Working Analysis of TCP/IP with Optical Burst Switching Networks (OBS)

Size: px
Start display at page:

Download "Working Analysis of TCP/IP with Optical Burst Switching Networks (OBS)"

Transcription

1 Working Analysis of TCP/IP with Optical Burst Switching Networks (OBS) Malik Salahuddin Nasir, Muabshir Ashfaq and Hafiz Sabir Hussain CS&IT Department, Superior University, 17-km off Riwind Road, Lahore Pakistan {Mubashir.ashfaq1& ABSTRACT: This paper is about the working analysis of Optical Burst Switching Network. From past few years a lot of research has been done in optical communication field, especially in optical circuit switching and optical packet switching, and combining them to form optical burst switching network. These researches were the results of increasing demand of high bandwidth for fast communication. This paper covers three aspects related to optical network. Firstly we define the complete working architecture of Burst switching network. Working of IP protocol using two nodes, 1-edge node and 2-core node is defined in second section. The third section is provided with the information of TCP as a transport layer protocol and also defined the parameters in optical burst switching network which are affecting its performance. At the end of this paper we emphasized on the issues of TCP protocol in this network and tried to give a direction to overcome these problems. I. INTRODUCTION Few years ago, there were limited number of users and demand of data was very low and is easily providable for service providers. Due to increase in number of users there was loads of data that caused mismanagement of available data rates and bandwidth to fulfill requirements. So in order to provide service according to the demand of the users, engineers and scientists started their research to find a new efficient and fast way for data communication and the way they found was optical communication. Data travels with the speed of light in optical communication providing the user with an excellent quality service and fast communication around the networks [1]. Our current core network is an optical network while access network is in electrical domain. The architecture of Present network is shown below in Fig. 1. Then concept of fiber to the home and fiber to the curb was introduced which provides a complete communication in optical domain, which is more efficiently then old technology and also very less time delay [1]. One of the big issues regarding optical communication is the compatibility of devices. Current switching devices are not applicable for optical wavelength switching although some devices have been introduced having an extra module, that converts the incoming optical signal into electrical signal in order to perform switching and then again convert that electrical signal into optical signal. Using such modules with switching devices, optical communications is affordable for those small scale communication networks, where time delay is not considered. While on the other hand using such modules, devices do not work efficiently on large scale network [2]. So the most suitable switching method for optical communication introduces is Optical burst switching OBS that provide full support to optical signals directly rather than converting these upcoming optical signals completely into electrical signal. In this network the travelling optical signal consists of two portions. First portion contains all the information about the data, source and destination, while second portion contains the data packets. This phenomenon of new type of network saves time of extra processing providing complete optical data and voice communication in efficient manner [3]. Optical bust switching is composition of optical circuit switching and optical packet switching so we can say that the purpose of optical burst switching is to provide wavelength for communication with combined properties of electronics and optics. A simple architecture of OBS network is given below in Fig. 2. For Optical Burst Switching network IP based communication is implemented with the help of two nodes implementation, which are 1- edge node and 2-core node [4]. Working of Internet Protocol (IP) is same as in our current data communication networks. TCP is also used in OBS as a transport protocol for IP based communication. TCP is providing its full support as a transport layer protocol in combination with optical layer protocols but it is affected by few parameters of Optical Burst Switching networks. These problems of TCP are tested in different environments and under different topologies. As a result of these observations a direction is given to overcome these drawbacks of Transport layer to work efficiently with Optical Burst layer [5]. Fig. 1 Present Network Architecture

2 The header processing ability of this switching method is also its draw back because processing each header separately requires move electrical equipment and each data wavelength needs to wait in queue until its header is being progressed [8]. The technical comparison between these switching techniques is in Fig. 3. Fig. 2 A Sample OBS Network II. RELATED WORK There are also few other Optical Switching techniques being used in core of different networks. These techniques are: Optical Circuit Switching O/E/O Switching (Optical to Electrical and Electrical to Optical) Optical Packet Switching The OPTICAL CIRCUIT SWITCHING technique is as like other ordinary switching in which signal is not converted from one domain to other. In this switching method a light path is setup only once and all the data on one wavelength from input fiber will be carried as it is to the output fiber on the other end. There is no Statistical Multiplexing of data coming from other networks, due to which only one wavelength is processed at a time and during processing all the bandwidth is allocated to that wavelength. By using this switching technique high bit rates for computer communication cannot be achieved [6]. O/E/O switching technique was introduced to overcome the problems faced in OCS. Statistical Multiplexing is made possible in this technique with the help of electrical processing and buffering ability. But this is not much efficient to handle bulks of wavelengths working at 30+ Gbps. In addition with high speed wavelength handling problem electrical switches have few limitations of being used at large scale. These switches consume move Power, produces move heat and require expensive Optical to electrical and electrical to optical conversion [7]. OPTICAL PACKET switching technique is a bit different from other two described above. Working of Optical packet switching is like working of router at network layer which performs routing by processing the header of each packet. In this switching data wavelengths are multiplexed statically while the header of each wavelength is converted to electrical domain for processing. Fig. 3 Comparison B/W different Optical Nodes [9] III. WORKING MODEL OF OBS In Optical Burst Switching network, different types of data from different sources are aggregated at input edge node. Here incoming data is assembled into burst form and control channel for each burst is created. Remember that this data burst is made of various data packets and control channel contains the header information for all of packets in the single burst. At the time of assembling and disassembling, the incoming data is buffered at the edges of OBS network. The control channel is much smaller in size than its data burst and it goes though O/E conversion for routing process at the nodes in OBS network. On the other hand, burst passes each node in the network by using pre-established and pre-configured circuits because the nodes do not require any information regarding the format of data bursts. When control channel of a burst is under process at any node in the network, data burst has to wait until its routing path is defined [10]. During this time data burst stays in Fiber delay lines (FDLS). FDLs consist of optical fibers that are used to store light for a specific time. It is an optical storage medium that enables compensation for a difference in time of occurrence of data in form of light wave [11].

3 There is kept a time difference between control channel and data burst due to processing and packet assembling delay. If the time difference is large, then data burst is switched optically without any delay at edge nodes. In this way Fiber Delay lines (FDLs) are not required. Working model of OBS is in Fig. 4. In OBS model working of TCP & IP with OBS is to be defined separately [12]. IV. Fig. 4 Working Model of OBS WORKING OF IP WITH OBS Internet Protocol (IP) is the basic protocol in data packet networks. It is network layer protocol and helps a lot in the routing process. Routing is highly dependent on IP of packet. Each IP packet has its header which contains the IP information for each packet. In OBS network IP work with the help of two nodes: 1. Edge node (a) Ingress node (b) Egress node 2. Core node When IP packets arrive at edge of OBS network, it is collected by input edge node called Ingress node. Here data packets and there headers are separated. Data packets are assembled and data bursts are formed. Headers of all packets in the burst are combined and assembled in control channel. These data bursts and their control channel are then sent to core node [13]. In core node control channel are processed and according to header information for each packet, these IP packets bursts are switched by switching fiber and dropped to the destination address using ADD/DROP fiber [14]. At the output edge node called Egress node, the data bursts are disassembled into IP packets again. The bursts with same FEC (forward equivalent class) are processed and assembled in single unit of burst assembly. The work of burst scheduler is to create bursts and their BHC s, adjusting offset time, scheduling of burst to egress nodes and forwarding of burst with their BHC s to OBS core network. The burst assembly algorithms are classified as timer-based, burst length based and both timer + burst length based. The characteristics of assembled burst traffic are different from the original traffic originated from other source. OBS network performance is also affected by latency, throughput and burst lost loss due to burst assembly process. The basic characteristic of OBS network is that it creates a path for specific wavelength uniformly across the core network. Like other circuit switched networks, it does not require signaling or two way reservation. Responsibility of reservation process is to separate data information from control packet. The core nodes of OBS network are responsible for initial controlling of IP packets and their routing. This routing is the combination of both control and packet forwarding. The core node consists of switch fiber and control forwarding engine. The switching fiber performs switching of bursts on specific wavelength. The forwarding tables are generated and maintained in control portion by using IGP and MPLS routing protocols. OBS network uses two types of forwarding mechanism 1. Multiprotocol Lambda Switching 2. Label Optical Burst Switching Forwarding of burst depends on forwarding table in control plane and SHIM label in control packet. Forwarding mechanism uses label swapping algorithm. The forwarding table consists of entries such as incoming label, outgoing label, incoming interface and outgoing interface. The core node uses the label of incoming packet to decide the next hope, swap the incoming label with outgoing label and sends the control packet to outgoing interface as shown in fig. 5. IP in OBS networks uses SHIM label header, which resembles the header of IP packet. SHIM label is 20 bits wide having 3 extra bits for EXP field. 1-bit of bottom stack (S) field for encapsulation. To discard MPLS looped packet in LSPs, Time to live field is also included in it. OBS core nodes store the labeling and routing information in its LIB (label information base). During forwarding each node treats each burst originated from same source as the subset of 1 st arriving burst of that source. Such subsets are referred as FECs (forwarding equivalence source) [15].

4 Time of each packet transmission delay. TCP fast is the evolution of TCP Vegas with better throughput. These are the basic approaches adopt by TCP sender to check the intensity of traffic congestion in network and to adjust the rate of transmission [17]. VI. Issues of TCP in OBS network TCP reacts on the Packets drop, End to End delays and Throughput changes in the network. As a result of these reactions, TCP faces some problems in OBS network like: a) Effect of Burst drops Fig. 5 Forwarding Mechanism V. TCP in OBS TCP is the transport layer protocol of communication networks, which handles the issues of reliability, flow, and congestion control in an efficient way. It was originally made for military communication by ARPANET. In modern network it works as a basic transmission protocol with traffic share between 83-90%. In OBS networks multiple TCP packets are aggregated in single burst. One core node corresponds to thousands of TCP segments. Due to multiple number of TCP flows and the process of burst assembly, behave of TCP with OBS networks is much different from other networks [16]. Congestion control mechanisms of TCP are classified as: a) Explicit notification-based TCP with Explicit Loss Notification (ELN) and TCP with Explicit Congestion Notification (ECN) are two basic approaches in this mechanism. These are developed in order identify packet losses which cause retransmissions. TCP ECN and ELN can differentiate loss of packets due to contention, link failure and congestion. Retransmission of lost packets starts when one of ELN or ECN is received. b) Loss-based TCP Reno is the basic approach in Lost-based TCP mechanism. It is based on AIMD (Additive Increase Multiplicative Decrease) window-based congestion control mechanism to maintain network bandwidth and data transmission regulation. AIMD has four states for each TCP sender e.g. congestion avoidance, fast recovery, slow start and fast transmission. c) Delay-based In this mechanism of TCP two implementations are Fast TCP and TCP Vegas. It estimates the congestion and bandwidth status of network by measuring Round Trip The burst drop probability depends on network load and contentional level of burst in network. b) Effect of burst-assembly delay Packets experience some delay during the process of burst assembly at edge nodes. This affects the performance of TCP. c) Effect of fiber-delay-lines In OBS networks when data is stored in FDLs also produces some delays and effect TCP. On the basis of these issues TCP performance is tested under three types of environment a) A Single TCP source with three node topology b) Multiple TCP sources with a three node topology c) Multiple TCP sources with an eight node topology As a result of TCP working analysis we come to know that, higher drop probabilities resulted in poorer performance and the performance degradation was severe for drop probability as low as While for low drop probabilities, increasing burst sizes resulted in higher throughput and increased delay [18]. VII. Suggested Solution for TCP Issues Issues of TCP in OBS network can be resolved using these approaches. A. Link-Layer Solutions a) Solutions based on Burstification Processes b) Burst Contention Loss Recovery c) TCP with Burst Acknowledgement

5 d) TCP Decoupling e) Retransmission-Count Based Dropping Policy B. Solutions with Explicit Notifications a) Burst TCP b) TCP with Burst Contention Loss Notifications C. Solutions without Explicit Notifications a) Burst TCP with Burst Length Estimation b) Burst AIMD c) Statistical AIMD d) Threshold based TCP Vegas [19] [20] Conclusion In this paper we have described the requirement of Optical networks for high data rates. Compared different types of optical nodes and proved the best one among all. OBS is the new and effective optical node for the implementation of OBS network. Provided full detail of OBS architecture explained its features with its complete working. Working of IP with OBS is explained in detail and the usage of two protocols MPLS and IGP which are helpful in routing and forwarding process. After that TCP is defined in IP and OBS network along with the factors affecting the TCP performance in OBS network. At the end we tried to give an affective direction to solve the problems of TCP by using different approaches. REFERENCES [1] (2014) [Online]. HYPERLINK " [2] Biswanath Mukherjee. (2011, september) [Online]. HYPERLINK " Program/Tutorials/Issues-and-Challenges-in-Optical- Network-Design.aspx" [3] (2006) [Online]. HYPERLINK " [4] EVan Breusegem, "An OBS architecture for pervasive grid computing". [5] Sunil Gowda, "Performance Evaluation of TCP over Optical," p. 25, [6] (2005) techopedia. [Online]. HYPERLINK " [7] wikipedia. [Online]. HYPERLINK " [8] Politechnika Cz estochowska, "Overview of optical packet switching," p. 14, August [9] S. J. Ben Yoo, "Optical Packet and Burst Switching Technologies," p. 25, [10] Sunil Gowda, "Performance Evaluation of TCP over Optical," p. 25, [11] wikipedia. [Online]. HYPERLINK " [12] Krishna M Sivalingam, "Performance Evaluation of TCP over Optical," p. 5, [13] S. J. Ben Yoo, "Optical Packet and Burst Switching Technologies," p. 25, [14] globalspec. [Online]. HYPERLINK " Optical Components and Optics Fiber Optics" [15] Ioannis P. Karamitsos, "Routing Mechanisms for IP over OBS-WDM Optical Networks," p. 4. [16] Basem Shihada, Transport Control Protocol (TCP) over. Canada, [17] AND PIN-HAN HO BASEM SHIHADA, "TRANSPORT CONTROL PROTOCOL (TCP) IN OPTICAL BURST SWITCHED NETWORKS: ISSUES, SOLUTIONS, AND," p. 25. [18] Basem Shihada, Transport Control Protocol (TCP) over Optical Burst Switched Networks. Canada. [19] PIN-HAN HO, "TRANSPORT CONTROL PROTOCOL (TCP) IN OPTICAL BURST SWITCHED NETWORKS: ISSUES, SOLUTIONS,

6 AND," p. 25. [20] Shihada, "Transport Control Protocol (TCP) over Optical Burst Switched Networks," Canada, Thesis.

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

Configuration of Offset Time in Optical Burst Switching Networks for Delay Sensitive Traffic

Configuration of Offset Time in Optical Burst Switching Networks for Delay Sensitive Traffic Configuration of Offset Time in Optical Burst Switching Networks for Delay Sensitive Traffic Anupam Soni and Yatindra Nath Singh anusoni@iitk.ac.in,ynsingh@iitk.ac.in. Abstract In Optical Burst Switching

More information

Adaptive Data Burst Assembly in OBS Networks

Adaptive Data Burst Assembly in OBS Networks Adaptive Data Burst Assembly in OBS Networks Mohamed A.Dawood 1, Mohamed Mahmoud 1, Moustafa H.Aly 1,2 1 Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt 2 OSA Member muhamed.dawood@aast.edu,

More information

TM ALGORITHM TO IMPROVE PERFORMANCE OF OPTICAL BURST SWITCHING (OBS) NETWORKS

TM ALGORITHM TO IMPROVE PERFORMANCE OF OPTICAL BURST SWITCHING (OBS) NETWORKS INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN 232-7345 TM ALGORITHM TO IMPROVE PERFORMANCE OF OPTICAL BURST SWITCHING (OBS) NETWORKS Reza Poorzare 1 Young Researchers Club,

More information

Optical Burst Switching (OBS): The Dawn of A New Era in Optical Networking

Optical Burst Switching (OBS): The Dawn of A New Era in Optical Networking Optical Burst Switching (OBS): The Dawn of A New Era in Optical Networking Presented by Yang Chen (LANDER) Yang Chen (Lander) 1 Outline Historical Review Burst reservation Burst assembly OBS node Towards

More information

TRANSPORT CONTROL PROTOCOL IN OPTICAL BURST SWITCHED NETWORKS: ISSUES, SOLUTIONS, AND CHALLENGES

TRANSPORT CONTROL PROTOCOL IN OPTICAL BURST SWITCHED NETWORKS: ISSUES, SOLUTIONS, AND CHALLENGES TRANSPORT CONTROL PROTOCOL IN OPTICAL BURST SWITCHED NETWORKS: ISSUES, SOLUTIONS, AND CHALLENGES BASEM SHIHADA, AND PIN-HAN HO, UNIVERSITY OF WATERLOO ABSTRACT Since its advent in 1981, TCP has been subject

More information

Transport Control Protocol over Optical Burst Switched Networks

Transport Control Protocol over Optical Burst Switched Networks Transport Control Protocol over Optical Burst Switched Networks Basem Shihada Research Associate Electrical & Computer Engineering University of Waterloo Seminar, July 3 rd 2008 Seminar Outline Introduction

More information

Transport Control Protocol over Optical Burst Switched Networks. Basem Shihada

Transport Control Protocol over Optical Burst Switched Networks. Basem Shihada Transport Control Protocol over Optical Burst Switched Networks Basem Shihada Seminar, Nov. 8 th 2009 Seminar Outline Introduction to TCP & OBS What is the problem with running TCP over OBS? Why the TCP

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

Chapter 5. Simulation Results

Chapter 5. Simulation Results Chapter 5 Simulation Results As TCP constitutes majority of the Internet traffic, an in-depth analysis of both loss-based and delay-based variants of TCP have been made in the earlier two chapters. Based

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP CS 5520/ECE 5590NA: Network Architecture I Spring 2008 Lecture 13: UDP and TCP Most recent lectures discussed mechanisms to make better use of the IP address space, Internet control messages, and layering

More information

Network Management & Monitoring Network Delay

Network Management & Monitoring Network Delay Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

under grant CNS This work was supported in part by the National Science Foundation (NSF)

under grant CNS This work was supported in part by the National Science Foundation (NSF) Coordinated Multi-Layer Loss Recovery in TCP over Optical Burst-Switched (OBS) Networks Rajesh RC Bikram, Neal Charbonneau, and Vinod M. Vokkarane Department of Computer and Information Science, University

More information

Design and implementation of optical burst switching (OBS)

Design and implementation of optical burst switching (OBS) Technische Universität Hamburg-Harburg Communication Networks Prof. Dr. Ulrich Killat Design and implementation of optical burst switching (OBS) Student Project / Studienarbeit Shakeel Ahmad Tutor : M.Sc.

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Threats in Optical Burst Switched Network

Threats in Optical Burst Switched Network Threats in Optical Burst Switched Network P. Siva Subramanian, K. Muthuraj Department of Computer Science & Engineering, Pondicherry Engineering College, Pondicherry, India siva.sarathy@pec.edu, muthuraj@pec.edu

More information

Multi Protocol Label Switching

Multi Protocol Label Switching MPLS Multi-Protocol Label Switching Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network Management and QoS Provisioning - 1 MPLS: introduction

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK REVIEW ON CAPACITY IMPROVEMENT TECHNIQUE FOR OPTICAL SWITCHING NETWORKS SONALI

More information

MPLS Multi-Protocol Label Switching

MPLS Multi-Protocol Label Switching MPLS Multi-Protocol Label Switching Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer Networks Design and Management - 1 MPLS: introduction

More information

Transport layer issues

Transport layer issues Transport layer issues Dmitrij Lagutin, dlagutin@cc.hut.fi T-79.5401 Special Course in Mobility Management: Ad hoc networks, 28.3.2007 Contents Issues in designing a transport layer protocol for ad hoc

More information

Syed Mehar Ali Shah 1 and Bhaskar Reddy Muvva Vijay 2* 1-

Syed Mehar Ali Shah 1 and Bhaskar Reddy Muvva Vijay 2* 1- International Journal of Basic and Applied Sciences Vol. 3. No. 4 2014. Pp. 163-169 Copyright by CRDEEP. All Rights Reserved. Full Length Research Paper Improving Quality of Service in Multimedia Applications

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

Multi-Layer Loss Recovery in TCP over Optical Burst-Switched (OBS) Networks

Multi-Layer Loss Recovery in TCP over Optical Burst-Switched (OBS) Networks Noname manuscript No. (will be inserted by the editor) Multi-Layer Loss Recovery in TCP over Optical Burst-Switched (OBS) Networks Rajesh R.C. Bikram Neal Charbonneau Vinod M. Vokkarane Received: Monday,

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Congestion control in TCP

Congestion control in TCP Congestion control in TCP If the transport entities on many machines send too many packets into the network too quickly, the network will become congested, with performance degraded as packets are delayed

More information

Enhancing Fairness in OBS Networks

Enhancing Fairness in OBS Networks Enhancing Fairness in OBS Networks Abstract Optical Burst Switching (OBS) is a promising solution for all optical Wavelength Division Multiplexing (WDM) networks. It combines the benefits of both Optical

More information

A simple mathematical model that considers the performance of an intermediate node having wavelength conversion capability

A simple mathematical model that considers the performance of an intermediate node having wavelength conversion capability A Simple Performance Analysis of a Core Node in an Optical Burst Switched Network Mohamed H. S. Morsy, student member, Mohamad Y. S. Sowailem, student member, and Hossam M. H. Shalaby, Senior member, IEEE

More information

Effect of Link Bandwidth, Number of Channels and Traffic Load on Designing Optical Burst Switching Networks

Effect of Link Bandwidth, Number of Channels and Traffic Load on Designing Optical Burst Switching Networks Effect of Link Bandwidth, Number of Channels and Traffic Load on Designing Optical Burst Switching Networks Wael Hosny 1 (drwaelhosny@aast.edu), Mohamed M. Ali 1 (m.mahmoud@aast.edu), Moustafa H. Aly 1*

More information

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4 CSCD 330 Network Superhighway Network Programming Winter 2015 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

Generalized Burst Assembly and Scheduling Techniques for QoS Support in Optical Burst-Switched Networks

Generalized Burst Assembly and Scheduling Techniques for QoS Support in Optical Burst-Switched Networks Generalized Assembly and cheduling Techniques for Qo upport in Optical -witched Networks Vinod M. Vokkarane, Qiong Zhang, Jason P. Jue, and Biao Chen Department of Computer cience, The University of Texas

More information

ADVANCED TOPICS FOR CONGESTION CONTROL

ADVANCED TOPICS FOR CONGESTION CONTROL ADVANCED TOPICS FOR CONGESTION CONTROL Congestion Control The Internet only functions because TCP s congestion control does an effective job of matching traffic demand to available capacity. TCP s Window

More information

Ahmed Benallegue RMDCN workshop on the migration to IP/VPN 1/54

Ahmed Benallegue RMDCN workshop on the migration to IP/VPN 1/54 MPLS Technology Overview Ahmed Benallegue A.Benallegue@ecmwf.int RMDCN workshop on the migration to IP/VPN 1/54 Plan 1. MPLS basics 2. The MPLS approach 3. Label distribution RSVP-TE 4. Traffic Engineering

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Delayed Reservation and Differential Service For Multimedia Traffic In Optical Burst Switched Networks

Delayed Reservation and Differential Service For Multimedia Traffic In Optical Burst Switched Networks Delayed Reservation and Differential Service For Multimedia Traffic In Optical Burst Switched Networks Mr. P.BOOBALAN, SRINIVASANE.A, MAHESH TEJASWI.T, SIVA PRASAD. P, PRABHAKARAN. V Department of Information

More information

6 MPLS Model User Guide

6 MPLS Model User Guide 6 MPLS Model User Guide Multi-Protocol Label Switching (MPLS) is a multi-layer switching technology that uses labels to determine how packets are forwarded through a network. The first part of this document

More information

ADVANCED COMPUTER NETWORKS

ADVANCED COMPUTER NETWORKS ADVANCED COMPUTER NETWORKS Congestion Control and Avoidance 1 Lecture-6 Instructor : Mazhar Hussain CONGESTION CONTROL When one part of the subnet (e.g. one or more routers in an area) becomes overloaded,

More information

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks

Random Early Detection (RED) gateways. Sally Floyd CS 268: Computer Networks Random Early Detection (RED) gateways Sally Floyd CS 268: Computer Networks floyd@eelblgov March 20, 1995 1 The Environment Feedback-based transport protocols (eg, TCP) Problems with current Drop-Tail

More information

Resource Sharing for QoS in Agile All Photonic Networks

Resource Sharing for QoS in Agile All Photonic Networks Resource Sharing for QoS in Agile All Photonic Networks Anton Vinokurov, Xiao Liu, Lorne G Mason Department of Electrical and Computer Engineering, McGill University, Montreal, Canada, H3A 2A7 E-mail:

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015 .. MPLS Multi Protocol Label Switching (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 4.3, 2015/03/09 13:07:57) Thursday, March 12, 2015 Karst Koymans (UvA) MPLS

More information

A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture for Metro Ring

A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture for Metro Ring A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture for Metro Ring Andrea Fumagalli, Prasanna Krishnamoorthy Optical Network Advanced Research (OpNeAR) lab. University

More information

IMPLEMENTATION OF OPTICAL BURST SWITCHING FRAMEWORK IN PTOLEMY SIMULATOR

IMPLEMENTATION OF OPTICAL BURST SWITCHING FRAMEWORK IN PTOLEMY SIMULATOR IMPLEMENTATION OF OPTICAL BURST SWITCHING FRAMEWORK IN PTOLEMY SIMULATOR Shakeel Ahmad *, Sireen Malik ** Department of Communication Networks Hamburg University of Technology, Germany Email:{shakeel.ahmad,

More information

Communication Fundamentals in Computer Networks

Communication Fundamentals in Computer Networks Lecture 5 Communication Fundamentals in Computer Networks M. Adnan Quaium Assistant Professor Department of Electrical and Electronic Engineering Ahsanullah University of Science and Technology Room 4A07

More information

Internetworking with Different QoS Mechanism Environments

Internetworking with Different QoS Mechanism Environments Internetworking with Different QoS Mechanism Environments ERICA BUSSIKI FIGUEIREDO, PAULO ROBERTO GUARDIEIRO Laboratory of Computer Networks, Faculty of Electrical Engineering Federal University of Uberlândia

More information

Optical Packet Switching

Optical Packet Switching Optical Packet Switching DEISNet Gruppo Reti di Telecomunicazioni http://deisnet.deis.unibo.it WDM Optical Network Legacy Networks Edge Systems WDM Links λ 1 λ 2 λ 3 λ 4 Core Nodes 2 1 Wavelength Routing

More information

Analyzing the Receiver Window Modification Scheme of TCP Queues

Analyzing the Receiver Window Modification Scheme of TCP Queues Analyzing the Receiver Window Modification Scheme of TCP Queues Visvasuresh Victor Govindaswamy University of Texas at Arlington Texas, USA victor@uta.edu Gergely Záruba University of Texas at Arlington

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

William Stallings Data and Computer Communications. Chapter 10 Packet Switching

William Stallings Data and Computer Communications. Chapter 10 Packet Switching William Stallings Data and Computer Communications Chapter 10 Packet Switching Principles Circuit switching designed for voice Resources dedicated to a particular call Much of the time a data connection

More information

TCP performance experiment on LOBS network testbed

TCP performance experiment on LOBS network testbed Wei Zhang, Jian Wu, Jintong Lin, Wang Minxue, Shi Jindan Key Laboratory of Optical Communication & Lightwave Technologies, Ministry of Education Beijing University of Posts and Telecommunications, Beijing

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

ECEN Final Exam Fall Instructor: Srinivas Shakkottai

ECEN Final Exam Fall Instructor: Srinivas Shakkottai ECEN 424 - Final Exam Fall 2013 Instructor: Srinivas Shakkottai NAME: Problem maximum points your points Problem 1 10 Problem 2 10 Problem 3 20 Problem 4 20 Problem 5 20 Problem 6 20 total 100 1 2 Midterm

More information

ENRICHMENT OF SACK TCP PERFORMANCE BY DELAYING FAST RECOVERY Mr. R. D. Mehta 1, Dr. C. H. Vithalani 2, Dr. N. N. Jani 3

ENRICHMENT OF SACK TCP PERFORMANCE BY DELAYING FAST RECOVERY Mr. R. D. Mehta 1, Dr. C. H. Vithalani 2, Dr. N. N. Jani 3 Research Article ENRICHMENT OF SACK TCP PERFORMANCE BY DELAYING FAST RECOVERY Mr. R. D. Mehta 1, Dr. C. H. Vithalani 2, Dr. N. N. Jani 3 Address for Correspondence 1 Asst. Professor, Department of Electronics

More information

CS High Speed Networks. Dr.G.A.Sathish Kumar Professor EC

CS High Speed Networks. Dr.G.A.Sathish Kumar Professor EC CS2060 - High Speed Networks Dr.G.A.Sathish Kumar Professor EC UNIT V PROTOCOLS FOR QOS SUPPORT UNIT V PROTOCOLS FOR QOS SUPPORT RSVP Goals & Characteristics RSVP operations, Protocol Mechanisms Multi

More information

TCP based Receiver Assistant Congestion Control

TCP based Receiver Assistant Congestion Control International Conference on Multidisciplinary Research & Practice P a g e 219 TCP based Receiver Assistant Congestion Control Hardik K. Molia Master of Computer Engineering, Department of Computer Engineering

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.11 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

Delayed reservation decision in optical burst switching networks with optical buffers

Delayed reservation decision in optical burst switching networks with optical buffers Delayed reservation decision in optical burst switching networks with optical buffers G.M. Li *, Victor O.K. Li + *School of Information Engineering SHANDONG University at WEIHAI, China + Department of

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Retransmission schemes for Optical Burst Switching over star networks

Retransmission schemes for Optical Burst Switching over star networks Retransmission schemes for Optical Burst Switching over star networks Anna Agustí-Torra, Gregor v. Bochmann*, Cristina Cervelló-Pastor Escola Politècnica Superior de Castelldefels, Universitat Politècnica

More information

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Hybrid Optical Switching Network and Power Consumption in Optical Networks

Hybrid Optical Switching Network and Power Consumption in Optical Networks Hybrid Optical Switching Network and Power Consumption in Optical Networks Matteo Fiorani and Maurizio Casoni Department of Information Engineering University of Modena and Reggio Emilia Via Vignolese

More information

Impact of transmission errors on TCP performance. Outline. Random Errors

Impact of transmission errors on TCP performance. Outline. Random Errors Impact of transmission errors on TCP performance 1 Outline Impact of transmission errors on TCP performance Approaches to improve TCP performance Classification Discussion of selected approaches 2 Random

More information

Transport Protocols and TCP: Review

Transport Protocols and TCP: Review Transport Protocols and TCP: Review CSE 6590 Fall 2010 Department of Computer Science & Engineering York University 1 19 September 2010 1 Connection Establishment and Termination 2 2 1 Connection Establishment

More information

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Chapter III. congestion situation in Highspeed Networks

Chapter III. congestion situation in Highspeed Networks Chapter III Proposed model for improving the congestion situation in Highspeed Networks TCP has been the most used transport protocol for the Internet for over two decades. The scale of the Internet and

More information

New Approaches to Optical Packet Switching in Carrier Networks. Thomas C. McDermott Chiaro Networks Richardson, Texas

New Approaches to Optical Packet Switching in Carrier Networks. Thomas C. McDermott Chiaro Networks Richardson, Texas New Approaches to Optical Packet Switching in Carrier Networks Thomas C. McDermott Chiaro Networks Richardson, Texas Outline Introduction, Vision, Problem statement Approaches to Optical Packet Switching

More information

Supporting mobility only on lower layers up to the network layer is not

Supporting mobility only on lower layers up to the network layer is not Mobile transport layer Supporting mobility only on lower layers up to the network layer is not enough to provide mobility support for applications. Most applications rely on a transport layer, such as

More information

ROBUST TCP: AN IMPROVEMENT ON TCP PROTOCOL

ROBUST TCP: AN IMPROVEMENT ON TCP PROTOCOL ROBUST TCP: AN IMPROVEMENT ON TCP PROTOCOL SEIFEDDINE KADRY 1, ISSA KAMAR 1, ALI KALAKECH 2, MOHAMAD SMAILI 1 1 Lebanese University - Faculty of Science, Lebanon 1 Lebanese University - Faculty of Business,

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

Tutorial 2 : Networking

Tutorial 2 : Networking Lund University ETSN01 Advanced Telecommunication Tutorial 2 : Networking Author: Emma Fitzgerald Tutor: Farnaz Moradi November 26, 2015 Contents I Before you start 3 II Whole Class Exercise: Networking

More information

MPLS Intro. Cosmin Dumitru March 14, University of Amsterdam System and Network Engineering Research Group ...

MPLS Intro. Cosmin Dumitru March 14, University of Amsterdam System and Network Engineering Research Group ... MPLS Intro Cosmin Dumitru c.dumitru@uva.nl University of Amsterdam System and Network Engineering Research Group March 14, 2011 Disclaimer Information presented in these slides may be slightly biased towards

More information

Chapter - 7. Multiplexing and circuit switches

Chapter - 7. Multiplexing and circuit switches Chapter - 7 Multiplexing and circuit switches Multiplexing Multiplexing is used to combine multiple communication links into a single stream. The aim is to share an expensive resource. For example several

More information

Unequal Load Balance Routing for OBS Networks Based on Optical Parameters Dependent Metric

Unequal Load Balance Routing for OBS Networks Based on Optical Parameters Dependent Metric Unequal Load Balance Routing for OBS Networks Based on Optical Parameters Dependent Metric Mohamed M. Ali (m.mahmoud@aast.edu), Wael Hosny (drwaelhosny@aast.edu), El-Sayed A. El-Badawy 2* (sbadawy@ieee.org)

More information

Chapter 7. The Transport Layer

Chapter 7. The Transport Layer Chapter 7 The Transport Layer 1 2 3 4 5 6 7 8 9 10 11 Addressing TSAPs, NSAPs and transport connections. 12 For rarely used processes, the initial connection protocol is used. A special process server,

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

H3C S9500 QoS Technology White Paper

H3C S9500 QoS Technology White Paper H3C Key words: QoS, quality of service Abstract: The Ethernet technology is widely applied currently. At present, Ethernet is the leading technology in various independent local area networks (LANs), and

More information

A Survey on Quality of Service and Congestion Control

A Survey on Quality of Service and Congestion Control A Survey on Quality of Service and Congestion Control Ashima Amity University Noida, U.P, India batra_ashima@yahoo.co.in Sanjeev Thakur Amity University Noida, U.P, India sthakur.ascs@amity.edu Abhishek

More information

CMPE150 Midterm Solutions

CMPE150 Midterm Solutions CMPE150 Midterm Solutions Question 1 Packet switching and circuit switching: (a) Is the Internet a packet switching or circuit switching network? Justify your answer. The Internet is a packet switching

More information

Internet Routing - MPLS. By Richard Harris

Internet Routing - MPLS. By Richard Harris Internet Routing - MPLS By Richard Harris MPLS Presentation Outline Introduction Problems of Internet size Methods for overcoming potential problems What is MPLS? Overview MPLS terminology MPLS Architecture

More information

UNIT- 2 Physical Layer and Overview of PL Switching

UNIT- 2 Physical Layer and Overview of PL Switching UNIT- 2 Physical Layer and Overview of PL Switching 2.1 MULTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. Figure

More information

Study of Different Burst Scheduling Algorithms Using FDLs as QoS in Wavelength Division Multiplexing OBS Networks

Study of Different Burst Scheduling Algorithms Using FDLs as QoS in Wavelength Division Multiplexing OBS Networks Study of Different Burst Scheduling Algorithms Using FDLs as QoS in Wavelength Division Multiplexing OBS Networks L. Netak 1 and G. Chowdhary 2 1 Dept. of Computer Engineering, Dr. B. A. T. U., Lonere-402

More information

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways

Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Enhancing TCP Throughput over Lossy Links Using ECN-Capable Capable RED Gateways Haowei Bai Honeywell Aerospace Mohammed Atiquzzaman School of Computer Science University of Oklahoma 1 Outline Introduction

More information

Lixia Zhang M. I. T. Laboratory for Computer Science December 1985

Lixia Zhang M. I. T. Laboratory for Computer Science December 1985 Network Working Group Request for Comments: 969 David D. Clark Mark L. Lambert Lixia Zhang M. I. T. Laboratory for Computer Science December 1985 1. STATUS OF THIS MEMO This RFC suggests a proposed protocol

More information

Network Control and Signalling

Network Control and Signalling Network Control and Signalling 1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches

More information

Communication Networks

Communication Networks Communication Networks Spring 2018 Laurent Vanbever nsg.ee.ethz.ch ETH Zürich (D-ITET) April 30 2018 Materials inspired from Scott Shenker & Jennifer Rexford Last week on Communication Networks We started

More information

Congestion Control End Hosts. CSE 561 Lecture 7, Spring David Wetherall. How fast should the sender transmit data?

Congestion Control End Hosts. CSE 561 Lecture 7, Spring David Wetherall. How fast should the sender transmit data? Congestion Control End Hosts CSE 51 Lecture 7, Spring. David Wetherall Today s question How fast should the sender transmit data? Not tooslow Not toofast Just right Should not be faster than the receiver

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.1 Kaan Bür, Jens Andersson Transport Layer Protocols Process-to-process delivery [ed.4 ch.23.1] [ed.5 ch.24.1] Transmission Control

More information

Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren

Lecture 21: Congestion Control CSE 123: Computer Networks Alex C. Snoeren Lecture 21: Congestion Control" CSE 123: Computer Networks Alex C. Snoeren Lecture 21 Overview" How fast should a sending host transmit data? Not to fast, not to slow, just right Should not be faster than

More information

Optical Burst Switched Networks

Optical Burst Switched Networks Optical Burst Switched Networks OPTICAL NETWORKS SERIES Series Editor Biswanath Mukherjee, University of California, Davis OPTICAL BURST SWITCHED NETWORKS JASON P. JUE The University of Texas at Dallas

More information

CS 638 Lab 6: Transport Control Protocol (TCP)

CS 638 Lab 6: Transport Control Protocol (TCP) CS 638 Lab 6: Transport Control Protocol (TCP) Joe Chabarek and Paul Barford University of Wisconsin Madison jpchaba,pb@cs.wisc.edu The transport layer of the network protocol stack (layer 4) sits between

More information

MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino)

MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino) MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino) http://staff.polito.it/mario.baldi MPLS - 1 From MPLS Forum Documents MPLS is the enabling technology

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 1 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

TCP and UDP Fairness in Vehicular Ad hoc Networks

TCP and UDP Fairness in Vehicular Ad hoc Networks TCP and UDP Fairness in Vehicular Ad hoc Networks Forouzan Pirmohammadi 1, Mahmood Fathy 2, Hossein Ghaffarian 3 1 Islamic Azad University, Science and Research Branch, Tehran, Iran 2,3 School of Computer

More information