Seamless High-Velocity Handover Support in Mobile WiMAX Networks

Size: px
Start display at page:

Download "Seamless High-Velocity Handover Support in Mobile WiMAX Networks"

Transcription

1 Seamless High-Velocity Handover Support in Mobile WiMAX Networks Zhiwei Yan, Lei Huang and C.-C. Jay Kuo Xi an Jiaotong University, Xi an 749, P. R. China Loyola Marymount University, Los Angeles, CA , USA University of Southern California, Los Angeles, CA , USA s: and Abstract The IEEE 82.6e standard (i.e., mobile WiMAX) has been proposed to provide connectivity in wireless networks for mobile users (including users at a vehicular speed). It is shown in our analysis that the probability of a successful handover decreases significantly when the user moves at a higher speed. Then, we propose a scheme that combines adaptive forward error correction (FEC) with retransmission to offer extra protection for handover signaling messages to enhance the probability of a successful handover, especially at a higher velocity. It is demonstrated by computer simulation that the proposed scheme provides a higher successful handover probability at various velocities. I. INTRODUCTION The rapid growth of high data rate services in wireless communication networks demands new technologies for broadband wireless access. The Worldwide Interoperability for Microwave Access (WiMAX) is an emerging technology that enables the delivery of the last mile wireless broadband access as an alternative to the wired broadband access such as cable and DSL. It provides a convenient way to build a wireless metropolitan area network (WMN), which offers a broad range of high data rate applications, such as broadband Internet access, Voice over Internet Protocol (VoIP), Internet Protocol Television (IPTV), etc. to wireless users anytime and anywhere. For more technical details, we refer to the newly developed IEEE 82.6 standard [], [2]. Handover is one of essential issues in mobile wireless communications since it is needed to maintain uninterrupted services during user s movement from one location to another [3], [4]. It manages mobility between subnets in the same network domain (micro-mobility) and between two different network domains. The current mobile WiMAX standard defines handover operations to support micro-mobility for the point-to-multipoint (PMP) mode communication. That is, it handles the mobile subscriber station (MS) switching from one base station to another. In general, handover techniques can be divided into soft handover (SHO) and hard handover (HHO). SHO employs a make-before-break approach where a connection to the next base station (BS) is established before an MS releases an ongoing connection to the original BS. It guarantees zero break-time during handover at the cost This work is supported in part by the China Scholarship Council (CSC). of lower spectral efficiency. This technique is suitable for latency-sensitive services such as voice communications, video conferencing, and multi-player gaming. In contrast, HHO uses a break-before-make approach where a connection with the serving BS is terminated before a mobile station switches to another BS. HHO is more bandwidth-efficient than SHO. However, it has a nonzero breaktime, thus leading to longer delay in service delivery. A typical mobile WiMAX network uses packet-switching with mostly bursty delay-tolerant data traffic. Therefore, HHO is also used in mobile WiMAX. However, for certain delay-sensitive applications, HHO must be optimized to meet the required quality of service (QoS). Recently, a large amount of research has been conducted to address the QoS of HHO in mobile WiMAX. They focused their attention on the choice of the best target BS through tracking the MS movement, analyzing the QoS information of neighbor BSs or detecting the signal level from BSs [6], [7]. In [8], data packet loss during handover was reduced via caching in the upper layer devices such as routers. To reduce delay during the handover process, Chen et al. [9] proposed a pre-coordination mechanism, which can reduce the handover latency by measuring the distance between the BS and the MS, predicting the time that handover occurs, and pre-allocating available resource for handover usage. Besides, it was shown in [9] that the handover delay could be further reduced through transmitting MAC layer messages via the IP layer. Jiao et al. [] proposed a connection identification (CID) assignment strategy to avoid conflicts of the CID assignment during the handover procedure. Hu et al. [2] applied a different handover mechanism to classified data. Both of them can decrease data delay in handover. Most previous work considered the handover performance from the viewpoint of the MAC or IP layer, but paid little attention to the physical layer. That is, physical channel quality and/or user s mobility are not taken into account. Usually, handover occurs in the boundary of BS s coverage area, where signals transmitted on the radio channel are weak and unstable. When channel quality degrades, both signalling messages and data packets are at a higher risk of being lost or corrupted. Moreover, user s mobility plays an important role in the handover process. The radio channel quality for mobile users at a higher velocity often suffers from severe /8/$2. 28 IEEE 68 ICCS 28

2 degradation due to the Dopploar frequency shift. Since the overlap area is limited between adjacent BSs, the requirement on handover latency is more stringent for users with higher mobility. In order to support full mobility (which means seamingless handover for users moving at a speed of 2 kilometer per hour or higher), these issues become severer and have to be addressed. In this work, we analyze the handover performance affected by the radio channel quality, measured in terms of the bit error rate (BER), and user s mobility in terms of the velocity by means of modeling the handover procedure. The primary handover performance in this work is considered as the probability of a successful handover, i.e., the probability that all necessary handover signaling messages are completed successfully within the required time limit imposed by user s mobility. The probability of a successful handover does not only indicate the connection-level QoS, but also play an important role in application-level QoS such as delay and/or dropping of application data packets. Based on our analysis, a simple yet effective solution is proposed to improve the successful handover probability for users with higher mobility. The rest of this paper is organized as follows. We discuss the relationship between the successful handover probability and the BER and analyze the probability at different velocities in Sec. II. Then, we propose a scheme to support high mobility using forward error correction (FEC) codes to protect the handover messages in Sec. III. Simulation results are presented in Sec. IV for performance evaluation and comparison. Finally, concluding remarks and future research directions are given in Sec. V. II. HANDOVER AND MOBILITY ANALYSIS A. Handover Procedure In the IEEE 82.6e standard, a BS periodically broadcasts the Neighbor Advertisement Message (MOB_NBR-ADV) for the identification of the network and the channel characteristics of neighbor BSs. MSs always listen to this message and collect the information about neighbor BSs. If an MS detects a received signal that becomes weaker, it will send a request message MOB_SCAN-REQ to its serving BS. Then, the BS allocates some radio resource and informs the MS to perform the scanning operation by sending message MOB_SCAN-RSP. After the scanning operation, the MS initiates the handover process by sending message MOB_MSHO-REQ to the serving BS. The BS replies to this request with message MOB_BSHO- RSP, and then the MS sends message MOB_HO-IND to inform the BS to cut all communications. In the final phase of handover, the MS continues to exchange ranging messages and re-entry messages with the target BS. The handover procedure described above is illustrated in Fig.. Thus, a successful handover is based on several handshaking messages transmitted successfully. B. Successful Handover Probability versus BER Without loss of generality, we assume that there are M(M 2) signaling messages transmitted between an MS and two BSs during the handover procedure. Let p i be the MS MOB_NBR ADV MOB_SCN REQ MOB_SCN RSQ MOB_MSHO REQ MOB_BSHO RSP MOB_HO IND Serving BS Neighoring BS Neighoring BS2 Scanning Process Connect to the target BS Figure. HO Notifaction messages Illustration of the handover procedure. probability of event A i, which indicates that the i-th signaling message is received successfully by MS or BS. By considering a scheme with no-transmission, we have P (A i )p i,p(āi) q i p i, () where i,, M. In the WiMAX handover procedure, the retransmission mechanism is used to guarantee the transmission of these signalling messages. We assume that a message is always retransmitted until it is successfully received by its peer because these signaling messages are hand shaking messages. By taking the retransmission into account, Eq.() can be rewritten as P (A i ) q j i p i ( p i ) j p i, (2) where N i, 2, 3, is the total number of the i-th message to be transmitted untill it is received successfully during a handover process. Since there are totally M signaling messages to be transmitted during the whole handover procedure, the successful handover probability is equal to P (A i ) ( p i ) j p i. (3) If p i is primarily determined by the BER of the wireless channel between a BS and an MS, we can express p i ϕ(p b (γ b ),L i ), where P b (γ b ) is the bit error probability when the received bit energy-to-noise ratio is γ b. Thus, If the i-th signaling message has a size of L i bits, we can re-write the above equation as p i [ P b (γ b )] Li, (4) where the independence of bit errors is assumed since most of radio channels are memoryless. The interleaving channel coding technique, which is widely adopted in wireless communications, also allows us to treat radio channels as memoryless ones. Consequently, the relationship between the successful 68

3 handover probability and BER of this wireless link is derived by substituting Eq. (4) into Eq. (3) as the total latency associated with the handover procedure can be written as An example of the relationship in Eq. (5) is plotted in Fig. 2. It is apparent that, the successful handover probability, P succ, decreases as the bit error probability, P b (γ b ), increases. When BER is relatively high (between 4 and 2 ), the use of retransmission improves the successful handover probability significantly. Probability of a successful handover.2. T M (N + N + + N ) T retx + M T prop, P (A i ) where T retx is the time interval of a timer between two { [ Pb (γ b )] Li} adjacent transmission of the same message, and T prop is the j [ Pb (γ b )] Li time interval for the electromagnetic wave to travel between thebsandthems. (5) We use D overlap to denote the overlap distance along the direction of the MS movement between two neighboring BSs, and the velocity of the MS. Then, the following constraint has to be satisfied if a handover operation is performed successfully: No Retransmission Retransmission Bit Error Rate Figure 2. The successful handover probability as a function of BER, where M 5, N i < 5, and L i 25 bits in this case. C. Probability of Successful Handover versus MS Velocity The above analysis indicates that the successful handover probability is a function of two important variables, i.e., the channel BER and the number of retransmissions allowed for signaling messages. In a practical WiMAX network, both of them are related to the moving velocity of an MS. The channel BER increases as the result of the Doppler effect with higher user velocity, thus demanding more retransmissions of handover signaling messages to complete the handover procedure. At the same time, a higher user moving speed demands faster switching between BSs before the MS moves out of overlapping coverage areas, which limits the maximum amount of delay time allowed for the handover procedure. Because of these two effects, the higher the MS velocity, the more rapidly the successful handover probability drops. For quantitative analysis, we assume that there is no waiting time associated with any of the handover signaling messages. This could be achieved in a light-loaded network, or by prioritizing the handover signaling packets. Under this assumption, T M < D overlap. With this constraint, the probability of a successful handover in Eq. (5) can be rewritten as, others, where and T M [ Ni ( p i) j p i ], if T M < D overlap, (6) (N i ) T retx + M T prop (7) p i [ P b (γ b )] Li. (8) The Doppler effect can be modeled to obtain the quantitative relationship between the channel BER and the MS velocity [3], [4]. The fast fading is assumed to be a Rayleigh channel under the Clarke-Jakes model. Then, the average received bit energy-to-noise ratio is given by γ b / log 2 K N 2 [N +2 Y ]+ NTs log 2 K ( ), (9) E b /N where Y N i (N i) J (2πf m T s i), N is the number of OFDM sub-carriers, T s is the duration of each K-ary QAM symbol transmitted on a subcarrier, N is the noise power, E b is the average transmitted bit energy, and f m f /c is the maximum Doppler frequency. For the QPSK modulation, the bit error probability is ( ) P b (γ b )Q 2γb. () By combining Eqs. (6) and (), we obtain the successful handover probability as a function of the MS velocity, which is plotted in Fig. 3. As expected, the probability decreases rapidly when the MS is moving at a speed higher than 5km/h. When the speed exceeds 7km/h, it is nearly impossible to have a successful handover. Thus, the handover becomes extremely challenging for a mobile WiMAX user moving at a vehicular speed even if we take the retransmission scheme. 682

4 Probability of a successful handover Velocity of mobile station (km/h) Figure 3. The successful handover probability as a function of MS velocity, where M 5, N i 5, andl i 25 bits in this case. III. SEAMLINGLESS HANDOVER SUPPORT AT HIGH MOBILITY To increase the successful handover probability of an MS at a vehicular speed, we need to establish more reliable wireless links in transmitting signaling messages besides using auto retransmission scheme. In this section, we investigate the improvement of the probability of a successful handover by adding extra protection for handover signaling messages. Forward error correction codes provide an error control technique for data transmission, where a sender adds redundant data to messages. These redundant data can assist the receiver detecting and correcting errors to futher improve wireless channel quality. During the WiMAX handover procedure, signaling messages mostly consist of small data packets whose size is less than 5 bytes. Consequently, the amount of parity-check data needed for error correction in each message is small and the resource required by error correction does not increase excessively. In comparison, the cost of the only retransmission scheme is relatively higher. In other words, this method offers an efficient solution to improve the handover performance. Different FEC schemes have different error correcting capabilities. For the same type of FEC codes, the more the redundant data, the higher the error correction capability. For a given MS velocity, we can estimate the size of FEC codes in order to achieve the desired successful handover probability. And for the sake of simple, we can use the average successful message probability, p, to replace p i in Eq. (6) as S im P (A i ) ( p i ) j p i () ( ) i M p M ( p) i M where S N i is the total number of retransmissions required to send all messages. According to the result derived in Sec. II, we have S N i D ( overlap v m MT prop ) T retx ( D overlap MT prop ) T retx. That is, we can obtain parameter S according to D overlap and and then, given P succ,thevalueof p could be easily calculated. To give an example, if the Reed-Solomon (R-S) error correcting codes are used to protect the messages, the R-S decoded message-error probability, p, in terms of the messageerror probability, p, is given by [5] p 2 k k(2 k ) 2 2 k jt+ ( 2 k ) j p j ( p) 2k j, (2) j where t N k 2 is the symbol-error correcting capacity of the code, N is the total number of bits, k is the number of bits in the original messages, and where x denotes the largest integer not exceeding x. Then, the number of redundant bits, N k, can be determined analytically. Fig. 4 shows the redundant bit size N k at different MS velocities to achieve three different successful handover probabilities: 5%, 8% and 99%. Redundant data size (bits) % 8% 5% Velocity of mobile station (km/h) Figure 4. The size of redundant data as a function of the MS velocity, where the original unprotected packet consists of k 25 bits. As shown in Fig. 4, the higher the velocity of an MS, the more the number of bits needed in an adaptive FEC scheme to achieve the target successful handover probability. For example, to achieve a probability of 8%, 2, and 28 bits have to be added into each handover signaling message when the MS is moving at a speed of 5, 7 and 9 km/h, respectively. Then, to achieve the target probability, we can adopt an adaptive FEC scheme that uses a different redundant bit size according to the MS velocity. 683

5 IV. SIMULATION RESULTS Computer simulation was conducted to evaluate the performance of the proposed adaptive FEC scheme with retransmission. We used the NS2 simulator and modified the WiMAX add-on from NIST. The parameters used in the simulation are summarized in Table I. Table I EXPERIMENTAL PARAMETERS Parameters Values Overlap distance 2 meters Bandwidth 5 MHz Carrier Frequency 2.5 GHz FFT size 52 Channel mode Rayleigh channel FEC code Reed-Solomon code Velocity 3-9 km/h The adaptive FEC scheme with retransmission calculated based on curves in Fig. 4 are used in our simulation to achieve three target successful handover probabilities, i.e., 5%, 8% and 99%. Simulations were run times for each velocity to obtain reliable statistical results. Simulation results of the successful handover probability at different MS velocities are shown in Fig. 5. It is evident that the proposed adaptive FEC scheme exceeds the three target successful handover probabilities at a wide range of velocities from 3 to 9 km/h. The local dip of these curves from from 7 to 9 km/h is primarily caused by the fact that the relationship between the size of redundant data and the vechicle speed is not linear. In this case, since a receiver can correct the maximum error of t 2 bits, we calculate the smallest even integer t as the redundant data size to meet the FEC code criterion. Probability of a successful handover target 99% target 8% target 5% Velocity of mobile station(km/h) Figure 5. Simulation results of the successful handover probability using the proposed adaptive FEC scheme. V. CONCLUSION AND FUTURE WORK The effect of the MS velocity on the handover procedure in mobile WiMAX networks was analyzed in this work. The successful handover probability drops significantly at higher MS velocity due to the degraded channel condition and limitation in MS s residential time in the overlap area of neighboring BSs. It was shown by analysis and computer simulation that the use of FEC with retransmission to protect the handover signaling messages can improve the probability of a successful handover. To achieve the target successful handover probability at different velocities, we proposed an adaptive FEC scheme that adaptively adjusts the number of redundant bits according to the MS velocity. It was confirmed by simulation results that the proposed FEC scheme with retransmission achieves the target successful handover probability efficiently. The queueing delay of handover signaling messages is however not yet considered in this work. In other words, the assumption of a light-loaded WiMAX network was adopted throughout the paper, where the network has sufficient resource to accommodate all handover requests immediately. The case of heavy-loaded networks is under our current investigation, where the effect of queueing delay should be considered explicitly. REFERENCES [] IEEE 82.6 Working Group, " IEEE Standard for Local and metropolitan area networks, Part 6: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std , May 25. [2] IEEE 82.6 Working Group, "IEEE Standard for Local and metropolitan area networks Part 6: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2, IEEE Std. 82.6e-25, Feburary 26. [3] G. P. Pollini, "Trends in handover design," Communications Magazine, IEEE, vol. 34, pp. 82-9, 996. [4] M. G. Williams, "Directions in media independent handover," IEICE Trans. Fundamentals, vol. E88-A, pp , July, 25. [5] D. J. Wright, "Maintaining QoS during handover among multiple wireless access technologies," in Proceedings of Intl. Management of Mobile Business, 27, pp. -. [6] R. Hsieh, Z. G. Zhou, and A. Seneviratne, "S-MIP: a seamless handoff architecture for mobile IP," in Proceedings of INFOCOM, 23, pp [7] L. Doo Hwan, K. Kyamakya, and J. P. Umondi, "Fast handover algorithm for IEEE 82.6e broadband wireless access system," in Proceeding of International Symposium on Wireless Pervasive Computing, 26. [8] S. Minsik, K. Hwasung, and L. Sangho, "A fast handover mechanism for IPv6 based WiBro system," in Proceedings of ICACT,26. [9] J. Chen, C.-C. Wang, and J.-D. Lee, "Pre-coordination mechanism for fast handover in WiMAX networks," in Proceedings of the 2nd International Conference on Wireless Broadband and Ultra Wideband Communications, 27, pp [] L. Chen, X. Cai, R. Sofia, and Z. Huang, "A cross-layer fast handover scheme For mobile WiMAX," in Proceedings of Vehicular Technology Conference, 27, pp [] W. Jiao, P. Jiang, and Y. Ma, "Fast handover scheme for real-time applications in mobile WiMAX," in Proceedings of ICC,27, pp [2] F. Hu and N. K. Sharma, "Priority-determined multiclass handoff scheme with guaranteed mobile QoS in wireless multimedia networks," Vehicular Technology, IEEE Transactions on, vol. 53, pp. 8-35, 24. [3] G. L. Stüber, Principles of Mobile Communication, 2 ed. Boston, MA: Kluwer Academic Publishers, 22. [4] K. K. Leung, S. Mukherjee, and G. E. Rittenhouse, "Mobility support for IEEE 82.6d wireless networks", in Proceedings of WCNC, 25 pp [5] Odenwalder, J. P., Error Control Coding Handbook, Linkabit Corporation, San Diego, CA, July 5,

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012 ISSN (Online):

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012 ISSN (Online): Various handover processes in Wi-Max Deepak Nandal 1, Vikas Nandal 2 1 Asst Prof (CSE), PDM, Bahadurgarh dpk.nandal@yahoo.com 2 Asst. Prof (ECE) UIET, MDU, Rohtak, India nandalvikas@gmail.com Abstract

More information

Analyzing the performance of WiMAX zone handover in the presence of relay node Qualnet6.1

Analyzing the performance of WiMAX zone handover in the presence of relay node Qualnet6.1 IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 3, Ver. IV (May - Jun. 2014), PP 49-53 Analyzing the performance of WiMAX zone

More information

Adaptive Distance Handover Scheme in Mobile WiMax

Adaptive Distance Handover Scheme in Mobile WiMax Adaptive Distance Handover Scheme in Mobile WiMax Shreedatta S. Sawant & Nagaraj K. Vernekar Department of Computer Engineering, Goa College of Engineering, Goa University, Farmagudi, Ponda-Goa E-mail

More information

Payload Length and Rate Adaptation for Throughput Optimization in Wireless LANs

Payload Length and Rate Adaptation for Throughput Optimization in Wireless LANs Payload Length and Rate Adaptation for Throughput Optimization in Wireless LANs Sayantan Choudhury and Jerry D. Gibson Department of Electrical and Computer Engineering University of Califonia, Santa Barbara

More information

On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE based WiMAX Network

On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE based WiMAX Network On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE 802.16 based WiMAX Network Vinit Grewal Department of Electronics and Communication Engineering National Institute of Technology

More information

Performance of Soft Handover FBSS Compared to Hard Handover in case of High Speed in IEEE e for Multimedia Traffic

Performance of Soft Handover FBSS Compared to Hard Handover in case of High Speed in IEEE e for Multimedia Traffic SETIT 2009 5 th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications March 22-26, 2009 TUNISIA Performance of Soft Handover FBSS Compared to Hard Handover

More information

ENSC 427: COMMUNICATION NETWORKS. WiMAX Mobility. Spring FINAL PROJECT Report. Prepared for: Prof. Ljiljana Trajkovic.

ENSC 427: COMMUNICATION NETWORKS. WiMAX Mobility. Spring FINAL PROJECT Report. Prepared for: Prof. Ljiljana Trajkovic. ENSC 427: COMMUNICATION NETWORKS WiMAX Mobility Spring 2009 FINAL PROJECT Report Prepared for: Prof. Ljiljana Trajkovic Prepared By: Simran Sarai: sks17@sfu.ca Daniel Carter: dan.sfu@gmail.com Behzad Jazizadeh:

More information

Performance Analysis of UGS and BE QoS classes in WiMAX

Performance Analysis of UGS and BE QoS classes in WiMAX Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 7 (2013), pp. 805-810 Research India Publications http://www.ripublication.com/aeee.htm Performance Analysis of UGS and

More information

Pre-authentication and Selection of suitable target Base Station during Handover procedure in Mobile WiMAX Network

Pre-authentication and Selection of suitable target Base Station during Handover procedure in Mobile WiMAX Network Pre-authentication and Selection of suitable target Base Station during Handover procedure in Mobile WiMAX Network Ejaz Ahmed, Bob Askwith, Madjid Merabti School of Computing and Mathematical Sciences,

More information

OPNET based Performance Evaluation of WIMAX Network with WIMAX Management using Different QoS

OPNET based Performance Evaluation of WIMAX Network with WIMAX Management using Different QoS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 6, June 2014, pg.862

More information

Cross-Layer Optimized Architecture of MBS over Mobile WiMAX

Cross-Layer Optimized Architecture of MBS over Mobile WiMAX Cross-Layer Optimized Architecture of MBS over Mobile WiMAX Joohan Lee, Juho Lee, Sungkwon Park* Department of Electronics and Computer Engineering Hanyang University Seoul, Republic of Korea remem2002@hotmail.com,

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < Project Title IEEE 802.16 Broadband Wireless Access Working Group HO Latency Reduction Date Submitted Source(s) Re: Abstract 2008-01-22 Sungjin Lee, Geunhwi Lim, Brian Shim Samsung

More information

Cross-layer Optimized Vertical Handover Schemes between Mobile WiMAX and 3G Networks

Cross-layer Optimized Vertical Handover Schemes between Mobile WiMAX and 3G Networks KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 2, NO. 4, AUGUST 2008 171 Copyright c 2008 KSII Cross-layer Optimized Vertical Handover Schemes between Mobile WiMAX and 3G Networks Jaeho Jo

More information

Improving the quality of H.264 video transmission using the Intra-Frame FEC over IEEE e networks

Improving the quality of H.264 video transmission using the Intra-Frame FEC over IEEE e networks Improving the quality of H.264 video transmission using the Intra-Frame FEC over IEEE 802.11e networks Seung-Seok Kang 1,1, Yejin Sohn 1, and Eunji Moon 1 1Department of Computer Science, Seoul Women s

More information

The Efficiency Performance on Handover's Scanning Process of IEEE802.16m

The Efficiency Performance on Handover's Scanning Process of IEEE802.16m The Efficiency Performance on Handover's Scanning Process of IEEE802.16m Ardian Ulvan and Robert Bestak Czech Technical University in Prague, Faculty of Electrical Engineering, Technicka 2, Prague, 16627,

More information

A Seamless Handover Mechanism for IEEE e Broadband Wireless Access

A Seamless Handover Mechanism for IEEE e Broadband Wireless Access A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea {kka1, tongsok}@kt.co.kr

More information

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained

More information

Cross-Layer QoS Support in the IEEE Mesh Network

Cross-Layer QoS Support in the IEEE Mesh Network Cross-Layer QoS Support in the IEEE 802.16 Mesh Network Chun-Chuan Yang, Yi-Ting Mai and Liang-Chi Tsai Multimedia and Communications Laboratory Department of Computer Science and Information Engineering

More information

A Modified DRR-Based Non-real-time Service Scheduling Scheme in Wireless Metropolitan Networks

A Modified DRR-Based Non-real-time Service Scheduling Scheme in Wireless Metropolitan Networks A Modified DRR-Based Non-real-time Service Scheduling Scheme in Wireless Metropolitan Networks Han-Sheng Chuang 1, Liang-Teh Lee 1 and Chen-Feng Wu 2 1 Department of Computer Science and Engineering, Tatung

More information

OPNET BASED SIMULATION AND INVESTIGATION OF WIMAX NETWORK USING DIFFERENT QoS

OPNET BASED SIMULATION AND INVESTIGATION OF WIMAX NETWORK USING DIFFERENT QoS OPNET BASED SIMULATION AND INVESTIGATION OF WIMAX NETWORK USING DIFFERENT QoS Kamini Jaswal 1, Jyoti 2, Kuldeep Vats 3 1 M.tech, Department of electronics and communication, South point institute of engineering

More information

Performance in Wimax Networks Using Vertical Handoff

Performance in Wimax Networks Using Vertical Handoff Performance in Wimax Networks Using Vertical Handoff Renu 1, Anil Dudy 2 Electronics and communication 1, 2,Shri Baba Mastnath Engg. college 1, 2 Email:renudalal89@gmail.com 2, anildudy10@gmail.com 2 Abstract-

More information

The Impact of Channel Bandwidth with Network Asymmetry in WiMAX Network Using TCP New Reno

The Impact of Channel Bandwidth with Network Asymmetry in WiMAX Network Using TCP New Reno International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 1 The Impact of Channel Bandwidth with Network Asymmetry in WiMAX Network Using TCP New Reno Kailash Chandra

More information

TAKEOVER: A New Vertical Handover Concept for Next-Generation Heterogeneous Networks

TAKEOVER: A New Vertical Handover Concept for Next-Generation Heterogeneous Networks TAKEOVER: A New Vertical Handover Concept for Next-Generation Heterogeneous Networks Hyun-Ho Choi and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science

More information

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks First Author A.Sandeep Kumar Narasaraopeta Engineering College, Andhra Pradesh, India. Second Author Dr S.N.Tirumala Rao (Ph.d)

More information

Error-Sensitive Adaptive Frame Aggregation in n WLANs

Error-Sensitive Adaptive Frame Aggregation in n WLANs Error-Sensitive Adaptive Frame Aggregation in 802.11n WLANs Melody Moh, Teng Moh, and Ken Chan Department of Computer Science San Jose State University San Jose, CA, USA Outline 1. Introduction 2. Background

More information

FEC Performance in Large File Transfer over Bursty Channels

FEC Performance in Large File Transfer over Bursty Channels FEC Performance in Large File Transfer over Bursty Channels Shuichiro Senda, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi Graduate School of Informatics, Kyoto University, Kyoto 66-85, Japan

More information

Implementing Horizontal Handover among Homogenous Network in WiMAX

Implementing Horizontal Handover among Homogenous Network in WiMAX Implementing Horizontal Handover among Homogenous Network in WiMAX Rajinder Singh 1 Vikramjit Singh 2 and Malti Rani 3 1 M. Tech, Computer Science Department, Punjab Technical University, Kapurthala, Punjab,

More information

Chapter - 1 INTRODUCTION

Chapter - 1 INTRODUCTION Chapter - 1 INTRODUCTION Worldwide Interoperability for Microwave Access (WiMAX) is based on IEEE 802.16 standard. This standard specifies the air interface of fixed Broadband Wireless Access (BWA) system

More information

Video and Voice Backup over Mobile WiMAX

Video and Voice Backup over Mobile WiMAX Spring 2012 ENSC 427: COMMUNICATION NETWORKS Video and Voice Backup over Mobile WiMAX Group 6 Jae Sung Park Sujin Tom Lee 301083039 301054284 jsp6@sfu.ca stl9@sfu.ca www.sfu.ca/~jsp6 1 Abstract Most of

More information

FORWARD ERROR CORRECTION CODING TECHNIQUES FOR RELIABLE COMMUNICATION SYSTEMS

FORWARD ERROR CORRECTION CODING TECHNIQUES FOR RELIABLE COMMUNICATION SYSTEMS FORWARD ERROR CORRECTION CODING TECHNIQUES FOR RELIABLE COMMUNICATION SYSTEMS Jyoti Sharma Department of ECE Sri Sai College of Engg. & Technology, Badhani, Punjab, India Priya Department of ECE Sri Sai

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information

Reducing Inter-Cell Handover Events based on Cell ID Information in Multi-hop Relay Systems

Reducing Inter-Cell Handover Events based on Cell ID Information in Multi-hop Relay Systems Reducing Inter-Cell Handover Events based on Cell ID Information in Multi-hop Relay Systems Ji Hyun Park Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and

More information

Empirical Study of Mobility effect on IEEE MAC protocol for Mobile Ad- Hoc Networks

Empirical Study of Mobility effect on IEEE MAC protocol for Mobile Ad- Hoc Networks Empirical Study of Mobility effect on IEEE 802.11 MAC protocol for Mobile Ad- Hoc Networks Mojtaba Razfar and Jane Dong mrazfar, jdong2@calstatela.edu Department of Electrical and computer Engineering

More information

WiMAX Mobile Network: Connection and Handover

WiMAX Mobile Network: Connection and Handover WiMAX Mobile Network: Connection and Handover Gaurav Aggarwal* and Sachin Saxena Department of Computer Science Rajshree Institute of Management and Technology, Bareilly, India * Corresponding author.

More information

Mobility Management in Heterogeneous Mobile Communication Networks through an Always Best Connected Integrated Architecture

Mobility Management in Heterogeneous Mobile Communication Networks through an Always Best Connected Integrated Architecture Mobility Management in Heterogeneous Mobile Communication Networks through an Always Best Connected Integrated Architecture Dionysia Triantafyllopoulou *, National and Kapodistrian University of Athens

More information

Evaluating VoIP using Network Simulator-2

Evaluating VoIP using Network Simulator-2 Athens University of Economic and Business Evaluating VoIP using Network Simulator-2 June 2007 Author: Papantonakos Manos Supervisor Prof.: George Xylomenos Co-Supervisor Prof: George Polyzos About WiMax

More information

Vertical Handover in Vehicular Ad-hoc Networks A Survey

Vertical Handover in Vehicular Ad-hoc Networks A Survey Vertical Handover in Vehicular Ad-hoc Networks A Survey U. Kumaran Department of computer Applications Noorul Islam Center for Higher Education, Kumaracoil,Tamilnadu, India. Abstract- Vehicular Ad-hoc

More information

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network Improving the Data Scheduling Efficiency of the IEEE 802.16(d) Mesh Network Shie-Yuan Wang Email: shieyuan@csie.nctu.edu.tw Chih-Che Lin Email: jclin@csie.nctu.edu.tw Ku-Han Fang Email: khfang@csie.nctu.edu.tw

More information

CHAPTER 3 4G NETWORK ARCHITECTURE

CHAPTER 3 4G NETWORK ARCHITECTURE 62 CHAPTER 3 4G NETWORK ARCHITECTURE Wireless mobile communication system generations are all the time, a big topic for the research. Cellular service providers are already in the last phase of the deployment

More information

Effect Change of Speed on Delay and Throughput for Handover Types in Mobile WI-Max Network

Effect Change of Speed on Delay and Throughput for Handover Types in Mobile WI-Max Network International Journal of Modern Communication Technologies & Research (IJMCTR) Effect Change of Speed on Delay and Throughput for Handover Types in Mobile WI-Max Network Sana Mahmoud Eltayeb Almansour,

More information

Kanika, Virk Singh Amardeep, International Journal of Advance Research, Ideas and Innovations in Technology. ISSN: X

Kanika, Virk Singh Amardeep, International Journal of Advance Research, Ideas and Innovations in Technology. ISSN: X ISSN: 2454-132X (Volume2, Issue4) Available online at: www.ijariit.com Analyze the Effect of Base Station and Node Failure and Recovery on the performance of Wimax Kanika Student Adesh Institute of Engineering

More information

RECENTLY, the information exchange using wired and

RECENTLY, the information exchange using wired and Fast Dedicated Retransmission Scheme for Reliable Services in OFDMA Systems Howon Lee and Dong-Ho Cho Department of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered Control Technique

QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered Control Technique 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered

More information

Bandwidth Allocation for Video Streaming in WiMax Networks

Bandwidth Allocation for Video Streaming in WiMax Networks Bandwidth Allocation for Video Streaming in WiMax Networks Alessandra Scicchitano DEIS, Università della Calabria Andrea Bianco, Carla-Fabiana Chiasserini, Emilio Leonardi Dipartimento di Elettronica,

More information

Performance Analysis of Cell Switching Management Scheme in Wireless Packet Communications

Performance Analysis of Cell Switching Management Scheme in Wireless Packet Communications Performance Analysis of Cell Switching Management Scheme in Wireless Packet Communications Jongho Bang Sirin Tekinay Nirwan Ansari New Jersey Center for Wireless Telecommunications Department of Electrical

More information

The Integration of Heterogeneous Wireless Networks (IEEE /IEEE ) and its QoS Analysis

The Integration of Heterogeneous Wireless Networks (IEEE /IEEE ) and its QoS Analysis 141 The Integration of Heterogeneous Wireless Networks (IEEE 802.11/IEEE 802.16) and its QoS Analysis Wernhuar Tarng 1, Nai-Wei Chen 1, Li-Zhong Deng 1, Kuo-Liang Ou 1, Kun-Rong Hsie 2 and Mingteh Chen

More information

An efficient trigger to improve intra-wifi handover performance

An efficient trigger to improve intra-wifi handover performance An efficient trigger to improve intra-wifi handover performance Roberta Fracchia, Guillaume Vivier Motorola Labs, Parc les Algorithmes, Saint-Aubin, 91193 Gif-sur-Yvette, France Abstract Seamless mobility

More information

Capacity Utilization and Admission Control in e WiMAX

Capacity Utilization and Admission Control in e WiMAX International Journal of Information & Computation Technology. ISSN 0974-2239 Volume 4, Number 16 (2014), pp. 1679-1685 International Research Publications House http://www. irphouse.com Capacity Utilization

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

Modeling Multistandard Wireless Networks in OPNET

Modeling Multistandard Wireless Networks in OPNET Modeling Multistandard Wireless Networks in OPNET Anna Zakrzewska, Michael S. Berger, Sarah Ruepp DTU Fotonik, Technical Univerisity of Denmark 800 Kgs. Lyngby, Denmark E-mail: {azak, msbe, srru}@fotonik.dtu.dk

More information

Performance Comparison of WiMAX and WLAN Technologies using OPNET Modeler

Performance Comparison of WiMAX and WLAN Technologies using OPNET Modeler International Conference on Engineering Research & Applications (ICERA) İstanbul (Turkey) May.17-1, 2017 Performance Comparison of WiMAX and WLAN Technologies using OPNET Modeler Ali GEZER 1, Marwa Khaleel

More information

MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS

MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS 1 V.VINOTH, 2 M.LAKSHMI 1 Research Scholar, Faculty of Computing, Department of IT, Sathyabama University,

More information

A QoS Architecture for IDMA-based Multi-service Wireless Networks

A QoS Architecture for IDMA-based Multi-service Wireless Networks A QoS Architecture for IDMA-based Multi-service Wireless Networks Qian Huang, Sammy Chan, King-Tim Ko, Li Ping, and Peng Wang Department of Electronic Engineering, City University of Hong Kong Kowloon,

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 8 High-Speed WLANs and WLAN Security Objectives Describe how IEEE 802.11a networks function and how they differ from 802.11 networks Outline how 802.11g

More information

Mobile WiMAX Physical Layer Optimization and Performance Analysis Towards Sustainability and Ubiquity

Mobile WiMAX Physical Layer Optimization and Performance Analysis Towards Sustainability and Ubiquity Mobile WiMAX Physical Layer Optimization and Performance Analysis Towards Sustainability and Ubiquity Sajal Saha, Angana Chakraborty, Asish K. Mukhopadhyay and Anup Kumar Bhattacharjee Abstract Mobile

More information

The Direct Influence of the Cell Perimeter on the Handover Delay in. the Broadband Network

The Direct Influence of the Cell Perimeter on the Handover Delay in. the Broadband Network The Direct Influence of the Cell Perimeter on the Handover Delay in the Broadband Network Elmabruk S M Elgembari and Kamaruzzaman B Seman Universiti Sains Islam Malaysia Bandar Bandar Baru Nilai,718 Nilai

More information

Improvement of Handoff in Mobile WiMAX Networks Using Mobile Agents

Improvement of Handoff in Mobile WiMAX Networks Using Mobile Agents Improvement of Handoff in Mobile WiMAX Networks Using Mobile Agents Gabriel STOIAN Faculty of Mathematics and Informatics Department of Informatics 13 A.I. Cuza Street ROMANIA gstoian@yahoo.com Abstract:

More information

A Survey on Group Mobility Model and Handover in Mobile WiMAX Network

A Survey on Group Mobility Model and Handover in Mobile WiMAX Network A Survey on Group Mobility Model and Handover in Mobile WiMAX Network 1 Miss. Ishani R. Desai, 2 Prof. Krunal N. Patel 1 Departement of Electronics & Communication. Parul Institute Of Engineering & Technology,

More information

Wireless TCP Performance Issues

Wireless TCP Performance Issues Wireless TCP Performance Issues Issues, transport layer protocols Set up and maintain end-to-end connections Reliable end-to-end delivery of data Flow control Congestion control Udp? Assume TCP for the

More information

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator Introduction- What is WiMAX WiMAX -Worldwide Interoperability

More information

Optimized Handover Schemes over WiMAX

Optimized Handover Schemes over WiMAX Optimized Handover Schemes over WiMAX Zina Jerjees 1, H. Al-Raweshid, Zaineb Al-Banna 1 1 Brunel University, Wireless Networks and Communications Centre (WNCC), London, UB8 3PH, UK {Zina Jerjees, Zaineb.Al-Banna}@brunel.ac.uk

More information

Quality of Service Architectures for Wireless Networks: IntServ and DiffServ Models

Quality of Service Architectures for Wireless Networks: IntServ and DiffServ Models Quality of Service Architectures for Wireless Networks: IntServ and DiffServ Models Indu Mahadevan y and Krishna M. Sivalingam z; School of Electrical Engineering and Computer Science Washington State

More information

Vertical and Horizontal Handover in Heterogeneous Wireless Networks using OPNET

Vertical and Horizontal Handover in Heterogeneous Wireless Networks using OPNET Vertical and Horizontal Handover in Heterogeneous Wireless Networks using OPNET Abhishek Dhiman M.E, E.C.E Department, Thapar University, Patiala Karamjit Singh Sandha Asst. Professor, E.C.E Department

More information

WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes

WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes Syed R. Zaidi, Shahab Hussain, M. A. Ali Department of Electrical Engineering The City College of The

More information

Joint PHY/MAC Based Link Adaptation for Wireless LANs with Multipath Fading

Joint PHY/MAC Based Link Adaptation for Wireless LANs with Multipath Fading Joint PHY/MAC Based Link Adaptation for Wireless LANs with Multipath Fading Sayantan Choudhury and Jerry D. Gibson Department of Electrical and Computer Engineering University of Califonia, Santa Barbara

More information

Channel-Adaptive Error Protection for Scalable Audio Streaming over Wireless Internet

Channel-Adaptive Error Protection for Scalable Audio Streaming over Wireless Internet Channel-Adaptive Error Protection for Scalable Audio Streaming over Wireless Internet GuiJin Wang Qian Zhang Wenwu Zhu Jianping Zhou Department of Electronic Engineering, Tsinghua University, Beijing,

More information

A Global Mobility Scheme for Seamless Multicasting in Proxy Mobile IPv6 Networks

A Global Mobility Scheme for Seamless Multicasting in Proxy Mobile IPv6 Networks ICACT Transactions on on the Advanced Communications Technology (TACT) Vol. Vol. 2, 2, Issue Issue 3, 3, May May 2013 2013 233 A Global Mobility Scheme for Seamless Multicasting in Proxy Mobile IPv6 Networks

More information

UNIT II NETWORKING

UNIT II NETWORKING UNIT II INTRODUCTION TO WIRELESS NETWORKING Wireless Network The cellular telephone system is responsible for providing coverage throughout a particular area known as coverage region or market The interconnection

More information

An Adaptive Bandwidth Reservation Scheme for Multimedia Mobile Cellular Networks

An Adaptive Bandwidth Reservation Scheme for Multimedia Mobile Cellular Networks An Adaptive Bandwidth Reservation Scheme for Multimedia Mobile Cellular Networks Hong Bong Kim Telecommunication Networks Group, Technical University of Berlin Sekr FT5 Einsteinufer 25 1587 Berlin Germany

More information

Institute of Electrical and Electronics Engineers (IEEE)

Institute of Electrical and Electronics Engineers (IEEE) 2006-03-08 IEEE L802.16-06/004 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document 8A/IEEE-2-E Document 8F/IEEE-1-E 8 March 2006 English only Received: TECHNOLOGY Subject: Question

More information

Cross Layer Framework for Traffic Management During Vertical Handover in HetNets

Cross Layer Framework for Traffic Management During Vertical Handover in HetNets Cross Layer Framework for Traffic Management During Vertical Handover in HetNets Mrs.R.Mohanapriya #1, Dr.K.B.Jayanthi #2 # ECE Department, Paavai Engineering College, Namakkal, India # ECE Department,

More information

Connectivity based Handoff Scheme for WiMAX

Connectivity based Handoff Scheme for WiMAX Connectivity based Handoff Scheme for WiMAX Chandan Kumar Invertis University, India Ravi Shankar Shukla Saudi Electronics University Gaurav Agarwal Invertis University, India ABSTRACT Now days, Wireless

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

Network-based Fast Handover for IMS Applications and Services

Network-based Fast Handover for IMS Applications and Services Network-based Fast Handover for IMS Applications and Services Sang Tae Kim 1, Seok Joo Koh 1, Lee Kyoung-Hee 2 1 Department of Computer Science, Kyungpook National University 2 Electronics and Telecommunications

More information

WiMedia Ultra-wideband: Efficiency Considerations of the Effects of Protocol Overhead on Data Throughput. January All Rights Reserved.

WiMedia Ultra-wideband: Efficiency Considerations of the Effects of Protocol Overhead on Data Throughput. January All Rights Reserved. WiMedia Ultra-wideband: Efficiency Considerations of the Effects of Protocol Overhead on Data Throughput January 2009. All Rights Reserved. Contributed by WiMedia member company Abstract Today s wireless

More information

Impact of Voice Coding in Performance of VoIP

Impact of Voice Coding in Performance of VoIP Impact of Voice Coding in Performance of VoIP Batoul Alia Baker Koko 1, Dr. Mohammed Abaker 2 1, 2 Department of Communication Engineering, Al-Neelain University Abstract: Voice over Internet Protocol

More information

LTE : The Future of Mobile Broadband Technology

LTE : The Future of Mobile Broadband Technology LTE : The Future of Mobile Broadband Technology Erick Setiawan tukangbajaksawah@gmail.com 1 Become a necessity today, where the wireless broadband technology needed to meet increasing expectations in terms

More information

International Journal Of Core Engineering & Management Volume-5, Issue-7, October-2018, ISSN No:

International Journal Of Core Engineering & Management Volume-5, Issue-7, October-2018, ISSN No: WIMAX TECHNOLOGY FOR BROADBAND WIRELESS ACCESS: OVERVIEW Nishu M.tech Scholar, ECE Department, SSCET, Badhani, Punjab Er.Reetika AP, ECE Department, SSCET, Badhani, Punjab Abstract The Worldwide Interoperability

More information

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments -

Outline. Wireless Channel Characteristics. Multi-path Fading. Opportunistic Communication - with a focus on WLAN environments - Outline Opportunistic Communication - with a focus on WLAN environments - Jong-won Lee 2006. 02.20. Background? Wireless Channels? Opportunistic communication? Examples? Basics of WLAN Previous Works?

More information

Dynamic Control and Optimization of Buffer Size for Short Message Transfer in GPRS/UMTS Networks *

Dynamic Control and Optimization of Buffer Size for Short Message Transfer in GPRS/UMTS Networks * Dynamic Control and Optimization of for Short Message Transfer in GPRS/UMTS Networks * Michael M. Markou and Christos G. Panayiotou Dept. of Electrical and Computer Engineering, University of Cyprus Email:

More information

A study of Skype over IEEE networks: voice quality and bandwidth usage

A study of Skype over IEEE networks: voice quality and bandwidth usage Graduate Theses and Dissertations Graduate College 2011 A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage Kuan-yu Chen Iowa State University Follow this and additional works

More information

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV)

Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV) Performance Evaluation of Active Route Time-Out parameter in Ad-hoc On Demand Distance Vector (AODV) WADHAH AL-MANDHARI, KOICHI GYODA 2, NOBUO NAKAJIMA Department of Human Communications The University

More information

Performance Analysis of TCP and UDP-based Applications in a IEEE deployed Network

Performance Analysis of TCP and UDP-based Applications in a IEEE deployed Network Performance Analysis of TCP and UDP-based Applications in a IEEE 82.16 deployed Network Hemant Kumar Rath 1 and Abhay Karandikar 2 1 TCS Networks Lab, Bangalore 56 66, India, Email:hemant.rath@tcs.com

More information

3. Evaluation of Selected Tree and Mesh based Routing Protocols

3. Evaluation of Selected Tree and Mesh based Routing Protocols 33 3. Evaluation of Selected Tree and Mesh based Routing Protocols 3.1 Introduction Construction of best possible multicast trees and maintaining the group connections in sequence is challenging even in

More information

IEEE C802.16e-318. IEEE Broadband Wireless Access Working Group <

IEEE C802.16e-318. IEEE Broadband Wireless Access Working Group < Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy and Procedures IEEE 802.16 Broadband Wireless Access Working Group Fix the problem of Scan/Association

More information

AN EFFICIENT WI-FI INTERNET ACCESS FOR MOVING VEHICLES USING SWIMMING SCHEME

AN EFFICIENT WI-FI INTERNET ACCESS FOR MOVING VEHICLES USING SWIMMING SCHEME AN EFFICIENT WI-FI INTERNET ACCESS FOR MOVING VEHICLES USING SCHEME Vignesh Babu.B 1, Dr.G.Athisha 2 1 PG Student, Applied Electronics, PSNA College of Engineering & Technology, India. E-mail: vbabu9191@gmail.com

More information

Coexistence goals of VoIP and TCP traffic in mobile WiMAX networks: Performance of flat architecture

Coexistence goals of VoIP and TCP traffic in mobile WiMAX networks: Performance of flat architecture Coexistence goals of VoIP and TCP traffic in mobile WiMAX networks: Performance of flat architecture ZORAN BOJKOVIC (1), DRAGORAD MILOVANOVIC (2) (1) Faculty of Transport and Traffic Engineering, University

More information

AODV-PA: AODV with Path Accumulation

AODV-PA: AODV with Path Accumulation -PA: with Path Accumulation Sumit Gwalani Elizabeth M. Belding-Royer Department of Computer Science University of California, Santa Barbara fsumitg, ebeldingg@cs.ucsb.edu Charles E. Perkins Communications

More information

A Self-Organized Femtocell for IEEE e System

A Self-Organized Femtocell for IEEE e System A Self-Organized Femtocell for IEEE 80.16e System Young Jin Sang, Hae Gwang Hwang and Kwang Soon Kim School of Electrical and Electronic Engineering, Yonsei University 134, Shinchong-dong, Seodaemun-gu,

More information

Effect of Payload Length Variation and Retransmissions on Multimedia in a WLANs

Effect of Payload Length Variation and Retransmissions on Multimedia in a WLANs Effect of Payload Length Variation and Retransmissions on Multimedia in 8.a WLANs Sayantan Choudhury Dept. of Electrical and Computer Engineering sayantan@ece.ucsb.edu Jerry D. Gibson Dept. of Electrical

More information

Journal of Electronics and Communication Engineering & Technology (JECET)

Journal of Electronics and Communication Engineering & Technology (JECET) Journal of Electronics and Communication Engineering & Technology (JECET) JECET I A E M E Journal of Electronics and Communication Engineering & Technology (JECET)ISSN ISSN 2347-4181 (Print) ISSN 2347-419X

More information

QOS ANALYSIS OF 3G AND 4G. Khartoum, Sudan 2 unversity of science and Technology, Khartoum, Sudan

QOS ANALYSIS OF 3G AND 4G. Khartoum, Sudan 2 unversity of science and Technology, Khartoum, Sudan QOS ANALYSIS OF 3G AND 4G Doaa Hashim Osman 1, Amin Babiker 2 and Khalid hammed Bellal 1 Department of Communication, Faculty of Engineering, AL Neelain University, Khartoum, Sudan 2 unversity of science

More information

Channel Adaptive ACK Mechanism in IEEE Wireless Personal Area Networks

Channel Adaptive ACK Mechanism in IEEE Wireless Personal Area Networks Channel Adaptive ACK Mechanism in IEEE 802.15.3 Wireless Personal Area Networks Jong-In Lee 28 August 2008 Broadband Communication Laboratory Korea University FISC 2008 Outline Introduction System model

More information

TCP START-UP BEHAVIOR UNDER THE PROPORTIONAL FAIR SCHEDULING POLICY

TCP START-UP BEHAVIOR UNDER THE PROPORTIONAL FAIR SCHEDULING POLICY TCP START-UP BEHAVIOR UNDER THE PROPORTIONAL FAIR SCHEDULING POLICY J. H. CHOI,J.G.CHOI, AND C. YOO Department of Computer Science and Engineering Korea University Seoul, Korea E-mail: {jhchoi, hxy}@os.korea.ac.kr

More information

Internet Traffic Performance in IEEE Networks

Internet Traffic Performance in IEEE Networks Internet Traffic Performance in IEEE 802.16 Networks Dmitry Sivchenko 1,2,3, Nico Bayer 1,2,3, Bangnan Xu 1, Veselin Rakocevic 2, Joachim Habermann 3 1 T-Systems, SSC ENPS, Deutsche-Telekom-Allee 7, 64295

More information

White Paper Broadband Multimedia Servers for IPTV Design options with ATCA

White Paper Broadband Multimedia Servers for IPTV Design options with ATCA Internet channels provide individual audiovisual content on demand. Such applications are frequently summarized as IPTV. Applications include the traditional programmed Video on Demand from a library of

More information

CSCI-1680 Wireless Chen Avin

CSCI-1680 Wireless Chen Avin CSCI-1680 Wireless Chen Avin Based on slides from Computer Networking: A Top Down Approach - 6th edition Administrivia TCP is due on Friday Final Project is out (fun, two weeks) Wireless and Mobile Networks

More information

Department of Information Technology. Chandigarh Engineering College, Landran, Punjab, India

Department of Information Technology. Chandigarh Engineering College, Landran, Punjab, India Volume 3, Issue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Performance

More information

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS

CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS 28 CHAPTER 3 EFFECTIVE ADMISSION CONTROL MECHANISM IN WIRELESS MESH NETWORKS Introduction Measurement-based scheme, that constantly monitors the network, will incorporate the current network state in the

More information

Performance of UMTS Radio Link Control

Performance of UMTS Radio Link Control Performance of UMTS Radio Link Control Qinqing Zhang, Hsuan-Jung Su Bell Laboratories, Lucent Technologies Holmdel, NJ 77 Abstract- The Radio Link Control (RLC) protocol in Universal Mobile Telecommunication

More information