ECE 5730 Memory Systems

Size: px
Start display at page:

Download "ECE 5730 Memory Systems"

Transcription

1 ECE 5730 Memory Systems Spring 2009 Command Scheduling Disk Caching Lecture 23: 1

2 Announcements Quiz 12 I ll give credit for #4 if you answered (d) Quiz 13 (last one!) on Tuesday Make-up class #2 Thursday, April 30, 6:00-7:15pm, PH 403 Pizza and soda Exam II May 7, 7:00-10:00pm, Hollister 314 Covers material from 3/10-4/28 but excluding 4/22 (Lectures 14-21, 23-24) Lecture 23: 2

3 Course Project Last status report due tomorrow by 5pm EDT Final report (15-25 double-spaced pages) Word or PDF to me by 11:59pm on May 1 20 points off final project grade if late Lecture 23: 3

4 Final Report Organization Introduction and motivation What is the problem you are addressing? Why is it important? Proposed solution How are you proposing to solve the problem? Simulation methodology What tools are you using to evaluate your solution, and what assumptions are you making? Results How well does the solution work? What performance and/or power benefits do you get? Conclusions and future work Briefly summarize your work and suggest ways to extend it Lecture 23: 4

5 Command Queuing and Scheduling Historically, I/O cmds were processed serially Host waits for cmd to complete, then issues next one ATA drives operate this way Newer drives queue and schedule cmds Host sends series of cmds, each with a tag ID Drive determines best order to process the cmds Order is continually evaluated as cmds issue and arrive Drive sends tag ID back to host when cmd completes Lecture 23: 5

6 Cmd Queue Depth Specified by the interface standard 32 for SATA, 256 for SCSI As with processor issue queues, performance drops off beyond a certain queue depth Diminishing theoretical performance improvement as queue size increases Higher latency to evaluate a deeper queue Lecture 23: 6

7 Scheduling Policies First-come-first-served Seek-time-based scheduling Total-access-time-based scheduling Sequential access scheduling Lecture 23: 7

8 Seek-Time-Based Scheduling Policies Seeks to reduce the seek time by reducing the seek distance Shortest-Seek-Time-First (SSTF) Greedily selects the cmd with the shortest seek distance from the current position Tends to favor addresses near the middle of the disk ID and OD requests prone to starvation Can be implemented with an aging mechanism that raises the priority of older cmds Lecture 23: 8

9 Seek-Time-Based Scheduling Policies LOOK Start at OD, do SSTF in radial direction (OD ID) When radially innermost cmd completed, switch direction (ID OD) Queued cmds complete in < 1 sweep Favors addresses near middle (visited twice/sweep) Circular-LOOK (C-LOOK) Moves in only one radial direction More fair, but incurs a long seek after a sweep Lecture 23: 9

10 Shortest-Access-Time-First Scheduling Seek-time scheduling ignores rotational delay sweep direction current position seek-time scheduling [21.5] Lecture 23: 10

11 Shortest-Access-Time-First Scheduling Scheduling based on seek + rotational delays current position SATF scheduling [21.5] Lecture 23: 11

12 SATF Scheduling Incoming cmd LBA translated to CHS address Cylinder = radial position (r) Sector = angular position ( ) Cmd total access time estimated based on CHS and estimated ending position of current cmd Cmd with smallest total access time is issued Lecture 23: 12

13 Estimating Access Time Seek distance calculated as r new - r current beginning radial position of new cmd ending radial position of current cmd Seek table of seek time, seek distance pairs few table entries many table entries use linear interpolation for in-between points add a fixed settle time [19.6] Lecture 23: 13

14 Estimating Access Time Rotation time calculated from difference in angular positions before the seek Seek and rotation occur in parallel! If t seek < t rotation t access = t rotation Else t access = t rotation + n t revolution where n satisfies t seek < t rotation + n t revolution time for a complete disk revolution Lecture 23: 14

15 Simplified Sorting Using an RPO Table Time to compute and sort all cmds may exceed current cmd completion time Simplification Divide angular positions into N groups Each cmd placed into appropriate group based on difference in angular position from current cmd Example: 1000, sectors/track, N=10 Group 1: 0 angular difference for sectors Group 2: 36 angular difference for sectors (Slightly different than book to ease explanation) Lecture 23: 15

16 Simplified Sorting Using an RPO Table Rotational Position Optimization (RPO) table lists for each angular difference group Max seek distance given the rotational latency corresponding to the angular difference Max seek distance given the rotational latency corresponding to the angular difference plus 1 full revolution Max seek distance given the rotational latency corresponding to the angular difference plus 2 full revolutions continues up to the max seek distance Lecture 23: 16

17 RPO Table Example d seekrl d seekrl+1rev d seekrl+2rev [18.7,21.6] Lecture 23: 17

18 Algorithm (for this RPO Table) Starting with 72 and moving down, find a non-empty group 0 36 d seekrl d seekrl+1rev d seekrl+2rev If cmd in that group has d seek < d seekrl, issue that cmd Else, move to next non-empty group Then move to 0, col 2 and work downward Then move to 0, col 3 and work downward [21.6] Lecture 23: 18

19 Sequential Access Scheduling Independent of the scheduling policy, schedule all sequential, near sequential, and skip sequential cmds back-to-back Immediately schedule newly arriving cmd that is sequential to the current cmd Handling skip sequential cmds Reads: Not requested data is simply discarded Writes: Skip mask tells the write electronics which sectors not to overwrite Lecture 23: 19

20 Performance Comparison 5.75ms avg seek, 1000 SPT at OD, 10K rpm Random reads of 1KB [21.7] Lecture 23: 20

21 Disk Drive Cache Disk drives have a built-in cache in addition to read and write buffers implemented in DRAM Typical cache size ranges from 512KB-64MB Typically only 0.01% of the drive The disk cache has a logical organization and management policies Lecture 23: 21

22 Why a Disk Drive Cache? A read disk cache hit avoids seek, rotation, and media transfer times Example: 0.15ms for 4K cache hit, 100MB/s interface Read access time = = 0.19ms Compared to ms Read data can be prefetched from the disk Cached write data can be Served to subsequent reads Overwritten by later writes to same LBA Prioritized lower than reads in accessing disk Lecture 23: 22

23 Fixed Segmentation Disk Cache Most common disk cache architecture Cache space divided into fixed-size segments Number of segments may be fixed or set by the host (e.g., SCSI) Segment table holds LBA + dirty bit for each segment Fully associative lookup and LRU replacement Internal fragmentation for small blocks [22.2] Lecture 23: 23

24 Circular Buffer Variable size segments organized as a ring Segment size matches request Need to search for a contiguous group of data to fit the requested segment Segment table contains LBA, dirty bit, starting cache address, and segment length [22.3] Lecture 23: 24

25 Virtual Memory Disk Cache Organization Cache partitioned into N pages of 2 M disk sectors each Smaller M allows better space efficiency but higher management overhead Example: M=5, sector size is 512B 16KB pages LBA Partitioning sector number Physically non-contiguous cache pages can be chained to form a logically contiguous segment Eases finding space for a new segment [22.4] Lecture 23: 25

26 Page Table Page table maps LBAs to physical pages Each entry corresponds to a page and contains Tag of LBAs associated with this page Valid and dirty bits for the 2 M sectors of the page Hash chain pointer to chain all the allocation groups that shared this hash number Lecture 23: 26

27 Cache Lookup [22.5] Lecture 23: 27

28 Page Allocation/Deallocation Pages arranged in replacement list, e.g., LRU Dirty flag marks write pages To allocate X pages for a new segment, deallocate first X clean pages on the list Deallocate LRU dirty pages if necessary Lecture 23: 28

29 Cache Prefetching Data can be prefetched from the drive and placed into the cache for subsequent cmds Prefetching is not initiated unless the cmd queue is empty Prefetching may be pre-empted by a newly arriving cmd (unless it s a cache hit) Prefetched data with errors may be discarded Lecture 23: 29

30 Lookahead Prefetching Read B additional sequential LBAs beyond the requested read access No seek or RL overhead, but requires cache space Implemented in all disk drives Lecture 23: 30

31 Look-behind Prefetching Read data before the requested read access Only read the amount permitted by the rotational latency, up to a maximum limit [22.6] Lecture 23: 31

32 Zero Latency Prefetch Reduces rotational overhead when head lands in lookahead area normal prefetch zero latency prefetch Lecture 23: 32

33 Sequential Data and Prefetching Controller may modify it policies if it recognizes a sequential stream of read cmds, e.g., If a newly arriving request is to the LBA currently being prefetched, immediately prefetch more data Do not pre-empt current prefetch due to new cmd, but instead prefetch some minimum amount of data Amount may be adaptively determined by the controller Quickly reallocate the cache space of the sequential stream rather than displace other data Lecture 23: 33

34 Next Time Disk Power Management RAID Lecture 23: 34

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Slides based on the book Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

More information

CSE 4/521 Introduction to Operating Systems. Lecture 27 (Final Exam Review) Summer 2018

CSE 4/521 Introduction to Operating Systems. Lecture 27 (Final Exam Review) Summer 2018 CSE 4/521 Introduction to Operating Systems Lecture 27 (Final Exam Review) Summer 2018 Overview Objective: Revise topics and questions for the final-exam. 1. Main Memory 2. Virtual Memory 3. Mass Storage

More information

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto

Ricardo Rocha. Department of Computer Science Faculty of Sciences University of Porto Ricardo Rocha Department of Computer Science Faculty of Sciences University of Porto Slides based on the book Operating System Concepts, 9th Edition, Abraham Silberschatz, Peter B. Galvin and Greg Gagne,

More information

Operating Systems. Operating Systems Professor Sina Meraji U of T

Operating Systems. Operating Systems Professor Sina Meraji U of T Operating Systems Operating Systems Professor Sina Meraji U of T How are file systems implemented? File system implementation Files and directories live on secondary storage Anything outside of primary

More information

CSC369 Lecture 9. Larry Zhang, November 16, 2015

CSC369 Lecture 9. Larry Zhang, November 16, 2015 CSC369 Lecture 9 Larry Zhang, November 16, 2015 1 Announcements A3 out, due ecember 4th Promise: there will be no extension since it is too close to the final exam (ec 7) Be prepared to take the challenge

More information

Chapter 11. I/O Management and Disk Scheduling

Chapter 11. I/O Management and Disk Scheduling Operating System Chapter 11. I/O Management and Disk Scheduling Lynn Choi School of Electrical Engineering Categories of I/O Devices I/O devices can be grouped into 3 categories Human readable devices

More information

Hard Disk Drives (HDDs) Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Hard Disk Drives (HDDs) Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Hard Disk Drives (HDDs) Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Virtualization Virtual CPUs Virtual memory Concurrency Threads Synchronization

More information

Hard Disk Drives (HDDs)

Hard Disk Drives (HDDs) Hard Disk Drives (HDDs) Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 9: Mass Storage Structure Prof. Alan Mislove (amislove@ccs.neu.edu) Moving-head Disk Mechanism 2 Overview of Mass Storage Structure Magnetic

More information

Module 1: Basics and Background Lecture 4: Memory and Disk Accesses. The Lecture Contains: Memory organisation. Memory hierarchy. Disks.

Module 1: Basics and Background Lecture 4: Memory and Disk Accesses. The Lecture Contains: Memory organisation. Memory hierarchy. Disks. The Lecture Contains: Memory organisation Example of memory hierarchy Memory hierarchy Disks Disk access Disk capacity Disk access time Typical disk parameters Access times file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture4/4_1.htm[6/14/2012

More information

CS420: Operating Systems. Mass Storage Structure

CS420: Operating Systems. Mass Storage Structure Mass Storage Structure James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Overview of Mass Storage

More information

Chapter 12: Mass-Storage Systems. Operating System Concepts 8 th Edition,

Chapter 12: Mass-Storage Systems. Operating System Concepts 8 th Edition, Chapter 12: Mass-Storage Systems, Silberschatz, Galvin and Gagne 2009 Chapter 12: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Scheduling 12.2 Silberschatz, Galvin and Gagne

More information

Anatomy of a disk. Stack of magnetic platters. Disk arm assembly

Anatomy of a disk. Stack of magnetic platters. Disk arm assembly Anatomy of a disk Stack of magnetic platters - Rotate together on a central spindle @3,600-15,000 RPM - Drives speed drifts slowly over time - Can t predict rotational position after 100-200 revolutions

More information

ECE 5730 Memory Systems

ECE 5730 Memory Systems ECE 5730 Memory Systems Spring 2009 More on Memory Scheduling Lecture 16: 1 Exam I average =? Announcements Course project proposal What you propose to investigate What resources you plan to use (tools,

More information

STORAGE SYSTEMS. Operating Systems 2015 Spring by Euiseong Seo

STORAGE SYSTEMS. Operating Systems 2015 Spring by Euiseong Seo STORAGE SYSTEMS Operating Systems 2015 Spring by Euiseong Seo Today s Topics HDDs (Hard Disk Drives) Disk scheduling policies Linux I/O schedulers Secondary Storage Anything that is outside of primary

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 20: File Systems (1) Disk drives OS Abstractions Applications Process File system Virtual memory Operating System CPU Hardware Disk RAM CSE 153 Lecture

More information

Chapter 10: Mass-Storage Systems. Operating System Concepts 9 th Edition

Chapter 10: Mass-Storage Systems. Operating System Concepts 9 th Edition Chapter 10: Mass-Storage Systems Silberschatz, Galvin and Gagne 2013 Chapter 10: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space

More information

Final Exam Preparation Questions

Final Exam Preparation Questions EECS 678 Spring 2013 Final Exam Preparation Questions 1 Chapter 6 1. What is a critical section? What are the three conditions to be ensured by any solution to the critical section problem? 2. The following

More information

CSE 153 Design of Operating Systems Fall 2018

CSE 153 Design of Operating Systems Fall 2018 CSE 153 Design of Operating Systems Fall 2018 Lecture 12: File Systems (1) Disk drives OS Abstractions Applications Process File system Virtual memory Operating System CPU Hardware Disk RAM CSE 153 Lecture

More information

Disk Scheduling COMPSCI 386

Disk Scheduling COMPSCI 386 Disk Scheduling COMPSCI 386 Topics Disk Structure (9.1 9.2) Disk Scheduling (9.4) Allocation Methods (11.4) Free Space Management (11.5) Hard Disk Platter diameter ranges from 1.8 to 3.5 inches. Both sides

More information

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 420, York College. November 21, 2006

Introduction Disks RAID Tertiary storage. Mass Storage. CMSC 420, York College. November 21, 2006 November 21, 2006 The memory hierarchy Red = Level Access time Capacity Features Registers nanoseconds 100s of bytes fixed Cache nanoseconds 1-2 MB fixed RAM nanoseconds MBs to GBs expandable Disk milliseconds

More information

V. Mass Storage Systems

V. Mass Storage Systems TDIU25: Operating Systems V. Mass Storage Systems SGG9: chapter 12 o Mass storage: Hard disks, structure, scheduling, RAID Copyright Notice: The lecture notes are mainly based on modifications of the slides

More information

Overview of Mass Storage Structure

Overview of Mass Storage Structure CSC 4103 - Operating Systems Spring 2008 Lecture - XVIII Mass Storage & IO Tevfik Ko!ar Louisiana State University April 8th, 2008 1 Overview of Mass Storage Structure Magnetic disks provide bulk of secondary

More information

File. File System Implementation. Operations. Permissions and Data Layout. Storing and Accessing File Data. Opening a File

File. File System Implementation. Operations. Permissions and Data Layout. Storing and Accessing File Data. Opening a File File File System Implementation Operating Systems Hebrew University Spring 2007 Sequence of bytes, with no structure as far as the operating system is concerned. The only operations are to read and write

More information

Free Space Management

Free Space Management CSC 4103 - Operating Systems Spring 2007 Lecture - XVI File Systems - II Tevfik Koşar Louisiana State University March 22 nd, 2007 1 Free Space Management Disk space limited Need to re-use the space from

More information

Chapter 10: Mass-Storage Systems

Chapter 10: Mass-Storage Systems Chapter 10: Mass-Storage Systems Silberschatz, Galvin and Gagne 2013 Chapter 10: Mass-Storage Systems Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk Management Swap-Space

More information

Chapter 11. I/O Management and Disk Scheduling

Chapter 11. I/O Management and Disk Scheduling Operating System Chapter 11. I/O Management and Disk Scheduling Lynn Choi School of Electrical Engineering Categories of I/O Devices I/O devices can be grouped into 3 categories Human readable devices

More information

COMP 3361: Operating Systems 1 Final Exam Winter 2009

COMP 3361: Operating Systems 1 Final Exam Winter 2009 COMP 3361: Operating Systems 1 Final Exam Winter 2009 Name: Instructions This is an open book exam. The exam is worth 100 points, and each question indicates how many points it is worth. Read the exam

More information

File. File System Implementation. File Metadata. File System Implementation. Direct Memory Access Cont. Hardware background: Direct Memory Access

File. File System Implementation. File Metadata. File System Implementation. Direct Memory Access Cont. Hardware background: Direct Memory Access File File System Implementation Operating Systems Hebrew University Spring 2009 Sequence of bytes, with no structure as far as the operating system is concerned. The only operations are to read and write

More information

(c) Why does the Shortest Positioning Time First (SPTF) scheduling algorithm typically outperform

(c) Why does the Shortest Positioning Time First (SPTF) scheduling algorithm typically outperform CSG389 CCS, Northeastern University 23 February 2005 Spring 2005 Exam 1 Solutions Rev. 03 Instructions Name: There are four (4) questions on the exam spread across 8 pages. You may find questions that

More information

Today: Secondary Storage! Typical Disk Parameters!

Today: Secondary Storage! Typical Disk Parameters! Today: Secondary Storage! To read or write a disk block: Seek: (latency) position head over a track/cylinder. The seek time depends on how fast the hardware moves the arm. Rotational delay: (latency) time

More information

Department of Computer Engineering University of California at Santa Cruz. File Systems. Hai Tao

Department of Computer Engineering University of California at Santa Cruz. File Systems. Hai Tao File Systems Hai Tao File System File system is used to store sources, objects, libraries and executables, numeric data, text, video, audio, etc. The file system provide access and control function for

More information

CISC 7310X. C11: Mass Storage. Hui Chen Department of Computer & Information Science CUNY Brooklyn College. 4/19/2018 CUNY Brooklyn College

CISC 7310X. C11: Mass Storage. Hui Chen Department of Computer & Information Science CUNY Brooklyn College. 4/19/2018 CUNY Brooklyn College CISC 7310X C11: Mass Storage Hui Chen Department of Computer & Information Science CUNY Brooklyn College 4/19/2018 CUNY Brooklyn College 1 Outline Review of memory hierarchy Mass storage devices Reliability

More information

STORING DATA: DISK AND FILES

STORING DATA: DISK AND FILES STORING DATA: DISK AND FILES CS 564- Spring 2018 ACKs: Dan Suciu, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? How does a DBMS store data? disk, SSD, main memory The Buffer manager controls how

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Lecture 17 Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] SRAM / / Flash / RRAM / HDD SRAM / / Flash / RRAM/ HDD SRAM

More information

CHAPTER 12: MASS-STORAGE SYSTEMS (A) By I-Chen Lin Textbook: Operating System Concepts 9th Ed.

CHAPTER 12: MASS-STORAGE SYSTEMS (A) By I-Chen Lin Textbook: Operating System Concepts 9th Ed. CHAPTER 12: MASS-STORAGE SYSTEMS (A) By I-Chen Lin Textbook: Operating System Concepts 9th Ed. Chapter 12: Mass-Storage Systems Overview of Mass-Storage Structure Disk Structure Disk Attachment Disk Scheduling

More information

OPERATING SYSTEMS CS3502 Spring Input/Output System Chapter 9

OPERATING SYSTEMS CS3502 Spring Input/Output System Chapter 9 OPERATING SYSTEMS CS3502 Spring 2018 Input/Output System Chapter 9 Input/Output System Major objectives: An application s I/O requests are sent to the I/O device. Take whatever response comes back from

More information

Distributed Deadlock Detection

Distributed Deadlock Detection Distributed Deadlock Detection Two Local Wait-For Graphs Global Wait-For Graph Deadlock Detection Centralized Approach Each site keeps a local wait-for graph The nodes of the graph correspond to all the

More information

Mass-Storage Structure

Mass-Storage Structure Operating Systems (Fall/Winter 2018) Mass-Storage Structure Yajin Zhou (http://yajin.org) Zhejiang University Acknowledgement: some pages are based on the slides from Zhi Wang(fsu). Review On-disk structure

More information

Chapter 12: Secondary-Storage Structure. Operating System Concepts 8 th Edition,

Chapter 12: Secondary-Storage Structure. Operating System Concepts 8 th Edition, Chapter 12: Secondary-Storage Structure, Silberschatz, Galvin and Gagne 2009 Chapter 12: Secondary-Storage Structure Overview of Mass Storage Structure Disk Structure Disk Attachment Disk Scheduling Disk

More information

6.033 Computer System Engineering

6.033 Computer System Engineering MIT OpenCourseWare http://ocw.mit.edu 6.033 Computer System Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.033 2009 Lecture

More information

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Jaswinder Pal Singh Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall13/cos318/ Today s Topics Magnetic disks

More information

3/3/2014! Anthony D. Joseph!!CS162! UCB Spring 2014!

3/3/2014! Anthony D. Joseph!!CS162! UCB Spring 2014! Post Project 1 Class Format" CS162 Operating Systems and Systems Programming Lecture 11 Page Allocation and Replacement" Mini quizzes after each topic Not graded Simple True/False Immediate feedback for

More information

Hard Disk Drives. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau)

Hard Disk Drives. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Hard Disk Drives Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Storage Stack in the OS Application Virtual file system Concrete file system Generic block layer Driver Disk drive Build

More information

Virtual Memory. Chapter 8

Virtual Memory. Chapter 8 Virtual Memory 1 Chapter 8 Characteristics of Paging and Segmentation Memory references are dynamically translated into physical addresses at run time E.g., process may be swapped in and out of main memory

More information

Chapter-6. SUBJECT:- Operating System TOPICS:- I/O Management. Created by : - Sanjay Patel

Chapter-6. SUBJECT:- Operating System TOPICS:- I/O Management. Created by : - Sanjay Patel Chapter-6 SUBJECT:- Operating System TOPICS:- I/O Management Created by : - Sanjay Patel Disk Scheduling Algorithm 1) First-In-First-Out (FIFO) 2) Shortest Service Time First (SSTF) 3) SCAN 4) Circular-SCAN

More information

Announcements. Final Exam. December 10th, Thursday Patrick Taylor Hall. Chapters included in Final. 8.

Announcements. Final Exam. December 10th, Thursday Patrick Taylor Hall. Chapters included in Final. 8. CSC 4103 - Operating Systems Fall 2009 Lecture - XXV Final Review Announcements * You should have received your grades as well as graded papers for: - Homework 1-4 - Quiz 1-3 - Midterm If not, please see

More information

CS-245 Database System Principles

CS-245 Database System Principles CS-245 Database System Principles Midterm Exam Summer 2001 SOLUIONS his exam is open book and notes. here are a total of 110 points. You have 110 minutes to complete it. Print your name: he Honor Code

More information

Ref: Chap 12. Secondary Storage and I/O Systems. Applied Operating System Concepts 12.1

Ref: Chap 12. Secondary Storage and I/O Systems. Applied Operating System Concepts 12.1 Ref: Chap 12 Secondary Storage and I/O Systems Applied Operating System Concepts 12.1 Part 1 - Secondary Storage Secondary storage typically: is anything that is outside of primary memory does not permit

More information

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili

Virtual Memory. Reading. Sections 5.4, 5.5, 5.6, 5.8, 5.10 (2) Lecture notes from MKP and S. Yalamanchili Virtual Memory Lecture notes from MKP and S. Yalamanchili Sections 5.4, 5.5, 5.6, 5.8, 5.10 Reading (2) 1 The Memory Hierarchy ALU registers Cache Memory Memory Memory Managed by the compiler Memory Managed

More information

Chapter 11: Storage and File Structure. Silberschatz, Korth and Sudarshan Updated by Bird and Tanin

Chapter 11: Storage and File Structure. Silberschatz, Korth and Sudarshan Updated by Bird and Tanin Chapter 11: Storage and File Structure Storage Hierarchy 11.2 Storage Hierarchy (Cont.) primary storage: Fastest media but volatile (cache, main memory). secondary storage: next level in hierarchy, non-volatile,

More information

20-EECE-4029 Operating Systems Spring, 2013 John Franco

20-EECE-4029 Operating Systems Spring, 2013 John Franco 20-EECE-4029 Operating Systems Spring, 2013 John Franco Second Exam name: Question 1: Translation Look-aside Buffer (a) Describe the TLB. Include its location, why it is located there, its contents, and

More information

Computer Architecture and Engineering CS152 Quiz #2 March 7th, 2016 Professor George Michelogiannakis Name: <ANSWER KEY>

Computer Architecture and Engineering CS152 Quiz #2 March 7th, 2016 Professor George Michelogiannakis Name: <ANSWER KEY> Computer Architecture and Engineering CS152 Quiz #2 March 7th, 2016 Professor George Michelogiannakis Name: This is a closed book, closed notes exam. 80 Minutes. 15 pages Notes: Not all questions

More information

CPSC 421 Database Management Systems. Lecture 11: Storage and File Organization

CPSC 421 Database Management Systems. Lecture 11: Storage and File Organization CPSC 421 Database Management Systems Lecture 11: Storage and File Organization * Some material adapted from R. Ramakrishnan, L. Delcambre, and B. Ludaescher Today s Agenda Start on Database Internals:

More information

Introduction to I/O and Disk Management

Introduction to I/O and Disk Management 1 Secondary Storage Management Disks just like memory, only different Introduction to I/O and Disk Management Why have disks? Ø Memory is small. Disks are large. Short term storage for memory contents

More information

Chapter 10: Mass-Storage Systems

Chapter 10: Mass-Storage Systems Chapter 10: Mass-Storage Systems Silberschatz, Galvin and Gagne Overview of Mass Storage Structure Magnetic disks provide bulk of secondary storage of modern computers Drives rotate at 60 to 200 times

More information

Disks October 22 nd, 2010

Disks October 22 nd, 2010 15-410...What goes around comes around... Disks October 22 nd, 2010 Dave Eckhardt & Garth Gibson Brian Railing & Steve Muckle Contributions from Eno Thereska, Rahul Iyer 15-213 How Stuff Works web site

More information

Disk Scheduling. Based on the slides supporting the text

Disk Scheduling. Based on the slides supporting the text Disk Scheduling Based on the slides supporting the text 1 User-Space I/O Software Layers of the I/O system and the main functions of each layer 2 Disk Structure Disk drives are addressed as large 1-dimensional

More information

Introduction to I/O and Disk Management

Introduction to I/O and Disk Management Introduction to I/O and Disk Management 1 Secondary Storage Management Disks just like memory, only different Why have disks? Ø Memory is small. Disks are large. Short term storage for memory contents

More information

CS 550 Operating Systems Spring File System

CS 550 Operating Systems Spring File System 1 CS 550 Operating Systems Spring 2018 File System 2 OS Abstractions Process: virtualization of CPU Address space: virtualization of memory The above to allow a program to run as if it is in its own private,

More information

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University

I/O, Disks, and RAID Yi Shi Fall Xi an Jiaotong University I/O, Disks, and RAID Yi Shi Fall 2017 Xi an Jiaotong University Goals for Today Disks How does a computer system permanently store data? RAID How to make storage both efficient and reliable? 2 What does

More information

1993 Paper 3 Question 6

1993 Paper 3 Question 6 993 Paper 3 Question 6 Describe the functionality you would expect to find in the file system directory service of a multi-user operating system. [0 marks] Describe two ways in which multiple names for

More information

Question Points Score Total 100

Question Points Score Total 100 Midterm #2 CMSC 412 Operating Systems Fall 2005 November 22, 2004 Guidelines This exam has 7 pages (including this one); make sure you have them all. Put your name on each page before starting the exam.

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 35 Mass Storage Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions For You Local/Global

More information

Introduction. Secondary Storage. File concept. File attributes

Introduction. Secondary Storage. File concept. File attributes Introduction Secondary storage is the non-volatile repository for (both user and system) data and programs As (integral or separate) part of an operating system, the file system manages this information

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2019 L22 File-system Implementation Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ When is contiguous

More information

I/O & Storage. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University

I/O & Storage. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University I/O & Storage Jin-Soo Kim ( jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics I/O systems Device characteristics: block vs. character I/O systems

More information

CSE 141 Computer Architecture Spring Lectures 17 Virtual Memory. Announcements Office Hour

CSE 141 Computer Architecture Spring Lectures 17 Virtual Memory. Announcements Office Hour CSE 4 Computer Architecture Spring 25 Lectures 7 Virtual Memory Pramod V. Argade May 25, 25 Announcements Office Hour Monday, June 6th: 6:3-8 PM, AP&M 528 Instead of regular Monday office hour 5-6 PM Reading

More information

CSE506: Operating Systems CSE 506: Operating Systems

CSE506: Operating Systems CSE 506: Operating Systems CSE 506: Operating Systems Disk Scheduling Key to Disk Performance Don t access the disk Whenever possible Cache contents in memory Most accesses hit in the block cache Prefetch blocks into block cache

More information

Disk Scheduling. Chapter 14 Based on the slides supporting the text and B.Ramamurthy s slides from Spring 2001

Disk Scheduling. Chapter 14 Based on the slides supporting the text and B.Ramamurthy s slides from Spring 2001 Disk Scheduling Chapter 14 Based on the slides supporting the text and B.Ramamurthy s slides from Spring 2001 1 User-Space I/O Software Layers of the I/O system and the main functions of each layer 2 Disks

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

A Disk Head Scheduling Simulator

A Disk Head Scheduling Simulator A Disk Head Scheduling Simulator Steven Robbins Department of Computer Science University of Texas at San Antonio srobbins@cs.utsa.edu Abstract Disk head scheduling is a standard topic in undergraduate

More information

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg Computer Architecture and System Software Lecture 09: Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Midterm returned + solutions in class today SSD

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Review: Disks 2 Device I/O Protocol Variants o Status checks Polling Interrupts o Data PIO DMA 3 Disks o Doing an disk I/O requires:

More information

Disks: Structure and Scheduling

Disks: Structure and Scheduling Disks: Structure and Scheduling COMS W4118 References: Opera;ng Systems Concepts (9e), Linux Kernel Development, previous W4118s Copyright no2ce: care has been taken to use only those web images deemed

More information

OPERATING SYSTEMS CS3502 Spring Input/Output System Chapter 9

OPERATING SYSTEMS CS3502 Spring Input/Output System Chapter 9 OPERATING SYSTEMS CS3502 Spring 2017 Input/Output System Chapter 9 Input/Output System Major objectives: An application s I/O requests are sent to the I/O device. Take whatever response comes back from

More information

Lecture 16: Storage Devices

Lecture 16: Storage Devices CS 422/522 Design & Implementation of Operating Systems Lecture 16: Storage Devices Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions of

More information

CS 537 Fall 2017 Review Session

CS 537 Fall 2017 Review Session CS 537 Fall 2017 Review Session Deadlock Conditions for deadlock: Hold and wait No preemption Circular wait Mutual exclusion QUESTION: Fix code List_insert(struct list * head, struc node * node List_move(struct

More information

Chapter 10: Mass-Storage Systems

Chapter 10: Mass-Storage Systems COP 4610: Introduction to Operating Systems (Spring 2016) Chapter 10: Mass-Storage Systems Zhi Wang Florida State University Content Overview of Mass Storage Structure Disk Structure Disk Scheduling Disk

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Baris Kasikci Slides by: Harsha V. Madhyastha OS Abstractions Applications Threads File system Virtual memory Operating System Next few lectures:

More information

Secondary storage. CS 537 Lecture 11 Secondary Storage. Disk trends. Another trip down memory lane

Secondary storage. CS 537 Lecture 11 Secondary Storage. Disk trends. Another trip down memory lane Secondary storage CS 537 Lecture 11 Secondary Storage Michael Swift Secondary storage typically: is anything that is outside of primary memory does not permit direct execution of instructions or data retrieval

More information

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Kai Li Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Kai Li Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

b. How many bits are there in the physical address?

b. How many bits are there in the physical address? Memory Management 1) Consider a logical address space of 64 (or 26) pages of 1,024 (or 210) bytes each, mapped onto a physical memory of 32 (or 25) frames. a. How many bits are there in the logical address?

More information

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems

File system internals Tanenbaum, Chapter 4. COMP3231 Operating Systems File system internals Tanenbaum, Chapter 4 COMP3231 Operating Systems Architecture of the OS storage stack Application File system: Hides physical location of data on the disk Exposes: directory hierarchy,

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Chapter 14: Mass-Storage Systems. Disk Structure

Chapter 14: Mass-Storage Systems. Disk Structure 1 Chapter 14: Mass-Storage Systems Disk Structure Disk Scheduling Disk Management Swap-Space Management RAID Structure Disk Attachment Stable-Storage Implementation Tertiary Storage Devices Operating System

More information

Name: Instructions. Problem 1 : Short answer. [56 points] CMU Storage Systems 25 Feb 2009 Spring 2009 Exam 1

Name: Instructions. Problem 1 : Short answer. [56 points] CMU Storage Systems 25 Feb 2009 Spring 2009 Exam 1 CMU 18 746 Storage Systems 25 Feb 2009 Spring 2009 Exam 1 Instructions Name: There are four (4) questions on the exam. You may find questions that could have several answers and require an explanation

More information

Fall COMP3511 Review

Fall COMP3511 Review Outline Fall 2015 - COMP3511 Review Monitor Deadlock and Banker Algorithm Paging and Segmentation Page Replacement Algorithms and Working-set Model File Allocation Disk Scheduling Review.2 Monitors Condition

More information

I/O Device Controllers. I/O Systems. I/O Ports & Memory-Mapped I/O. Direct Memory Access (DMA) Operating Systems 10/20/2010. CSC 256/456 Fall

I/O Device Controllers. I/O Systems. I/O Ports & Memory-Mapped I/O. Direct Memory Access (DMA) Operating Systems 10/20/2010. CSC 256/456 Fall I/O Device Controllers I/O Systems CS 256/456 Dept. of Computer Science, University of Rochester 10/20/2010 CSC 2/456 1 I/O devices have both mechanical component & electronic component The electronic

More information

EIDE, ATA, SATA, USB,

EIDE, ATA, SATA, USB, Magnetic disks provide bulk of secondary storage of modern computers! Drives rotate at 60 to 200 times per second! Transfer rate is rate at which data flow between drive and computer! Positioning time

More information

I/O Management and Disk Scheduling. Chapter 11

I/O Management and Disk Scheduling. Chapter 11 I/O Management and Disk Scheduling Chapter 11 Categories of I/O Devices Human readable used to communicate with the user video display terminals keyboard mouse printer Categories of I/O Devices Machine

More information

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name:

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name: Computer Architecture and Engineering CS152 Quiz #3 March 18th, 2008 Professor Krste Asanovic Name: Notes: This is a closed book, closed notes exam. 80 Minutes 10 Pages Not all questions are of equal difficulty,

More information

CS153: Final Review1. Chengyu Song. Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian

CS153: Final Review1. Chengyu Song. Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian 1 CS153: Final Review1 Chengyu Song Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian 2 Administrivia Final exam Thursday, June 15, 3:00 p.m. - 6:00 p.m. In this classroom (Sproul

More information

IMPORTANT: Circle the last two letters of your class account:

IMPORTANT: Circle the last two letters of your class account: Spring 2011 University of California, Berkeley College of Engineering Computer Science Division EECS MIDTERM I CS 186 Introduction to Database Systems Prof. Michael J. Franklin NAME: STUDENT ID: IMPORTANT:

More information

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University

COS 318: Operating Systems. Storage Devices. Vivek Pai Computer Science Department Princeton University COS 318: Operating Systems Storage Devices Vivek Pai Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall11/cos318/ Today s Topics Magnetic disks Magnetic disk

More information

CMU Storage Systems 20 Feb 2004 Fall 2005 Exam 1. Name: SOLUTIONS

CMU Storage Systems 20 Feb 2004 Fall 2005 Exam 1. Name: SOLUTIONS CMU 18 746 Storage Systems 20 Feb 2004 Fall 2005 Exam 1 Instructions Name: SOLUTIONS There are three (3) questions on the exam. You may find questions that could have several answers and require an explanation

More information

CSCI-GA Operating Systems. I/O : Disk Scheduling and RAID. Hubertus Franke

CSCI-GA Operating Systems. I/O : Disk Scheduling and RAID. Hubertus Franke CSCI-GA.2250-001 Operating Systems I/O : Disk Scheduling and RAID Hubertus Franke frankeh@cs.nyu.edu Disks Scheduling Abstracted by OS as files A Conventional Hard Disk (Magnetic) Structure Hard Disk

More information

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo CSE 421/521 - Operating Systems Fall 2014 Lecture - XXV Final Review Tevfik Koşar University at Buffalo December 2nd, 2014 1 Final Exam December 4th, Thursday 11:00am - 12:20pm Room: 110 Knox Chapters

More information

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices

u Covered: l Management of CPU & concurrency l Management of main memory & virtual memory u Currently --- Management of I/O devices Where Are We? COS 318: Operating Systems Storage Devices Jaswinder Pal Singh Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) u Covered: l Management of CPU

More information