 7. The number indicates Figure 8. The test result of the locations selected. 4

5 We selected twelve locations where application-oriented devices will be placed as the locations of interest. In each location, we scanned for available network devices and choose one of them as the attachment to the network. We used device coverage test which would provide us the packet lost rate and link quality analysis result at each location of interest. The test locations and their respective results are shown in Figure 8. The whole test procedure for all twelve locations took us about 10 minutes to accomplish. According to the result of the tests, the network behaves as we expected and no Requirement Completion Procedure needed. 4. Conclusion Maria Serna Efficient and Reliable High Level Communication in Randomly Deployed Wireless Sensor Networks, Proceedings of the second international workshop on Mobility management & wireless access protocols, pp , [7] Y.C. Wang, C.C. Hu and Y.C. Tseng, Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks, First International Conference on Wireless Internet, pp , [8] Yung-Tsung Hou, Tzu-Chen Lee, Chia-Mei Chen and Bingchiang Jeng, Node Placement for Optimal Coverage in Sensor Networks, IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing, vol. 1, pp , In the newly arisen applications of wireless sensor networks, rapid and massive sensor nodes deployment tool or solution is exigent. In this paper, a procedure of deployment for a wireless sensor network is addressed to guide users to complete the deployment tasks systematically. The procedure is designed mostly according to the experience of the wireless sensor network deployment task for an 8000m 2 and 3-floor exhibition in a museum. The application scenarios of our assumption are the wireless sensing applications and the mobile communication services, therefore, the connectivity between devices and signal coverage in the interesting region are such important to be regarded as the wireless communication performance index for the deployment procedure. Furthermore, other essential performance indices of the wireless sensor network can be included to evaluate the efficiency of the established networks dependence on the demand in the application. However, the proposed procedure is the main idea to help users to finish the deployment tasks. According to the results we presented above, the tool and procedures can really help us reach the goal of the application in a wireless sensor network we set up in the beginning. 5. References [1] Holger Karl and Andreas Willig, A short survey of wireless sensor networks, TKN Technical Report TKN , Technical University Berlin, October [2] K. Sohrabi et al. Protocols for self-organization of a wireless sensor network, IEEE Personal Communications, vol. 7, No. 5, pp.16-27, [3] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, Energy-efficient communication protocol for wireless sensor networks, Proceeding of the Hawaii International Conference System Sciences, [4] M. Younis, M. Youssef, K. Arisha, Energy-aware routing in cluster-based sensor networks, Proceedings of the 10th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and elecommunication Systems, [5] Alberto Cerpa and Deborah Estrin, ASCENT: Adaptive Self-Configuring sensor Networks Topologies, IEEE Transactions on Mobile Computing, pp , [6] Carme Àlvarez, Josep Díaz, Jordi Petit, José Rolim and 5

PLANNING AND ANALYSIS TOOL FOR LARGE SCALE DEPLOYMENT OF WIRELESS SENSOR NETWORK

PLANNING AND ANALYSIS TOOL FOR LARGE SCALE DEPLOYMENT OF WIRELESS SENSOR NETWORK PLANNING AND ANALYSIS TOOL FOR LARGE SCALE DEPLOYMENT OF WIRELESS SENSOR NETWORK Apala Ray 1 1 Research Department, ABB Corporate Research Center, Bangalore, India apala.ray@in.abb.com ABSTRACT In this

More information

A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS

A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS Tzu-Chiang Chiang,, Ching-Hung Yeh, Yueh-Min Huang and Fenglien Lee Department of Engineering Science, National Cheng-Kung University, Taiwan,

More information

An Energy Efficient Clustering in Wireless Sensor Networks

An Energy Efficient Clustering in Wireless Sensor Networks , pp.37-42 http://dx.doi.org/10.14257/astl.2015.95.08 An Energy Efficient Clustering in Wireless Sensor Networks Se-Jung Lim 1, Gwang-Jun Kim 1* and Daehyon Kim 2 1 Department of computer engineering,

More information

A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN

A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN A PERFORMANCE EVALUATION OF YMAC A MEDIUM ACCESS PROTOCOL FOR WSN Albeiro Cortés Cabezas and José de Jesús Salgado Patrón Department of Electronic Engineering, Surcolombiana University, Neiva, Colombia

More information

The Impact of Clustering on the Average Path Length in Wireless Sensor Networks

The Impact of Clustering on the Average Path Length in Wireless Sensor Networks The Impact of Clustering on the Average Path Length in Wireless Sensor Networks Azrina Abd Aziz Y. Ahmet Şekercioğlu Department of Electrical and Computer Systems Engineering, Monash University, Australia

More information

An Energy Efficient Data Dissemination Algorithm for Wireless Sensor Networks

An Energy Efficient Data Dissemination Algorithm for Wireless Sensor Networks , pp.135-140 http://dx.doi.org/10.14257/astl.2014.48.22 An Energy Efficient Data Dissemination Algorithm for Wireless Sensor Networks Jin Wang 1, Bo Tang 1, Zhongqi Zhang 1, Jian Shen 1, Jeong-Uk Kim 2

More information

ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing

ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing ViTAMin: A Virtual Backbone Tree Algorithm for Minimal Energy Consumption in Wireless Sensor Network Routing Jaekwang Kim Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon,

More information

An Improved Chain-based Hierarchical Routing Protocol for Wireless Sensor Networks

An Improved Chain-based Hierarchical Routing Protocol for Wireless Sensor Networks An Improved Chain-based Hierarchical Routing Protocol for Wireless Sensor Networks Samah Alnajdi, Fuad Bajaber Department of Information Technology Faculty of Computing and Information Technology King

More information

Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks

Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks Vol. 5, No. 5, 214 Ameliorate Threshold Distributed Energy Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks MOSTAFA BAGHOURI SAAD CHAKKOR ABDERRAHMANE HAJRAOUI Abstract Ameliorating

More information

Power Aware Metrics for Wireless Sensor Networks

Power Aware Metrics for Wireless Sensor Networks Power Aware Metrics for Wireless Sensor Networks Ayad Salhieh Department of ECE Wayne State University Detroit, MI 48202 ai4874@wayne.edu Loren Schwiebert Department of Computer Science Wayne State University

More information

Survivability Evaluation in Wireless Sensor Network

Survivability Evaluation in Wireless Sensor Network 2011 3rd International Conference on Advanced Management Science IPEDR vol.19 (2011) (2011) IACSIT Press, Singapore Survivability Evaluation in Wireless Sensor Network Vahid Mavaji 1, Bahareh Abbasi 2

More information

An Adaptive Self-Organization Protocol for Wireless Sensor Networks

An Adaptive Self-Organization Protocol for Wireless Sensor Networks An Adaptive Self-Organization Protocol for Wireless Sensor Networks Kil-Woong Jang 1 and Byung-Soon Kim 2 1 Dept. of Mathematical and Information Science, Korea Maritime University 1 YeongDo-Gu Dongsam-Dong,

More information

Dominating Set & Clustering Based Network Coverage for Huge Wireless Sensor Networks

Dominating Set & Clustering Based Network Coverage for Huge Wireless Sensor Networks Dominating Set & Clustering Based Network Coverage for Huge Wireless Sensor Networks Mohammad Mehrani, Ali Shaeidi, Mohammad Hasannejad, and Amir Afsheh Abstract Routing is one of the most important issues

More information

Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks

Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks Location Based Energy-Efficient Reliable Routing Protocol for Wireless Sensor Networks RAFE ALASEM 1, AHMED REDA 2 AND MAHMUD MANSOUR 3 (1) Computer Science Department Imam Muhammad ibn Saud Islamic University

More information

A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks

A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks A Genetic Algorithm-Based Approach for Energy- Efficient Clustering of Wireless Sensor Networks A. Zahmatkesh and M. H. Yaghmaee Abstract In this paper, we propose a Genetic Algorithm (GA) to optimize

More information

AN ENERGY EFFICIENT AND RELIABLE TWO TIER ROUTING PROTOCOL FOR TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS

AN ENERGY EFFICIENT AND RELIABLE TWO TIER ROUTING PROTOCOL FOR TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS AN ENERGY EFFICIENT AND RELIABLE TWO TIER ROUTING PROTOCOL FOR TOPOLOGY CONTROL IN WIRELESS SENSOR NETWORKS Shivakumar A B 1, Rashmi K R 2, Ananda Babu J. 3 1,2 M.Tech (CSE) Scholar, 3 CSE, Assistant Professor,

More information

Toshinori Takabatake. Proceedings of the World Congress on Engineering 2012 Vol II WCE 2012, July 4-6, 2012, London, U.K.

Toshinori Takabatake. Proceedings of the World Congress on Engineering 2012 Vol II WCE 2012, July 4-6, 2012, London, U.K. Proceedings of the World Congress on Engineering 0 Vol II, July 4-6, 0, London, U.K. Toshinori Takabatake Proceedings of the World Congress on Engineering 0 Vol II, July 4-6, 0, London, U.K. TABLE I WIRELESS

More information

INTEGRATION OF AD HOC WIRELESS SENSOR NETWORKS IN A VIRTUAL INSTRUMENTATION CONFIGURATION

INTEGRATION OF AD HOC WIRELESS SENSOR NETWORKS IN A VIRTUAL INSTRUMENTATION CONFIGURATION Bulletin of the Transilvania University of Braşov Vol. 7 (56) No. 2-2014 Series I: Engineering Sciences INTEGRATION OF AD HOC WIRELESS SENSOR NETWORKS IN A VIRTUAL INSTRUMENTATION CONFIGURATION Mihai MACHEDON-PISU

More information

ENSC 427: COMMUNICATION NETWORKS

ENSC 427: COMMUNICATION NETWORKS ENSC 427: COMMUNICATION NETWORKS Simulation of ZigBee Wireless Sensor Networks Final Report Spring 2012 Mehran Ferdowsi Mfa6@sfu.ca Table of Contents 1. Introduction...2 2. Project Scope...2 3. ZigBee

More information

Experimental Testing of Wireless Sensors Network Functionality

Experimental Testing of Wireless Sensors Network Functionality Journal of Automation and Control, 2015, Vol. 3, No. 3, 53-57 Available online at http://pubs.sciepub.com/automation/3/3/2 Science and Education Publishing DOI:10.12691/automation-3-3-2 Experimental Testing

More information

A Novel Hierarchical Routing Protocol for Wireless Sensor Networks

A Novel Hierarchical Routing Protocol for Wireless Sensor Networks A Novel Hierarchical Routing Protocol for Wireless Sensor Networks TrongThuaHuynh 1 and Choong Seon Hong 2 Department of Computer Science, Kyung Hee University, 1 Seocheon, Giheung, Yongin, Gyeonggi 449-701

More information

Using Consensus Estimate Technique Aimed To Reducing Energy Consumption and Coverage Improvement in Wireless Sensor Networks

Using Consensus Estimate Technique Aimed To Reducing Energy Consumption and Coverage Improvement in Wireless Sensor Networks IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 1 Using Consensus Estimate Technique Aimed To Reducing Energy Consumption and Coverage Improvement in Wireless

More information

CS551 Ad-hoc Routing

CS551 Ad-hoc Routing CS551 Ad-hoc Routing Bill Cheng http://merlot.usc.edu/cs551-f12 1 Mobile Routing Alternatives Why not just assume a base station? good for many cases, but not some (military, disaster recovery, sensor

More information

Simulation Analysis of Tree and Mesh Topologies in Zigbee Network

Simulation Analysis of Tree and Mesh Topologies in Zigbee Network Vol.8, No.1 (2015), pp.81-92 http://dx.doi.org/10.14257/ijgdc.2015.8.1.08 Simulation Analysis of Tree and Mesh Topologies in Zigbee Network Manpreet, Jyoteesh Malhotra CSE Department Guru Nanak Dev University

More information

Expected Path Bandwidth Based Efficient Routing Mechanism in Wireless Mesh Network

Expected Path Bandwidth Based Efficient Routing Mechanism in Wireless Mesh Network Expected Path Bandwidth Based Efficient Routing Mechanism in Wireless Mesh Network K Anandkumar, D.Vijendra Babu PG Student, Chennai, India Head, Chennai, India ABSTRACT : Wireless mesh networks (WMNs)

More information

Evaluation of Cartesian-based Routing Metrics for Wireless Sensor Networks

Evaluation of Cartesian-based Routing Metrics for Wireless Sensor Networks Evaluation of Cartesian-based Routing Metrics for Wireless Sensor Networks Ayad Salhieh Department of Electrical and Computer Engineering Wayne State University Detroit, MI 48202 ai4874@wayne.edu Loren

More information

Energy Aware Node Placement Algorithm for Wireless Sensor Network

Energy Aware Node Placement Algorithm for Wireless Sensor Network Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 6 (2014), pp. 541-548 Research India Publications http://www.ripublication.com/aeee.htm Energy Aware Node Placement Algorithm

More information

WIRELESS Multimedia Sensor Networks (WMSNs) is a

WIRELESS Multimedia Sensor Networks (WMSNs) is a INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2017, VOL. 63, NO. 3, PP. 279-283 Manuscript received October 9, 2016; revised July, 2017. DOI: 10.1515/eletel-2017-0037 Energy-Efficient Routing Based

More information

MultiHop Routing for Delay Minimization in WSN

MultiHop Routing for Delay Minimization in WSN MultiHop Routing for Delay Minimization in WSN Sandeep Chaurasia, Saima Khan, Sudesh Gupta Abstract Wireless sensor network, consists of sensor nodes in capacity of hundred or thousand, which deployed

More information

Evaluation of Information Dissemination Characteristics in a PTS VANET

Evaluation of Information Dissemination Characteristics in a PTS VANET Evaluation of Information Dissemination Characteristics in a PTS VANET Holger Kuprian 1, Marek Meyer 2, Miguel Rios 3 1) Technische Universität Darmstadt, Multimedia Communications Lab Holger.Kuprian@KOM.tu-darmstadt.de

More information

COMBINED IEEE PHYSICAL LAYER AND VIRTUAL MULTIPLE INPUT MULTIPLE OUTPUT (V- MIMO) TRANSMISSIONS FOR ENERGY EFFICIENT WIRELESS SENSOR NETWORKS

COMBINED IEEE PHYSICAL LAYER AND VIRTUAL MULTIPLE INPUT MULTIPLE OUTPUT (V- MIMO) TRANSMISSIONS FOR ENERGY EFFICIENT WIRELESS SENSOR NETWORKS COMBINED IEEE 802.15.4 PHYSICAL LAYER AND VIRTUAL MULTIPLE INPUT MULTIPLE OUTPUT (V- MIMO) TRANSMISSIONS FOR ENERGY EFFICIENT WIRELESS SENSOR NETWORKS ABSTRACT Fawaz Alassery Department of Computer Engineering,

More information

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks

An Industrial Employee Development Application Protocol Using Wireless Sensor Networks RESEARCH ARTICLE An Industrial Employee Development Application Protocol Using Wireless Sensor Networks 1 N.Roja Ramani, 2 A.Stenila 1,2 Asst.professor, Dept.of.Computer Application, Annai Vailankanni

More information

Z-SEP: Zonal-Stable Election Protocol for Wireless Sensor Networks

Z-SEP: Zonal-Stable Election Protocol for Wireless Sensor Networks Z-SEP: Zonal-Stable Election Protocol for Wireless Sensor Networks S. Faisal 1, N. Javaid 1, A. Javaid 2, M. A. Khan 1, S. H. Bouk 1, Z. A. Khan 3 1 COMSATS Institute of Information Technology, Islamabad,

More information

An energy efficient routing algorithm (X-Centric routing) for sensor networks

An energy efficient routing algorithm (X-Centric routing) for sensor networks An energy efficient routing algorithm (X-Centric routing) for sensor networks Goktug Atac, Tamer Dag Computer Engineering Department Kadir Has University, Istanbul, Turkey goktugatac@yahoo.com, tamer.dag@khas.edu.tr

More information

CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level

CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level CFMTL: Clustering Wireless Sensor Network Using Fuzzy Logic and Mobile Sink In Three-Level Ali Abdi Seyedkolaei 1 and Ali Zakerolhosseini 2 1 Department of Computer, Shahid Beheshti University, Tehran,

More information

POWER: Planning and Deployment Platform for Wireless Sensor Networks *

POWER: Planning and Deployment Platform for Wireless Sensor Networks * POWER: Planning and Deployment Platform for Wireless Sensor Networks * Jinghao Li 1, Yuebin Bai 1, Haixing Ji 1, Jihong Ma 2, Yong Tian 1 and Depei Qian 1 1 School of Computer, Beihang University, Beijing,

More information

Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks

Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks Dynamic Minimal Spanning Tree Routing Protocol for Large Wireless Sensor Networks Guangyan Huang 1, Xiaowei Li 1, and Jing He 1 Advanced Test Technology Lab., Institute of Computing Technology, Chinese

More information

(EBHCR) Energy Balancing and Hierarchical Clustering Based Routing algorithm for Wireless Sensor Networks

(EBHCR) Energy Balancing and Hierarchical Clustering Based Routing algorithm for Wireless Sensor Networks Australian Journal of Basic and Applied Sciences, 5(9): 1376-1380, 2011 ISSN 1991-8178 (EBHCR) Energy Balancing and Hierarchical Clustering Based Routing algorithm for Wireless Sensor Networks 1 Roghaiyeh

More information

Research on Relative Coordinate Localization of Nodes Based on Topology Control

Research on Relative Coordinate Localization of Nodes Based on Topology Control Journal of Information Hiding and Multimedia Signal Processing c 2018 ISSN 2073-4212 Ubiquitous International Volume 9, Number 2, March 2018 Research on Relative Coordinate Localization of Nodes Based

More information

Effect Of Grouping Cluster Based on Overlapping FOV In Wireless Multimedia Sensor Network

Effect Of Grouping Cluster Based on Overlapping FOV In Wireless Multimedia Sensor Network Effect Of Grouping Cluster Based on Overlapping FOV In Wireless Multimedia Sensor Network Shikha Swaroop Department of Information Technology Dehradun Institute of Technology Dehradun, Uttarakhand. er.shikhaswaroop@gmail.com

More information

Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks

Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks Developing Energy-Efficient Topologies and Routing for Wireless Sensor Networks Hui Tian, Hong Shen and Teruo Matsuzawa Graduate School of Information Science Japan Advanced Institute of Science and Technology

More information

USB Wireless Network Adapter User s Manual

USB Wireless Network Adapter User s Manual USB Wireless Network Adapter User s Manual Rev 0.9 Regulatory compliance FCC Warning This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

A NOVEL DISTRIBUTED PROTOCOL FOR RANDOMLY DEPLOYED CLUSTERED BASED WIRELESS SENSOR NETWORK:

A NOVEL DISTRIBUTED PROTOCOL FOR RANDOMLY DEPLOYED CLUSTERED BASED WIRELESS SENSOR NETWORK: A NOVEL DISTRIBUTED PROTOCOL FOR RANDOMLY DEPLOYED CLUSTERED BASED WIRELESS SENSOR NETWORK: 1 SANJAYA KUMAR PADHI, 2 PRASANT KUMAR PATTNAIK 1 Asstt Prof., Department of ComputerSciene and Engineering,

More information

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL 2.1 Topology Control in Wireless Sensor Networks Network topology control is about management of network topology to support network-wide requirement.

More information

Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey

Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey Comparison of TDMA based Routing Protocols for Wireless Sensor Networks-A Survey S. Rajesh, Dr. A.N. Jayanthi, J.Mala, K.Senthamarai Sri Ramakrishna Institute of Technology, Coimbatore ABSTRACT One of

More information

Experimental Evaluation on the Performance of Zigbee Protocol

Experimental Evaluation on the Performance of Zigbee Protocol Experimental Evaluation on the Performance of Zigbee Protocol Mohd Izzuddin Jumali, Aizat Faiz Ramli, Muhyi Yaakob, Hafiz Basarudin, Mohamad Ismail Sulaiman Universiti Kuala Lumpur British Malaysian Institute

More information

Energy Efficient Clustering Protocol for Wireless Sensor Network

Energy Efficient Clustering Protocol for Wireless Sensor Network Energy Efficient Clustering Protocol for Wireless Sensor Network Shraddha Agrawal #1, Rajeev Pandey #2, Mahesh Motwani #3 # Department of Computer Science and Engineering UIT RGPV, Bhopal, India 1 45shraddha@gmail.com

More information

Link-Based Wormhole Detection in Wireless Sensor Networks

Link-Based Wormhole Detection in Wireless Sensor Networks Link-Based Wormhole Detection in Wireless Sensor Networks Xiaoyuan Zhou, Lijun Chen National Key Laboratory for Novel Software Technology Nanjing University Nanjing, P.R. China, 2123 zxy@smail.nju.edu.cn,

More information

A Multipath AODV Reliable Data Transmission Routing Algorithm Based on LQI

A Multipath AODV Reliable Data Transmission Routing Algorithm Based on LQI Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com A Multipath AODV Reliable Data Transmission Routing Algorithm Based on LQI 1 Yongxian SONG, 2 Rongbiao ZHANG and Fuhuan

More information

Performance of a Novel Energy-Efficient and Energy Awareness Scheme for Long-Lifetime Wireless Sensor Networks

Performance of a Novel Energy-Efficient and Energy Awareness Scheme for Long-Lifetime Wireless Sensor Networks Sensors and Materials, Vol. 27, No. 8 (2015) 697 708 MYU Tokyo S & M 1106 Performance of a Novel Energy-Efficient and Energy Awareness Scheme for Long-Lifetime Wireless Sensor Networks Tan-Hsu Tan 1, Neng-Chung

More information

Index Terms: Base Station, Hop Count Indicator (HCI), Node Usage Indicator (NUI), Resource Biased Routing (RBR).

Index Terms: Base Station, Hop Count Indicator (HCI), Node Usage Indicator (NUI), Resource Biased Routing (RBR). Resource Biased Routing (RBR) Algorithm for Energy Optimization in Wireless Sensor Networks Lalit Kumar Saraswat, Dr. Sachin Kumar Abstract: Energy efficiency is the major concern in the design of Wireless

More information

Relaxation Control of Packet Arrival Rate in the Neighborhood of the Destination in Concentric Sensor Networks

Relaxation Control of Packet Arrival Rate in the Neighborhood of the Destination in Concentric Sensor Networks Relaxation Control of Packet Arrival Rate in the Neighborhood of the Destination in Concentric Sensor Networks 1 T.R.Gopalakrishnan Nair (SM-IEEE), 2 R. Selvarani, 3 Vaidehi M. 1 Director Research & Industry

More information

Comparative Study of SWST (Simple Weighted Spanning Tree) and EAST (Energy Aware Spanning Tree)

Comparative Study of SWST (Simple Weighted Spanning Tree) and EAST (Energy Aware Spanning Tree) International Journal of Networked and Distributed Computing, Vol. 2, No. 3 (August 2014), 148-155 Comparative Study of SWST (Simple Weighted Spanning Tree) and EAST (Energy Aware Spanning Tree) Lifford

More information

54M Wireless LAN CardBus Card

54M Wireless LAN CardBus Card 54M Wireless LAN CardBus Card User s Manual Ver.2.0 Federal Communication Commission Interference Statement This equipment has been tested and found to comply with the limits for a Class B digital device,

More information

Extending Network Lifetime of Clustered-Wireless Sensor Networks Based on Unequal Clustering

Extending Network Lifetime of Clustered-Wireless Sensor Networks Based on Unequal Clustering 96 IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.5, May 2016 Extending Network Lifetime of Clustered-Wireless Sensor Networks Based on Unequal Clustering Arunkumar V

More information

A Logical Group Formation and Management Mechanism Using RSSI for Wireless Sensor Networks *

A Logical Group Formation and Management Mechanism Using RSSI for Wireless Sensor Networks * A Logical Group Formation and Management Mechanism Using RSSI for Wireless Sensor Networks * Jihyuk Heo, Jin Ho Kim, and Choong Seon Hong ** Department of Computer Engineering, Kyung Hee University, Sochen-ri,

More information

Novel Cluster Based Routing Protocol in Wireless Sensor Networks

Novel Cluster Based Routing Protocol in Wireless Sensor Networks ISSN (Online): 1694-0784 ISSN (Print): 1694-0814 32 Novel Cluster Based Routing Protocol in Wireless Sensor Networks Bager Zarei 1, Mohammad Zeynali 2 and Vahid Majid Nezhad 3 1 Department of Computer

More information

Reliable Time Synchronization Protocol for Wireless Sensor Networks

Reliable Time Synchronization Protocol for Wireless Sensor Networks Reliable Time Synchronization Protocol for Wireless Sensor Networks Soyoung Hwang and Yunju Baek Department of Computer Science and Engineering Pusan National University, Busan 69-735, South Korea {youngox,yunju}@pnu.edu

More information

An Energy-efficient Distributed Self-organized Clustering Based Splitting and Merging in Wireless Sensor Networks

An Energy-efficient Distributed Self-organized Clustering Based Splitting and Merging in Wireless Sensor Networks RESEARCH ARTICLE OPEN ACCESS An Energy-efficient Distributed Self-organized Clustering Based Splitting and Merging in Wireless Sensor Networks Mrs.J.Monisha, PG scholar, Mrs.M.MuthuSelvi, Assistant Professor,

More information

Location of Access Points in Wireless Local Area Networking

Location of Access Points in Wireless Local Area Networking Association for Information Systems AIS Electronic Library (AISeL) AMCIS 2003 Proceedings Americas Conference on Information Systems (AMCIS) December 2003 Location of Access Points in Wireless Local Area

More information

COMPARISON OF TIME-BASED AND SMAC PROTOCOLS IN FLAT GRID WIRELESS SENSOR NETWORKS VER VARYING TRAFFIC DENSITY Jobin Varghese 1 and K.

COMPARISON OF TIME-BASED AND SMAC PROTOCOLS IN FLAT GRID WIRELESS SENSOR NETWORKS VER VARYING TRAFFIC DENSITY Jobin Varghese 1 and K. COMPARISON OF TIME-BASED AND SMAC PROTOCOLS IN FLAT GRID WIRELESS SENSOR NETWORKS VER VARYING TRAFFIC DENSITY Jobin Varghese 1 and K. Nisha Menon 2 1 Mar Baselios Christian College of Engineering and Technology,

More information

DEPLOYMENT OF PERFORMANCE IN LARGE SCALE WIRELESS MESH NETWORK 1

DEPLOYMENT OF PERFORMANCE IN LARGE SCALE WIRELESS MESH NETWORK 1 DEPLOYMENT OF PERFORMANCE IN LARGE SCALE WIRELESS MESH NETWORK 1 Richa Sharma, 2 Ms.Pency Juneja 1 Perusing M.Tech (CSE), 2 Assistant Professor Lovely Professional University, Phagwara Email: 1 rsricha177@gmail.com,

More information

VisualNet: General Purpose Visualization Tool for Wireless Sensor Networks

VisualNet: General Purpose Visualization Tool for Wireless Sensor Networks VisualNet: General Purpose Visualization Tool for Wireless Sensor Networks S. Rizvi and K. Ferens Department of Electrical and Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Ken.Ferens@ad.umanitoba.ca

More information

Energy-efficient Data Dissemination in Wireless Sensor Networks

Energy-efficient Data Dissemination in Wireless Sensor Networks Energy-efficient Data Dissemination in Wireless Sensor Networks Ji-Han Jiang 1 Kuo-Hua Kao 2 Singing ee 2 1 Department of Computer Science and Information Engineering National Formosa University, Yun-in,

More information

Review on Packet Forwarding using AOMDV and LEACH Algorithm for Wireless Networks

Review on Packet Forwarding using AOMDV and LEACH Algorithm for Wireless Networks RESEARCH ARTICLE OPEN ACCESS Review on Packet Forwarding using AOMDV and LEACH Algorithm for Wireless Networks Mrs. P. V. Meghare 1, Prof. P. A. Deshmukh 2 1 Department of Computer Science, Nagpur University,

More information

Wireless Sensor Networks (WSN)

Wireless Sensor Networks (WSN) Wireless Sensor Networks (WSN) Introduction M. Schölzel Difference to existing wireless networks Infrastructure-based networks e.g., GSM, UMTS, Base stations connected to a wired backbone network Mobile

More information

A Gateway Selections Using Signal Strength among Clusters in Ad Hoc Networks

A Gateway Selections Using Signal Strength among Clusters in Ad Hoc Networks A Gateway Selections Using Signal Strength among Clusters in Ad Hoc Networks Mary Wu 1, ChongGun Kim 1 1*, HeeJoo park 1 Dept. of Computer Eng., Yeungnam Univ., Korea Dept. of Cyber Security., Kyungil

More information

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network V. Shunmuga Sundari 1, N. Mymoon Zuviria 2 1 Student, 2 Asisstant Professor, Computer Science and Engineering, National College

More information

Celestix Networks, Inc. 702 Brown Road. Fremont, California Ph Fx Introduction to Wireless Local Area Network

Celestix Networks, Inc. 702 Brown Road. Fremont, California Ph Fx Introduction to Wireless Local Area Network Introduction to Wireless Local Area Network white paper Introduction A wireless local area network (WLAN) is a flexible data communications system that can use either infrared or radio frequency (RF) technology

More information

Mobile Agent Driven Time Synchronized Energy Efficient WSN

Mobile Agent Driven Time Synchronized Energy Efficient WSN Mobile Agent Driven Time Synchronized Energy Efficient WSN Sharanu 1, Padmapriya Patil 2 1 M.Tech, Department of Electronics and Communication Engineering, Poojya Doddappa Appa College of Engineering,

More information

WT-4000 Wireless System

WT-4000 Wireless System WT-4000 Wireless System Best Practices WT-BAC-IP Code No. LIT-12012551 Issued July 2017 Background and Wireless Network Components Refer to the QuickLIT website for the most up-to-date version of this

More information

A Non_Ack Routing Protocol in Ad-hoc Wireless Sensor Networks

A Non_Ack Routing Protocol in Ad-hoc Wireless Sensor Networks A Non_Ack Routing Protocol in Ad-hoc Wireless Sensor Networks 1, 1,3 1 1 Department of Electrical Engineering National Changhua University of Education Bao-Shan Campus: No., Shi-Da Road, Changhua City

More information

Wireless Sensor Networks

Wireless Sensor Networks Wireless Sensor Networks c.buratti@unibo.it +39 051 20 93147 Office Hours: Tuesday 3 5 pm @ Main Building, second floor Credits: 6 Ouline 1. WS(A)Ns Introduction 2. Applications 3. Energy Efficiency Section

More information

Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks

Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks Energy-Efficient Communication Protocol for Wireless Micro-sensor Networks Paper by: Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan Outline Brief Introduction on Wireless Sensor

More information

Examining Routing Methods and the Role of Neural Network in Wireless Sensor Networks.

Examining Routing Methods and the Role of Neural Network in Wireless Sensor Networks. IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 4, Ver. III (Jul.-Aug. 2016), PP 95-101 www.iosrjournals.org Examining Routing Methods and the Role

More information

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105

European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - EuNetAir COST Action TD1105 A Holistic Approach in the Development and Deployment of WSN-based

More information

GROUP MANAGEMENT IN MOBILE ADHOC NETWORKS

GROUP MANAGEMENT IN MOBILE ADHOC NETWORKS American Journal of Applied Sciences 11 (7): 1059-1064, 2014 ISSN: 1546-9239 2014 K.S. Kumar et al., This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license doi:10.3844/ajassp.2014.1059.1064

More information

DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM

DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM DETECTING, DETERMINING AND LOCALIZING MULTIPLE ATTACKS IN WIRELESS SENSOR NETWORK - MALICIOUS NODE DETECTION AND FAULT NODE RECOVERY SYSTEM Rajalakshmi 1, Umamaheswari 2 and A.Vijayaraj 3 1 Department

More information

Review on address assignment mechanism in ZigBee wireless sensor networks

Review on address assignment mechanism in ZigBee wireless sensor networks Review on address assignment mechanism in ZigBee wireless sensor networks Nikunj saholia Pg student, Computer Engineering department Marwadi education foundation s group of institutions Shraddha joshi

More information

Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator

Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator Analysis of Cluster based Routing Algorithms in Wireless Sensor Networks using NS2 simulator Ashika R. Naik Department of Electronics & Tele-communication, Goa College of Engineering (India) ABSTRACT Wireless

More information

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks

Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Mobile Information Systems 9 (23) 295 34 295 DOI.3233/MIS-364 IOS Press Data gathering using mobile agents for reducing traffic in dense mobile wireless sensor networks Keisuke Goto, Yuya Sasaki, Takahiro

More information

A Proposed Paper on Joint Priority Based Approach for Scheduling and Congestion Control in Multipath Multi-hop WSN

A Proposed Paper on Joint Priority Based Approach for Scheduling and Congestion Control in Multipath Multi-hop WSN A Proposed Paper on Joint Priority Based Approach for Scheduling and Congestion Control in Multipath Multi-hop WSN Sweta A.Kahurke M.Tech(IV) Wireless communication & Computing G.H.Raisoni College Of Engineering

More information

Algorithm Development and Deployment for Indoor Localization of Resources

Algorithm Development and Deployment for Indoor Localization of Resources Algorithm Development and Deployment for Indoor Localization of Resources Ms. Asawari Mane 1, Dr. Mahesh Kumbhar 2 1. Department of Electronics & Telecommunication Engg., Rajarambapu Institute of Technology,

More information

Research Paper FAULT MANAGEMENT USING MODIFIED RAT FOR WIRELESS SENSOR NETWORKS Sathyapriya.L Jawahar A

Research Paper FAULT MANAGEMENT USING MODIFIED RAT FOR WIRELESS SENSOR NETWORKS Sathyapriya.L Jawahar A Research Paper FAULT MANAGEMENT USING MODIFIED RAT FOR WIRELESS SENSOR NETWORKS a b Sathyapriya.L Jawahar A Address for Correspondence b Professor, a Research Scholar, Department of ECE, SSN College of

More information

An Energy Consumption Analytic Model for A Wireless Sensor MAC Protocol

An Energy Consumption Analytic Model for A Wireless Sensor MAC Protocol An Energy Consumption Analytic Model for A Wireless Sensor MAC Protocol Hung-Wei Tseng, Shih-Hsien Yang, Po-Yu Chuang,Eric Hsiao-Kuang Wu, and Gen-Huey Chen Dept. of Computer Science and Information Engineering,

More information

Mobile Ad Hoc Networks: Basic Concepts and Research Issues

Mobile Ad Hoc Networks: Basic Concepts and Research Issues Mobile Ad Hoc s: Basic Concepts and Research Issues Ing. Alessandro Leonardi aleonardi@dieei.unict.it Wireless s Generations (1/3) Generation 1G 2G 2.5G 3G 4/5G Time 1980s 1990s Late1990s 2000s (2010 full

More information

Dynamic Cooperative Routing (DCR) in Wireless Sensor Networks

Dynamic Cooperative Routing (DCR) in Wireless Sensor Networks Dynamic Cooperative Routing () in Wireless Sensor Networks Sivasankari H. 1, Leelavathi R. 1, Shaila K. 1, Venugopal K.R. 1, S.S. Iyengar 2, and L.M. Patnaik 3 1 Department of Computer Science and Engineering,

More information

An Optimized Lifetime Model using Energy Holes Reduction near Sink's Locality of WSN s

An Optimized Lifetime Model using Energy Holes Reduction near Sink's Locality of WSN s 2009 International Conference on Machine Learning and Computing IPCSI vol.3 (2011) (2011) IACSI Press, Singapore An Optimized Lifetime Model using Energy Holes Reduction near Sink's Locality of WSN s Atiq

More information

Design of Building Monitoring Systems Based on Wireless Sensor Networks*

Design of Building Monitoring Systems Based on Wireless Sensor Networks* Wireless Sensor Network, 2010, 2, 703-709 doi:10.4236/wsn.2010.29085 Published Online September 2010 (http://www.scirp.org/journal/wsn) Design of Building Monitoring Systems Based on Wireless Sensor Networks*

More information

Energy and Memory Efficient Clone Detection in Wireless Sensor Networks

Energy and Memory Efficient Clone Detection in Wireless Sensor Networks Energy and Memory Efficient Clone Detection in Wireless Sensor Networks Chennai) 1 Vladymir.F, 2 J.Sivanesa Selvan, 3 Mr.Prabhu.D 1 (Information Technology, Loyola Institute of Technology, Chennai) ( Email:

More information

Specification-based Intrusion Detection. Michael May CIS-700 Fall 2004

Specification-based Intrusion Detection. Michael May CIS-700 Fall 2004 Specification-based Intrusion Detection Michael May CIS-700 Fall 2004 Overview Mobile ad hoc networking (MANET) new area of protocols Some old networking solutions work (TCP/IP) but things change with

More information

Context-aware Geographic Routing for Sensor Networks with Routing Holes

Context-aware Geographic Routing for Sensor Networks with Routing Holes Context-aware Geographic Routing for Sensor Networks with Routing Holes Jiaxi You, ominik Lieckfeldt, Frank Reichenbach, and irk Timmermann University of Rostock, Germany {jiaxi.you, dominik.lieckfeldt,

More information

DAPR: A Protocol for Wireless Sensor Networks Utilizing an Application-based Routing Cost

DAPR: A Protocol for Wireless Sensor Networks Utilizing an Application-based Routing Cost DAPR: A Protocol for Wireless Sensor Networks Utilizing an Application-based Routing Cost Mark Perillo and Wendi Heinzelman Department of Electrical and Computer Engineering University of Rochester Rochester,

More information

Cisco Exam Conducting Cisco Unified Wireless Site Survey V2 Version: 10.0 [ Total Questions: 193 ]

Cisco Exam Conducting Cisco Unified Wireless Site Survey V2 Version: 10.0 [ Total Questions: 193 ] s@lm@n Cisco Exam 642-732 Conducting Cisco Unified Wireless Site Survey V2 Version: 10.0 [ Total Questions: 193 ] Cisco 642-732 : Practice Test Question No : 1 During the site survey kick-off meeting with

More information

Journal of Wireless Sensor Networks. Topology control in Heterogeneous Wireless Sensor Network

Journal of Wireless Sensor Networks. Topology control in Heterogeneous Wireless Sensor Network JWSN 216, 3, 1-18 Journal of Wireless Sensor Networks ISSN: 21-6417 www.wsn-journal.com Article Topology control in Heterogeneous Wireless Sensor Network Deepak Dandekar 1, *, Prashant Deshmukh 2 1 Electronics

More information

Computational Model for Energy Aware TDMA-based MAC Protocol for Wireless Sensor Network System

Computational Model for Energy Aware TDMA-based MAC Protocol for Wireless Sensor Network System 6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 489 Computational Model for Energy Aware TDMA-based MAC Protocol for Wireless

More information

Capacity of Grid-Oriented Wireless Mesh Networks

Capacity of Grid-Oriented Wireless Mesh Networks Capacity of Grid-Oriented Wireless Mesh Networks Nadeem Akhtar and Klaus Moessner Centre for Communication Systems Research University of Surrey Guildford, GU2 7H, UK Email: n.akhtar@surrey.ac.uk, k.moessner@surrey.ac.uk

More information

Investigating the Impact of Topologies on the Performance of ZIGBEE Wireless Sensor Networks

Investigating the Impact of Topologies on the Performance of ZIGBEE Wireless Sensor Networks Investigating the Impact of Topologies on the Performance of 802.15.4 ZIGBEE Wireless Sensor Networks D. Deepika 1 and Prof. S. Pallam Setty 2 1 M.tech, Department of Computer Science and Systems Engineering,

More information

Adaptive Opportunistic Routing Protocol for Energy Harvesting Wireless Sensor Networks

Adaptive Opportunistic Routing Protocol for Energy Harvesting Wireless Sensor Networks Adaptive Opportunistic Routing Protocol for Energy Harvesting Wireless Sensor Networks Zhi Ang Eu and Hwee-Pink Tan Institute for Infocomm Research, Singapore Email: {zaeu,hptan}@ir.a-star.edu.sg Abstract

More information