Including location-based services, IoT, and increasing personalization... Service models and delivery architectures

Size: px
Start display at page:

Download "Including location-based services, IoT, and increasing personalization... Service models and delivery architectures"

Transcription

1 Outline Service landscape Example services Including location-based services, IoT, and increasing personalization... Service models and delivery architectures Client-server, p2p, one-to-many E.g., middleboxes/proxies, CDNs, cloud-based, SDN, multicast/broadcast (including loss recovery at AL and embms) Also, p2p, peer-assisted,... Example services E.g., mobile web and has/dash streaming 1

2 Service/company landscape include 1-2

3 Applications (3) File transfer Remote login (telnet, rlogin, ssh) World Wide Web (WWW) Instant Messaging (Internet chat, text messaging on cellular phones) Peer-to-Peer file sharing Internet Phone (Voice-Over-IP) Video-on-demand Distributed Games 3

4 Today s end hosts

5 Today s end hosts well, already have

6 Today s end hosts

7 looking towards the future The 2020 vision Everything that can be connected will be connected 50B devices (perhaps more like 500B...) IoT and smart cities Machine-to-machine High-definition 3D streaming to heterogeneous clients 7

8 Personalized service and personal footprints in a connected world

9 9

10 Client-server architecture Client/server model has well-defined roles. client/server 10

11 Pure P2P architecture No fixed clients or servers: Each host can act as both client and server at any time peer-peer 11

12 Proxies 12

13 Content Delivery Networks (CDNs) Challenging to stream large files (e.g., video) from single origin server in real time Solution: replicate content at hundreds of servers throughout Internet content downloaded to CDN servers ahead of time placing content close to user avoids impairments (loss, delay) of sending content over long paths CDN server typically in edge/access network origin server in North America CDN distribution node CDN server CDN server in S. America CDN server in Asia in Europe 13

14 Proxies and middleboxes 14

15 Gember-Jacobson et al., ACM SIGCOMM 2014 Sherry et al., ACM SIGCOMM 2012 Middleboxes + NF (and OpenNF) 15

16 Gember-Jacobson et al., ACM SIGCOMM 2014 Sherry et al., ACM SIGCOMM 2012 Middleboxes + NF (and OpenNF) 16

17 Middleboxes + NF Gember-Jacobson et al., ACM SIGCOMM 2014 Sherry et al., ACM SIGCOMM 2012 Network functions (NFs), or middleboxes, are systems that examine and modify packets and flows in sophisticated ways; e.g., intrusion detection systems (IDSs), load balancers, caching proxies, etc. NFs play a critical role in ensuring security, improving performance, and providing other novel network functionality. 17

18 Gember-Jacobson et al., ACM SIGCOMM 2014 Sherry et al., ACM SIGCOMM 2012 Middleboxes + NF (and OpenNF) Network functions (NFs), or middleboxes, are systems that examine and modify packets and flows in sophisticated ways; e.g., intrusion detection systems (IDSs), load balancers, caching proxies, etc. NFs play a critical role in ensuring security, improving performance, and providing other novel network functionality. 18

19 Gember-Jacobson et al., ACM SIGCOMM 2014 Sherry et al., ACM SIGCOMM 2012 Middleboxes + NF (and OpenNF) Network functions virtualization (NFV) + software defined networking (SDN) has the potential to help operators (i) satisfy tight service level agreements, (ii) accurately monitor and manipulate network traffic, and (iii) minimize operating expenses. OpenNF is a control plane designed to help redistribute packet processing across a collection of network function (NF) instances and coordinated control of both internal NF state and network forwarding state so to simultaneously achieving all three goals. 19

20 Cloud also used to offload the clients themselves... 20

21 What is Mobile Cloud Computing? Mobile cloud computing (MCC) at its simplest, refers to an infrastructure where both the data storage and data processing happen outside of the mobile device. Mobile cloud applications move the computing power and data storage away from the mobile devices and into powerful and centralized computing platforms located in clouds, which are then accessed over the wireless connection based on a thin native client.

22 Why Mobile Cloud Computing? Mobile devices face many resource challenges (battery life, storage, bandwidth etc.) Cloud computing offers advantages to users by allowing them to use infrastructure, platforms and software by cloud providers at low cost and elastically in an on-demand fashion. Mobile cloud computing provides mobile users with data storage and processing services in clouds, obviating the need to have a powerful device configuration (e.g. CPU speed, memory capacity etc), as all resource-intensive computing can be performed in the cloud.

23 MCC Architecture

24 24

25 cost-efficient delivery...

26 [Dan and Carlsson, IEEE INFOCOM 2014] Example problem Minimize content delivery costs Bandwidth Cost Cloud-based Elastic/flexible $$$ Dedicated servers Capped $ How to get the best of two worlds? cloud servers

27 and from who? [Carlsson et al., IFIP Performance 2014]

28 Additional Multimedia Support Multicast/Broadcast duplicate R1 duplicate creation/transmission R1 R2 R2 duplicate R3 R4 R3 R4 (a) (b) Source-duplication versus in-network duplication. (a) source duplication, (b) in-network duplication Also, application-layer multicast 28

29 Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced 29

30 Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced Separation of control plane and data plane Image from: Lecompte and Gabin, Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-Advanced: Overview and Rel-11 Enhancements, IEEE Communications Magazine, Nov

31 Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced MBMSFN and use of services areas Image from: Lecompte and Gabin, Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-Advanced: Overview and Rel-11 Enhancements, IEEE Communications Magazine, Nov

32 Packet Loss network loss: IP datagram lost due to network congestion (router buffer overflow) or losses at wireless link(s) delay loss: IP datagram arrives too late for playout at receiver (effectively the same as if it was lost) delays: processing, queueing in network; endsystem (sender, receiver) delays Tolerable delay depends on the application How can packet loss be handled? We will discuss this next 32

33 Receiver-based Packet Loss Recovery Generate replacement packet Packet repetition Interpolation Other sophisticated schemes Works when audio/video streams exhibit short-term correlations (e.g., self-similarity) Works for relatively low loss rates (e.g., < 5%) Typically, breaks down on bursty losses 33

34 Forward Error Correction (FEC) For every group of n actual media packets, generate k additional redundant packets Send out n+k packets, which increases the bandwidth consumption by factor k/n. Receiver can reconstruct the original n media packets provided at most k packets are lost from the group Works well at high loss rates (for a proper choice of k) Handles bursty packet losses Cost: increase in transmission cost (bandwidth) 34

35 Another FEC Example piggyback lower quality stream Example: send lower resolution audio stream as the redundant information Whenever there is non-consecutive loss, the receiver can conceal the loss. Can also append (n-1)st and (n-2)nd low-bit rate chunk 35

36 Interleaving: Recovery from packet loss Interleaving Intentionally alter the sequence of packets before transmission Better robustness against burst losses of packets Results in increased playout delay from inter-leaving 36

37 Real-Time Protocol (RTP) RTP specifies packet structure for packets carrying audio, video data RFC 3550 RTP runs in end systems RTP packets encapsulated in UDP segments 37

38 RTP Header Payload Type (7 bits): Indicates type of encoding currently being used. If sender changes encoding in middle of conference, sender informs receiver via payload type field. Payload type 0: PCM mu-law, 64 kbps Payload type 3, GSM, 13 kbps Payload type 7, LPC, 2.4 kbps Payload type 26, Motion JPEG Payload type 31. H.261 Payload type 33, MPEG2 video Sequence Number (16 bits): Increments by one for each RTP packet sent, and may be used to detect packet loss and to restore packet sequence. 38

39 Real-time Control Protocol (RTCP) Receiver report packets: fraction of packets lost, last sequence number, average interarrival jitter Sender report packets: SSRC of RTP stream, current time, number of packets sent, number of bytes sent RTCP attempts to limit its traffic to 5% of session bandwidth 39

40 40

41 Mobile web (e.g., adaption and location-based services) 41

42 HTTP-based streaming HTTP-based streaming 4 Allows easy caching, NAT/firewall traversal, etc. Use of TCP provides natural bandwidth adaptation Split into fragments, download sequentially Some support for interactive VoD

43 HTTP-based adaptive streaming (HAS) HTTP-based adaptive streaming 4 Multiple encodings of each fragment (defined in manifest file) Clients adapt quality encoding based on (buffer and network) conditions

44 Chunk-based streaming Chunks begin with keyframe so independent of other chunks Playing chunks in sequence gives seamless video Hybrid of streaming and progressive download: Stream-like: sequence of small chunks requested as needed Progressive download-like: HTTP transfer mechanism, stateless servers 44

45 Example 45 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

46 Example 46 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

47 Example 47 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

48 Example 48 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

49 Example 49 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

50 Example 50 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

51 Example 51 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

52 Example 52 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Server

53 HTTP-based Adaptive Streaming (HAS) Other terms for similar concepts: Adaptive Streaming, Smooth Streaming, HTTP Chunking, Dynamic Adaptive Streaming over HTTP (DASH) Probably most important is return to stateless server and TCP basis of 1st generation Actually a series of small progressive downloads of chunks (or range requests) No standard protocol... 53

54 HTTP-based Adaptive Streaming (HAS) Other terms for similar concepts: Adaptive Streaming, Smooth Streaming, HTTP Chunking, Dynamic Adaptive Streaming over HTTP (DASH) Probably most important is return to stateless server and TCP basis of 1st generation Actually a series of small progressive downloads of chunks (or range requests) No standard protocol... Apple HLS: HTTP Live Streaming Microsoft IIS Smooth Streaming: part of Silverlight (now Ericsson owned) Adobe: Flash Dynamic Streaming DASH: Dynamic Adaptive Streaming over HTTP YouTube (Google) and Netflix have their own versions Some operators and service providers have their own versions too (either based on above or completely own)... 54

55 Example players Player Container Type Open Source Microsoft Smooth Streaming Netflix player Silverlight Silverlight Chunk Range Apple HLS QuickTime Chunk Adobe HDS Flash Chunk 55

56 Problem: Proxyassisted HAS Slides from: V. Krishnamoorthi et al. "Helping Hand or Hidden Hurdle: Proxy-assisted HTTP-based Adaptive Streaming Performance", Proc. IEEE MASCOTS, 2013 Clients want High playback quality Small stall times Few buffer interruptions Few quality switches 56

57 Problem: Proxyassisted HAS Slides from: V. Krishnamoorthi et al. "Helping Hand or Hidden Hurdle: Proxy-assisted HTTP-based Adaptive Streaming Performance", Proc. IEEE MASCOTS, 2013 Clients want High playback quality Small stall times Few buffer interruptions Few quality switches HAS is increasingly responsible for larger traffic volumes Network and service providers may consider integrating HASaware proxy policies 57

58 Problem: Proxyassisted HAS Slides from: V. Krishnamoorthi et al. "Helping Hand or Hidden Hurdle: Proxy-assisted HTTP-based Adaptive Streaming Performance", Proc. IEEE MASCOTS, 2013 Clients want High playback quality Small stall times Few buffer interruptions Few quality switches Network providers want High QoE of customers/clients 58

59 Problem: Proxyassisted HAS Clients want High playback quality Small stall times Few buffer interruptions Few quality switches Network providers want High QoE of customers/clients Low bandwidth usage 59

60 Problem: Proxyassisted HAS Clients want High playback quality Small stall times Few buffer interruptions Few quality switches Network providers want High QoE of customers/clients Low bandwidth usage High hit rate 60

61 Problem: Proxyassisted HAS In this paper Evaluation of proxy-assisted HAS policies 61

62 Problem: Proxyassisted HAS In this paper Evaluation of proxy-assisted HAS policies 62

63 Problem: Proxyassisted HAS In this paper Evaluation of proxy-assisted HAS policies 63

64 Problem: Proxyassisted HAS In this paper Evaluation of proxy-assisted HAS policies 64

65 Problem: Proxyassisted HAS In this paper Evaluation of proxy-assisted HAS policies 65

66 Example: Default best-effort 66

67 Example: Default best-effort 67 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client Proxy

68 Example: Default best-effort 68 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1 Proxy before 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Proxy after

69 Example: Default best-effort 69 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 1 Proxy before 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Proxy after

70 Example: Default best-effort 70 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 2 Proxy before 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Proxy after

71 Example: Default best-effort 71 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 2 Proxy before 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Proxy after Good!

72 Example: Default best-effort 72 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 3 Proxy before 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Proxy after but

73 Example: Default best-effort 73 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Client 3 Proxy before 1,4 1,3 1,2 1,1 2,4 2,3 2,2 2,1 3,4 3,3 3,2 3,1 4,4 4,3 4,2 4,1 5,4 5,3 5,2 5,1 6,4 6,3 6,2 6,1 7,4 7,3 7,2 7,1 Proxy after sometimes bad!

74 74

75 More slides... 75

76 A protocol family for streaming RTSP RTP RTCP 76

77 RTSP Example Scenario: metafile communicated to web browser browser launches player player sets up an RTSP control connection, data connection to streaming server 77

78 RTSP Operation 78

79 Real-Time Protocol (RTP) RTP specifies packet structure for packets carrying audio, video data RFC 3550 RTP runs in end systems RTP packets encapsulated in UDP segments 79

80 RTP Header Payload Type (7 bits): Indicates type of encoding currently being used. If sender changes encoding in middle of conference, sender informs receiver via payload type field. Payload type 0: PCM mu-law, 64 kbps Payload type 3, GSM, 13 kbps Payload type 7, LPC, 2.4 kbps Payload type 26, Motion JPEG Payload type 31. H.261 Payload type 33, MPEG2 video Sequence Number (16 bits): Increments by one for each RTP packet sent, and may be used to detect packet loss and to restore packet sequence. 80

81 Real-time Control Protocol (RTCP) Receiver report packets: fraction of packets lost, last sequence number, average interarrival jitter Sender report packets: SSRC of RTP stream, current time, number of packets sent, number of bytes sent RTCP attempts to limit its traffic to 5% of session bandwidth 81

82 82

83 Multimedia Over Best Effort Internet TCP/UDP/IP: no guarantees on delay, loss??????? But you said multimedia apps requires QoS and level of performance to be effective!???? Today s multimedia applications implement functionality at the app. layer to mitigate (as best possible) effects of delay, loss 83

84 Summary: Internet MM tricks of the trade UDP vs TCP client-side adaptive playout delay: to compensate for delay server side matches stream bandwidth to available client-to-server path bandwidth chose among pre-encoded stream rates dynamic server encoding rate error recovery (on top of UDP) at the app layer FEC, interleaving retransmissions, time permitting conceal errors: repeat nearby data 84

85 85

86 More slides 86

87 Some more on QoS: Real-time traffic support Hard real-time Soft real-time Guarantee bounded delay Guarantee delay jitter End-to-end delay = queuing delays + transmission delays + processing times + propagation delay (and any potential retransmission delays at lower layers) 87

88 How to provide better support for Multimedia? (1/4) Integrated Services (IntServ) philosophy: architecture for providing QoS guarantees in IP networks for individual flows requires fundamental changes in Internet design so that apps can reserve end-to-end bandwidth Components of this architecture are Reservation protocol (e.g., RSVP) Admission control Routing protocol (e.g., QoS-aware) Packet classifier and route selection Packet scheduler (e.g., priority, deadline-based) 88

89 How to provide better support for Multimedia? (2/4) Concerns with IntServ: Scalability: signaling, maintaining per-flow router state difficult with thousands/millions of flows Flexible Service Models: IntServ has only two classes. Desire qualitative service classes E.g., Courier, ExpressPost, and normal mail E.g., First, business, and economy class Differentiated Services (DiffServ) approach: simple functions in network core, relatively complex functions at edge routers (or hosts) Don t define the service classes, just provide functional components to build service classes 89

90 90

91 91

92 92

93 Streaming Stored Multimedia (1/2) 1. video recorded 2. video sent network delay 3. video received, played out at client time streaming: at this time, client playing out early part of video, while server still sending later part of video 93

94 Streaming Stored Multimedia (2/2) VCR-like functionality: client can start, stop, pause, rewind, replay, fast-forward, slow-motion, etc. 10 sec initial delay OK 1-2 sec until command effect OK need a separate control protocol? timing constraint for data that is yet to be transmitted: must arrive in time for playback 94

95 Streaming Live Multimedia Examples: Internet radio talk show Live sporting event Streaming playback buffer playback can lag tens of seconds after transmission still have timing constraint Interactivity fast-forward is not possible rewind and pause possible! 95

96 Interactive, Real-time Multimedia applications: IP telephony, video conference, distributed interactive worlds end-end delay requirements: audio: < 150 msec good, < 400 msec OK includes application-layer (packetization) and network delays higher delays noticeable, impair interactivity session initialization callee must advertise its IP address, port number, frame rate, encoding algorithms 96

97 97

98 98

99 Why Study Multimedia Networking? Majority of traffic Industry-relevant research topic Multimedia is everywhere Lots of open research problems Exciting and fun! 99

100 Scalable Content Delivery Motivation Use of Internet for content delivery is massive and becoming more so (e.g., majority of all IP traffic is video content) Variety of approaches: HTTP-based Adaptive Streaming (HAS), broadcast/multicast, batching, replication/caching (e.g. CDNs), P2P, peer-assisted, In these slides, we only provide a few high-level examples 100

101 Service models 101

102 102

103 Multimedia Networking Applications Classes of MM applications: 103

104 Multimedia Networking Applications Classes of MM applications: 1) Streaming stored audio and video 2) Streaming live audio and video 3) Real-time interactive audio and video 104

105 105

106 Multimedia Networking Applications Fundamental characteristics: 106

107 Multimedia Networking Applications Fundamental characteristics: Inherent frame rate Typically delay-sensitive end-to-end delay delay jitter But loss-tolerant: infrequent losses cause minor transient glitches Unlike data apps, which are often delaytolerant but loss-sensitive. 107

108 Multimedia Networking Applications Fundamental characteristics: Inherent frame rate Typically delay-sensitive end-to-end delay delay jitter But loss-tolerant: infrequent losses cause minor transient glitches Unlike data apps, which are often delaytolerant but loss-sensitive. Jitter is the variability of packet delays within the same packet stream 108

109 buffered video Streaming Multimedia: Client Buffering constant bit rate video transmission variable network delay client video reception constant bit rate video playout at client client playout delay time Client-side buffering, playout delay compensate for network-added delay, delay jitter 109

110 Streaming Multimedia: Client Buffering variable fill rate, x(t) constant drain rate, d buffered video Client-side buffering, playout delay compensate for network-added delay, delay jitter 110

111 111

112 Streaming Multimedia: UDP or TCP? UDP server sends at rate appropriate for client (oblivious to network congestion!) often send rate = encoding rate = constant rate then, fill rate = constant rate - packet loss short playout delay (2-5 seconds) to compensate for network delay jitter error recover: time permitting TCP send at maximum possible rate under TCP fill rate fluctuates due to TCP congestion control larger playout delay: smooth TCP delivery rate HTTP/TCP passes more easily through firewalls 112

Service/company landscape include 1-1

Service/company landscape include 1-1 Service/company landscape include 1-1 Applications (3) File transfer Remote login (telnet, rlogin, ssh) World Wide Web (WWW) Instant Messaging (Internet chat, text messaging on cellular phones) Peer-to-Peer

More information

Multimedia Networking

Multimedia Networking Multimedia Networking 1 Multimedia, Quality of Service (QoS): What is it? Multimedia applications: Network audio and video ( continuous media ) QoS Network provides application with level of performance

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides are adapted

More information

Digital Asset Management 5. Streaming multimedia

Digital Asset Management 5. Streaming multimedia Digital Asset Management 5. Streaming multimedia 2015-10-29 Keys of Streaming Media Algorithms (**) Standards (*****) Complete End-to-End systems (***) Research Frontiers(*) Streaming... Progressive streaming

More information

Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices

Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices Outline QoS routing in ad-hoc networks QoS in ad-hoc networks Classifiction of QoS approaches Instantiation in IEEE 802.11 The MAC protocol (recap) DCF, PCF and QoS support IEEE 802.11e: EDCF, HCF Streaming

More information

Chapter 7: Multimedia Networking

Chapter 7: Multimedia Networking Chapter 7: Multimedia Networking Multimedia and Quality of Service: What is it multimedia : network audio and video ( continuous media ) A note on the use of these ppt slides: We re making these slides

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking Principles Classify multimedia applications Identify the network services and the requirements the apps need Making the best of best effort service Mechanisms for providing

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 multimedia applications:

More information

CSC 4900 Computer Networks: Multimedia Applications

CSC 4900 Computer Networks: Multimedia Applications CSC 4900 Computer Networks: Multimedia Applications Professor Henry Carter Fall 2017 Last Time What is a VPN? What technology/protocol suite is generally used to implement them? How much protection does

More information

MULTIMEDIA I CSC 249 APRIL 26, Multimedia Classes of Applications Services Evolution of protocols

MULTIMEDIA I CSC 249 APRIL 26, Multimedia Classes of Applications Services Evolution of protocols MULTIMEDIA I CSC 249 APRIL 26, 2018 Multimedia Classes of Applications Services Evolution of protocols Streaming from web server Content distribution networks VoIP Real time streaming protocol 1 video

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach Chapter 9 Multimedia Networking A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Lecture 9: Media over IP

Lecture 9: Media over IP Lecture 9: Media over IP These slides are adapted from the slides provided by the authors of the book (to the right), available from the publisher s website. Computer Networking: A Top Down Approach 5

More information

Multimedia Networking

Multimedia Networking Multimedia Networking #2 Multimedia Networking Semester Ganjil 2012 PTIIK Universitas Brawijaya #2 Multimedia Applications 1 Schedule of Class Meeting 1. Introduction 2. Applications of MN 3. Requirements

More information

Quality of Service. Qos Mechanisms. EECS 122: Lecture 15

Quality of Service. Qos Mechanisms. EECS 122: Lecture 15 Quality of Service EECS 122: Lecture 15 Department of Electrical Engineering and Computer Sciences University of California Berkeley Qos Mechanisms Policing at the edge of the network controls the amount

More information

Today. March 7, 2006 EECS122 Lecture 15 (AKP) 4. D(t) Scheduling Discipline. March 7, 2006 EECS122 Lecture 15 (AKP) 5

Today. March 7, 2006 EECS122 Lecture 15 (AKP) 4. D(t) Scheduling Discipline. March 7, 2006 EECS122 Lecture 15 (AKP) 5 Today Quality of Service EECS 122: Lecture 15 Department of Electrical Engineering and Computer Sciences University of California Berkeley End to End QoS Network Layer: Multiple routers Intserv Diffserv

More information

CS640: Introduction to Computer Networks. Application Classes. Application Classes (more) 11/20/2007

CS640: Introduction to Computer Networks. Application Classes. Application Classes (more) 11/20/2007 CS640: Introduction to Computer Networks Aditya Akella Lecture 21 - Multimedia Networking Application Classes Typically sensitive to delay, but can tolerate packet loss (would cause minor glitches that

More information

CS 218 F Nov 3 lecture: Streaming video/audio Adaptive encoding (eg, layered encoding) TCP friendliness. References:

CS 218 F Nov 3 lecture: Streaming video/audio Adaptive encoding (eg, layered encoding) TCP friendliness. References: CS 218 F 2003 Nov 3 lecture: Streaming video/audio Adaptive encoding (eg, layered encoding) TCP friendliness References: J. Padhye, V.Firoiu, D. Towsley, J. Kurose Modeling TCP Throughput: a Simple Model

More information

Multimedia Applications. Classification of Applications. Transport and Network Layer

Multimedia Applications. Classification of Applications. Transport and Network Layer Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Protocols Quality of Service and Resource Management

More information

Streaming (Multi)media

Streaming (Multi)media Streaming (Multi)media Overview POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks 1 POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks Circuit Switching Connection-oriented

More information

Page 1. Outline / Computer Networking : 1 st Generation Commercial PC/Packet Video Technologies

Page 1. Outline / Computer Networking : 1 st Generation Commercial PC/Packet Video Technologies Outline 15-441/15-641 Computer Networking Lecture 18 Internet Video Delivery Peter Steenkiste Slides by Professor Hui Zhang Background Technologies: - HTTP download - Real-time streaming - HTTP streaming

More information

Latency and Loss Requirements! Receiver-side Buffering! Dealing with Loss! Loss Recovery!

Latency and Loss Requirements! Receiver-side Buffering! Dealing with Loss! Loss Recovery! Cumulative data! Latency and Loss Requirements! Fundamental characteristics of multimedia applications:! Typically delay sensitive!! live audio < 150 msec end-to-end delay is not perceptible!! 150-400

More information

Internet Video Delivery. Professor Hui Zhang

Internet Video Delivery. Professor Hui Zhang 18-345 Internet Video Delivery Professor Hui Zhang 1 1990 2004: 1 st Generation Commercial PC/Packet Video Technologies Simple video playback, no support for rich app Not well integrated with Web browser

More information

Tema 0: Transmisión de Datos Multimedia

Tema 0: Transmisión de Datos Multimedia Tema 0: Transmisión de Datos Multimedia Clases de aplicaciones multimedia Redes basadas en IP y QoS Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross

More information

Content distribution networks

Content distribution networks Content distribution networks v challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users? v option 2: store/serve multiple copies of videos at

More information

CS 457 Multimedia Applications. Fall 2014

CS 457 Multimedia Applications. Fall 2014 CS 457 Multimedia Applications Fall 2014 Topics Digital audio and video Sampling, quantizing, and compressing Multimedia applications Streaming audio and video for playback Live, interactive audio and

More information

Multimedia! 23/03/18. Part 3: Lecture 3! Content and multimedia! Internet traffic!

Multimedia! 23/03/18. Part 3: Lecture 3! Content and multimedia! Internet traffic! Part 3: Lecture 3 Content and multimedia Internet traffic Multimedia How can multimedia be transmitted? Interactive/real-time Streaming 1 Voice over IP Interactive multimedia Voice and multimedia sessions

More information

Part 3: Lecture 3! Content and multimedia!

Part 3: Lecture 3! Content and multimedia! Part 3: Lecture 3! Content and multimedia! Internet traffic! Multimedia! How can multimedia be transmitted?! Interactive/real-time! Streaming! Interactive multimedia! Voice over IP! Voice and multimedia

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 5. End-to-End Protocols Transport Services and Mechanisms User Datagram Protocol (UDP) Transmission Control Protocol (TCP) TCP Congestion Control

More information

Video Streaming and Media Session Protocols

Video Streaming and Media Session Protocols Video Streaming and Media Session Protocols 1 Streaming Stored Multimedia Stored media streaming File containing digitized audio / video Stored at source Transmitted to client Streaming Client playout

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach Chapter 9 Multimedia Networking A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Multimedia Networking

Multimedia Networking CE443 Computer Networks Multimedia Networking Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by

More information

CSCD 433/533 Advanced Networks Fall Lecture 14 RTSP and Transport Protocols/ RTP

CSCD 433/533 Advanced Networks Fall Lecture 14 RTSP and Transport Protocols/ RTP CSCD 433/533 Advanced Networks Fall 2012 Lecture 14 RTSP and Transport Protocols/ RTP 1 Topics Multimedia Player RTSP Review RTP Real Time Protocol Requirements for RTP RTP Details Applications that use

More information

Multimedia Networking

Multimedia Networking Multimedia Networking Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-09/

More information

Chapter 28. Multimedia

Chapter 28. Multimedia Chapter 28. Multimedia 28-1 Internet Audio/Video Streaming stored audio/video refers to on-demand requests for compressed audio/video files Streaming live audio/video refers to the broadcasting of radio

More information

The Transport Layer: User Datagram Protocol

The Transport Layer: User Datagram Protocol The Transport Layer: User Datagram Protocol CS7025: Network Technologies and Server Side Programming http://www.scss.tcd.ie/~luzs/t/cs7025/ Lecturer: Saturnino Luz April 4, 2011 The UDP All applications

More information

55:054 Communication Networks 12/11/2008

55:054 Communication Networks 12/11/2008 Chapter 7 Multimedia Networking Multimedia and Quality of Service: What is it? multimedia applications: network audio and video ( continuous media ) All material copyright 1996-2007 J.F Kurose and K.W.

More information

Multimedia: video ... frame i+1

Multimedia: video ... frame i+1 Multimedia: video video: sequence of images displayed at constant rate e.g. 24 images/sec digital image: array of pixels each pixel represented by bits coding: use redundancy within and between images

More information

Multimedia Applications: Streaming. Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011

Multimedia Applications: Streaming. Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011 Multimedia Applications: Streaming Hamid R. Rabiee Mostafa Salehi, Fatemeh Dabiran, Hoda Ayatollahi Spring 2011 Outline What is Streaming Technology? Issues in Video Streaming over the Internet Bandwidth

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications: RTP, SIP 7.5 network support

More information

Multimedia in the Internet

Multimedia in the Internet Protocols for multimedia in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ > 4 4 3 < 2 Applications and protocol stack DNS Telnet

More information

Week-12 (Multimedia Networking)

Week-12 (Multimedia Networking) Computer Networks and Applications COMP 3331/COMP 9331 Week-12 (Multimedia Networking) 1 Multimedia: audio analog audio signal sampled at constant rate telephone: 8,000 samples/sec CD music: 44,100 samples/sec

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Application Layer Video Streaming, CDN and Sockets Sec 2.6 2.7 Prof. Lina Battestilli Fall 2017 Outline Application Layer (ch 2) 2.1 principles of network

More information

Cobalt Digital Inc Galen Drive Champaign, IL USA

Cobalt Digital Inc Galen Drive Champaign, IL USA Cobalt Digital White Paper IP Video Transport Protocols Knowing What To Use When and Why Cobalt Digital Inc. 2506 Galen Drive Champaign, IL 61821 USA 1-217-344-1243 www.cobaltdigital.com support@cobaltdigital.com

More information

Multimedia networked applications: standards, protocols and research trends

Multimedia networked applications: standards, protocols and research trends Multimedia networked applications: standards, protocols and research trends Maria Teresa Andrade FEUP / INESC Porto mandrade@fe.up.pt ; maria.andrade@inescporto.pt http://www.fe.up.pt/~mandrade/ ; http://www.inescporto.pt

More information

in the Internet Andrea Bianco Telecommunication Network Group Application taxonomy

in the Internet Andrea Bianco Telecommunication Network Group  Application taxonomy Multimedia traffic support in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network Management and QoS Provisioning - 1 Application

More information

4 rd class Department of Network College of IT- University of Babylon

4 rd class Department of Network College of IT- University of Babylon 1. INTRODUCTION We can divide audio and video services into three broad categories: streaming stored audio/video, streaming live audio/video, and interactive audio/video. Streaming means a user can listen

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

Multimedia

Multimedia Multimedia Communications @CS.NCTU Lecture 11: Multimedia Networking Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 2 Why Multimedia Networking Matters? Watching video over Internet Uploading user-generated content

More information

Can Congestion-controlled Interactive Multimedia Traffic Co-exist with TCP? Colin Perkins

Can Congestion-controlled Interactive Multimedia Traffic Co-exist with TCP? Colin Perkins Can Congestion-controlled Interactive Multimedia Traffic Co-exist with TCP? Colin Perkins Context: WebRTC WebRTC project has been driving interest in congestion control for interactive multimedia Aims

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Multimedia Applications over Packet Networks

Multimedia Applications over Packet Networks Multimedia Networking and Quality of Service Mario Baldi Technical Univeristy of Torino Computer Engineering Department mario.baldi@polito.it +39 011 564 7067 staff.polito.it/mario.baldi Nota di Copyright

More information

Chapter 5 VoIP. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March Multmedia Networking

Chapter 5 VoIP. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March Multmedia Networking Chapter 5 VoIP Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Multmedia Networking audio signal amplitude Multimedia: audio analog audio signal sampled

More information

Multimedia Networking and Quality of Service

Multimedia Networking and Quality of Service Multimedia Networking and Quality of Service Mario Baldi Politecnico di Torino (Technical Univeristy of Torino) Department of Computer Engineering mario.baldi [at] polito.it +39 011 564 7067 staff.polito.it/mario.baldi

More information

Introduction to LAN/WAN. Application Layer 4

Introduction to LAN/WAN. Application Layer 4 Introduction to LAN/WAN Application Layer 4 Multimedia Multimedia: Audio + video Human ear: 20Hz 20kHz, Dogs hear higher freqs DAC converts audio waves to digital E.g PCM uses 8-bit samples 8000 times

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications 7.5 network support for multimedia

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport Multimedia Multimedia 1 Outline Audio and Video Services

More information

Lec 17 Multimedia Transport: RTP, TCP/HTTP and QUIC

Lec 17 Multimedia Transport: RTP, TCP/HTTP and QUIC Multimedia Communication Lec 17 Multimedia Transport: RTP, TCP/HTTP and QUIC Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/2016sp.video-communication/main.html Z. Li, Multimedia Communciation,

More information

Real-Time Control Protocol (RTCP)

Real-Time Control Protocol (RTCP) Real-Time Control Protocol (RTCP) works in conjunction with RTP each participant in RTP session periodically sends RTCP control packets to all other participants each RTCP packet contains sender and/or

More information

RTP: A Transport Protocol for Real-Time Applications

RTP: A Transport Protocol for Real-Time Applications RTP: A Transport Protocol for Real-Time Applications Provides end-to-end delivery services for data with real-time characteristics, such as interactive audio and video. Those services include payload type

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Introduction to the Application Layer. Computer Networks Term B14

Introduction to the Application Layer. Computer Networks Term B14 Introduction to the Application Layer Computer Networks Term B14 Intro to Application Layer Outline Current Application Layer Protocols Creating an Application Application Architectures Client-Server P2P

More information

CMSC 322 Computer Networks Applications and End-To- End

CMSC 322 Computer Networks Applications and End-To- End CMSC 322 Computer Networks Applications and End-To- End Professor Doug Szajda CMSC 332: Computer Networks Announcements Project 2 has been posted and is due Monday, February 8 (No extension!) Homework

More information

Introduction to Networked Multimedia An Introduction to RTP p. 3 A Brief History of Audio/Video Networking p. 4 Early Packet Voice and Video

Introduction to Networked Multimedia An Introduction to RTP p. 3 A Brief History of Audio/Video Networking p. 4 Early Packet Voice and Video Preface p. xi Acknowledgments p. xvii Introduction to Networked Multimedia An Introduction to RTP p. 3 A Brief History of Audio/Video Networking p. 4 Early Packet Voice and Video Experiments p. 4 Audio

More information

Multimedia Networking. Network Support for Multimedia Applications

Multimedia Networking. Network Support for Multimedia Applications Multimedia Networking Network Support for Multimedia Applications Protocols for Real Time Interactive Applications Differentiated Services (DiffServ) Per Connection Quality of Services Guarantees (IntServ)

More information

INSE 7110 Winter 2009 Value Added Services Engineering in Next Generation Networks Week #2. Roch H. Glitho- Ericsson/Concordia University

INSE 7110 Winter 2009 Value Added Services Engineering in Next Generation Networks Week #2. Roch H. Glitho- Ericsson/Concordia University INSE 7110 Winter 2009 Value Added Services Engineering in Next Generation Networks Week #2 1 Outline 1. Basics 2. Media Handling 3. Quality of Service (QoS) 2 Basics - Definitions - History - Standards.

More information

Advanced Networking Technologies

Advanced Networking Technologies Advanced Networking Technologies Chapter 13 Caching Techniques for Streaming Media (Acknowledgement: These slides have been prepared by Dr.-Ing. Markus Hofmann) 1 What is Streaming? Streaming media refers

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

Mul$media Streaming. Digital Audio and Video Data. Digital Audio Sampling the analog signal. Challenges for Media Streaming.

Mul$media Streaming. Digital Audio and Video Data. Digital Audio Sampling the analog signal. Challenges for Media Streaming. Mul$media Streaming Digital Audio and Video Data Jennifer Rexford COS 461: Computer Networks Lectures: MW 10-10:50am in Architecture N101 hhp://www.cs.princeton.edu/courses/archive/spr12/cos461/ 2 Challenges

More information

Recommended Readings

Recommended Readings Lecture 11: Media Adaptation Scalable Coding, Dealing with Errors Some slides, images were from http://ip.hhi.de/imagecom_g1/savce/index.htm and John G. Apostolopoulos http://www.mit.edu/~6.344/spring2004

More information

Lecture 11. Transport Layer (cont d) Transport Layer 1

Lecture 11. Transport Layer (cont d) Transport Layer 1 Lecture 11 Transport Layer (cont d) Transport Layer 1 Agenda The Transport Layer (continue) Connection-oriented Transport (TCP) Flow Control Connection Management Congestion Control Introduction to the

More information

Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced

Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced 1 Evolved Multimedia Broadcast/Multicast Service (embms) in LTE-advanced Separation of control plane and data plane Image from: Lecompte

More information

Proxy-based TCP-friendly streaming over mobile networks

Proxy-based TCP-friendly streaming over mobile networks Proxy-based TCP-friendly streaming over mobile networks Frank Hartung Uwe Horn Markus Kampmann Presented by Rob Elkind Proxy-based TCP over mobile nets 1 Outline Introduction TCP Friendly Rate Control

More information

Lecture 14: Performance Architecture

Lecture 14: Performance Architecture Lecture 14: Performance Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 14-1 Background Performance: levels for capacity, delay, and RMA. Performance

More information

Network-Adaptive Video Coding and Transmission

Network-Adaptive Video Coding and Transmission Header for SPIE use Network-Adaptive Video Coding and Transmission Kay Sripanidkulchai and Tsuhan Chen Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

More information

CSC 4900 Computer Networks: End-to-End Design

CSC 4900 Computer Networks: End-to-End Design CSC 4900 Computer Networks: End-to-End Design Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review In the last two lectures, we discussed the fundamentals of networking

More information

Lecture 14: Multimedia Communications

Lecture 14: Multimedia Communications Lecture 14: Multimedia Communications Prof. Shervin Shirmohammadi SITE, University of Ottawa Fall 2005 CEG 4183 14-1 Multimedia Characteristics Bandwidth Media has natural bitrate, not very flexible. Packet

More information

3. Quality of Service

3. Quality of Service 3. Quality of Service Usage Applications Learning & Teaching Design User Interfaces Services Content Process ing Security... Documents Synchronization Group Communi cations Systems Databases Programming

More information

Introduction to Quality of Service

Introduction to Quality of Service Introduction to Quality of Service The use of IP as a foundation for converged networks has raised several issues for both enterprise IT departments and ISPs. IP and Ethernet are connectionless technologies

More information

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Link layer,

More information

ITTC Communication Networks The University of Kansas EECS 780 Multimedia and Session Control

ITTC Communication Networks The University of Kansas EECS 780 Multimedia and Session Control Communication Networks The University of Kansas EECS 780 Multimedia and Session Control James P.G. Sterbenz Department of Electrical Engineering & Computer Science Information Technology & Telecommunications

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Achieving Low-Latency Streaming At Scale

Achieving Low-Latency Streaming At Scale Achieving Low-Latency Streaming At Scale Founded in 2005, Wowza offers a complete portfolio to power today s video streaming ecosystem from encoding to delivery. Wowza provides both software and managed

More information

Internet Architecture & Performance. What s the Internet: nuts and bolts view

Internet Architecture & Performance. What s the Internet: nuts and bolts view Internet Architecture & Performance Internet, Connection, Protocols, Performance measurements What s the Internet: nuts and bolts view millions of connected computing devices: hosts, end systems pc s workstations,

More information

Quality of Service in Ultrabroadband models

Quality of Service in Ultrabroadband models Quality of Service in Ultrabroadband models Elias Aravantinos ICT Consultant, CITI Managing Director, Exelixisnet earavantinos@exelixisnet.com April 4, 2008 TELECOM ParisTech Contents 1 2 3 4 UBB & QoS

More information

Multimedia Protocols. Foreleser: Carsten Griwodz Mai INF-3190: Multimedia Protocols

Multimedia Protocols. Foreleser: Carsten Griwodz Mai INF-3190: Multimedia Protocols Multimedia Protocols Foreleser: Carsten Griwodz Email: griff@ifi.uio.no 11. Mai 2006 1 INF-3190: Multimedia Protocols Media! Medium: "Thing in the middle! here: means to distribute and present information!

More information

CSE 123b Communications Software

CSE 123b Communications Software CSE 123b Communications Software Spring 2002 Lecture 10: Quality of Service Stefan Savage Today s class: Quality of Service What s wrong with Best Effort service? What kinds of service do applications

More information

Chapter 7 + ATM/VC networks (3, 4, 5): Multimedia networking, QoS, Congestion control Course on Computer Communication and Networks, CTH/GU

Chapter 7 + ATM/VC networks (3, 4, 5): Multimedia networking, QoS, Congestion control Course on Computer Communication and Networks, CTH/GU Chapter 7 + ATM/VC networks (3, 4, 5): Multimedia networking, QoS, Congestion control Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the

More information

Adaptive Video Acceleration. White Paper. 1 P a g e

Adaptive Video Acceleration. White Paper. 1 P a g e Adaptive Video Acceleration White Paper 1 P a g e Version 1.0 Veronique Phan Dir. Technical Sales July 16 th 2014 2 P a g e 1. Preface Giraffic is the enabler of Next Generation Internet TV broadcast technology

More information

CS519: Computer Networks. Lecture 9: May 03, 2004 Media over Internet

CS519: Computer Networks. Lecture 9: May 03, 2004 Media over Internet : Computer Networks Lecture 9: May 03, 2004 Media over Internet Media over the Internet Media = Voice and Video Key characteristic of media: Realtime Which we ve chosen to define in terms of playback,

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

IMPROVING LIVE PERFORMANCE IN HTTP ADAPTIVE STREAMING SYSTEMS

IMPROVING LIVE PERFORMANCE IN HTTP ADAPTIVE STREAMING SYSTEMS IMPROVING LIVE PERFORMANCE IN HTTP ADAPTIVE STREAMING SYSTEMS Kevin Streeter Adobe Systems, USA ABSTRACT While HTTP adaptive streaming (HAS) technology has been very successful, it also generally introduces

More information

Lecture 2 Communication services The Trasport Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 2 Communication services The Trasport Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 2 Communication services The Trasport Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it The structure edge: applications and hosts core: routers of s access s, media:

More information