Evolutionary Complex Neural Networks

Size: px
Start display at page:

Download "Evolutionary Complex Neural Networks"

Transcription

1 Evolutionary Complex Neural Networks Mauro Annunziato, Ilaria Bertini, Matteo De Felice, Stefano Pizzuti ENEA Energy, New technologies and Environment Agency Casaccia R.C. - Via Anguillarese 301, Rome, Italy Phone: , Fax: {mauro.annunziato, ilaria.bertini, matteo.defelice, stefano.pizzuti}@casaccia.enea.it ABSTRACT: Complex networks, like the scale-free model, are observed in many biological and social systems and the application of this topology to artificial neural networks (ANN) leads to interesting considerations. In this paper, we present a preliminary study on the modelling capabilities of ANN with complex topologies. We used an evolutionary algorithm (EA) to train them providing thus the paradigm of Evolutionary Complex Neural Networks (ECNN). We compared the ECNN performances to some well known techniques, including simple feed-forward evolutionary and Back Propagation trained neural networks, on several well established benchmarks and experimentation show promising results. KEYWORDS: complex networks, evolutionary neural networks, artificial life INTRODUCTION Artificial Neural Networks (ANN) and Evolutionary Algorithms (EA) are both abstractions of natural processes. They are formulated into a computational model so that the learning power of neural networks and adaptive capabilities of evolutionary processes can be harnessed in an artificial life environment. Adaptive learning, as it is called, produces results that demonstrate how complex and purposeful behaviour can be induced in a system by randomly varying the topology and the rules governing the system. Evolutionary algorithms can help determine optimised neural network giving rise to a new branch of ANN known as Evolutionary Neural Networks[1] (ENN). It has been found [2] that, in most cases, the combinations of evolutionary algorithms and neural nets perform equally well (in terms of accuracy) and were as accurate as hand-designed neural networks trained with back-propagation [3]. However, some combinations of EAs and ANNs performed much better for some data than the hand-designed networks or other EA/ANN combinations. This suggests that in applications where accuracy is a premium, it might pay off to experiment with EA and ANN combinations. A new and very interesting research area which recently emerged is that of Complex Networks (CN). CN (mainly scalefree networks) are receiving great attention in the physics community, because they seem to be the basic structure of many natural and artificial networks like proteins, metabolism, species network, biological networks [4][5][6], the Internet, the WWW, the network, metabolic networks, trust network and many more [7]. In this context, using complex ANN topologies driven by evolutionary mechanisms is a new idea and we used them in order to model complex processes. THE METHODOLOGY In this context, the goal of the proposed work is the study of evolutionary neural networks with a directed-graph based topology, obtained using an iterative algorithm similar to that proposed by Barabasi-Albert in 1999 [8]. COMPLEX NETWORKS A unique definition of complex network doesn t exist, this term refers to networks with non-trivial topology and high number of nodes and connections. However, complex networks can be classified according to some topology descriptors, among these the most important ones are: the node degree distribution, the shortest path length and the clustering coefficient.

2 Properties of these networks are often compared with random graphs [9] that are to be considered simple networks. Random networks have a Poisson node degree distribution, a small shortest path length and a small clustering coefficient. Small World networks [4][10] have a Poisson node degree distribution, a small shortest path length and a high clustering coefficient. They are in the middle between regular and random networks (see Figure 1:) and it has been shown [4] that this topology is the optimal one for communication tasks. Figure 1: network topologies The scale-free model [11] has a node degree distribution which follows the power law distribution. It means that we have few nodes with high connectivity (hubs) and many nodes with few links (see Figure 2:). These networks show the so-called small-world property [4], every two nodes of the network are placed at a distance of a relative small number of edges. These types of networks are receiving great attention in the physics community, because many networks have been reported recently to follow a scale free degree distribution. Just as examples we can cite the Internet, the WWW, the network, metabolic networks, trust network and many more [7]. Their inspiring philosophy could be synthesized in the sentence the rich gets richer, because each node has a probability to get a new link that is proportional to the number of its current links. Figure 2: scale free network Therefore, in this study, we focussed on scale-free networks. THE ALGORITHM We used neural networks based on a complex topology created with the algorithm whose pseudo-code is shown in Table I:. The algorithm starts creating an initial set of nodes connected each other and then each added node is connected with a selected destination node with a non-linear preferential-attachment function: this function defines the probability that a node in network receive a link from a newly inserted node [8][12]. The analytic form of such a function is: α k (1) i Π ( ki ) = α k j j

3 Where k i is the degree of node i. This function is monotonically increasing, the α parameter influences the numbers of dominant hubs with high connectivity. In Figure 3: and Figure 4: we show the node degree distributions of networks γ with 4000 nodes built with the presented algorithm with different α values, fitting with a power function like k. BEGIN /* Initial set of nodes */ FOR i = 1 to m 0 ADD node i CONNECT node i to ALL /* Add nodes and connect them with PA function */ FOR i = 1 to TOTAL_NODES ADD node i FOR j = 1 to m x = GET_NODE_WITH_PREFERENTIAL_ATTACHMENT CONNECT node i to node x CONNECT node x to node i /* Select output node */ x = RANDOM(TOTAL_NODES) END OUTPUT_NODE = node x /* Add and connect input nodes */ CASE INPUT_CONNECTION_TYPE OF: /* CONNECTION TYPE A */ A: ADD ALL_INPUT_NODES FOR i = 1 to m x = RANDOM(TOTAL_NODES) CONNECT ALL_INPUT_NODES to node x /* CONNECTION TYPE B */ B: FOR i = 1 to TOTAL_INPUT_NODES ADD input_node i FOR j = 1 to m x = GET_NODE_WITH_PREFERENTIAL_ATTACHMENT CONNECT input_node i to node x END CASE Table I:. algorithm pseudo-code Here the parameters m 0 and m respectively represent the number of initial nodes and the number of links each time a new node is inserted. In the following table we report the value of the parameters we used. The output node of the network is randomly chosen after the insertion of the nodes of the hidden layer. At the selection of the output node, input nodes are inserted. Parameter Value m 0 4 m 2-6 α 1.2 Table II:. algorithm parameters

4 Figure 3: degree distribution of a 4000 nodes network created with α = 1 fitted with a power-law function with γ=3.1 (dashed line) Figure 4: degree distribution of a 4000 nodes network created with α = 1.2 fitted with a power-law function with γ=4 (dashed line) In this algorithm we considered two types of connections between the network and the input nodes (in the pseudo-code these methods are indicated by the variable INPUT_CONNECTION_TYPE). In case A we have all the input nodes connected to the same m nodes of the hidden layer. Otherwise in case B we have each input node linked to m random nodes of the hidden layer. A network created with this algorithm is presented in Figure 5:. Figure 5: an example of complex neural network. Input nodes are black and the output node is grey.

5 THE EVOLUTIONARY ENVIRONMENT The implemented evolutionary environment is an Artificial Life (ALIFE) environment [13]. This approach has been tested on the optimisation of static well known benchmarks, as the Travelling Salesman Problem, the Chua s circuit and the Kuramoto dynamical system [14], as well as real cases [15][16][17][18]. The ALIFE context is a two dimensional lattice (life space) representing a flat physical space where the artificial individuals can move around. In this experimentation we used a 25X25 lattice, corresponding to a maximum population size of 625 individuals, and an initial population of 215 individuals. At each iteration (or life cycle), individuals move in the life space and, in case of meeting with other individuals, interaction occurs. Each individual has a particular set of rules that determines its interactions with other agents basically based on a competition for energy in relation to the performance value. Individuals can self-reproduce via haploid mutation which occurs only if the individual has an energy greater than a specific birth energy. In fact, during reproduction, an amount of energy equal to the birth energy is transferred from the parent to the child. In the haploid reproduction a probabilistic test for self reproduction is performed at every life cycle and a probabilistic-random mutation occurs on the genes according to the mutation rate and the mutation amplitude, which are evolutionary themselves [19]. When two individuals meet, fight occurs. The winner is the individual characterized by a greater value of performance and the loser transfers an amount of energy (fighting energy) to the winner. At every life cycle each individual age is increased and when the age reaches a value close to the average lifetime, the probability of natural death increases. This ageing mechanism is very important to warrant the possibility to lose memory of very old solutions and follow the process evolution. Another mechanism of death occurs when an individual reaches the null energy due to reproduction or fighting with other individuals. For interested readers, a detailed description of the methodology is reported in [15][16]. The characteristic Artificial Life environment we used is called Artificial Societies, introduced in [20], but we made some modifications to the original one. In our implementation each individual of the initial population is initialised with a different network topology in his genotype. Network weights and activation functions, but not the topology, are subject to random mutations and no crossover mechanism among different network topologies has been implemented because in the artificial life algorithm we used there is no bi-sexual reproduction mechanism. EXPERIMENTATION Experimentation concerned the optimal training of complex neural networks in order to solve six classification benchmarks taken from the UCI repository [21]. The neural optimisation task has been accomplished using the proposed evolutionary approach and compared to the following six methodologies: Multilayer Perceptron (MLP) [22] trained with the Back-Propagation algorithm, Kstar [23], MultiBoost (MB) [24], Voting Feature Interval (VFI) [25], Particle Swarm Optimisation (PSO) [26] and evolutionary neural networks (ENN)[19]. For the first four the WEKA tool [27] has been used and for PSO we took the results presented in [28]. Each data set (see Table III:) has been split in two parts: training (75% of the whole data set) and testing set (25% of the whole data set). The neural feed-forward topologies of the ENN and MLP models are reported in Table IV:. Problem Data set size Training set Size Testing set Size Classes Input size Diabetes Heart Iris Wdbc WdbcInt Wine Table III:. Data sets features Problem Topology (input-hidden-output) Diabetes Heart Iris Wdbc WdbcIn Wine Table IV:. Neural feed-forward topologies

6 For the Evolutionary Complex Neural Networks (ECNN) 30 hidden neurons were used for all the problems. Finally, to avoid over-fitting in the MLP, ENN, ECNN tests, we used the early stopping criterion by setting performance evaluations. Results are in Table V:, where we show the average of the classification error (percentage) on the testing set. For each of the mentioned techniques, we performed ten runs on each problem. ECNN ENN MLP PSO KSTAR MB VFI Diabetes 19.06% 21.82% 21.9% 22.5 % 32.29% 26.5% 54.69% Heart 13.16% 14.87% 17.1% 17.46% 25.00% 10.5% 18.42% Iris 3.16% 2.63% 2.63% 2.63% 5.26% 7.90% 7.90% Wdbc 1.47% 1.75% 2.10% 5.73% 5.59% 2.80% 5.59% WdbcIn 2.06% 1.09% 1.71% 2.87% 1.14% 4.00% 1.71% Wine 4.22% 3.33% 2.22% 4.44% 2.22% 22.2% 11.11% Average 7.19% 7.58% 7.94% 9.27% 11.92% 12.32% 16.57% Table V:. Experimental testing results (classification error) These results show the effectiveness of the proposed methodology based on evolutionary complex neural networks (ECNN). In fact, this method provides the best global performance obtaining the best results on two problems. In particular, it is interesting the comparison with the feed-forward MLP, trained with the Back-Propagation Algorithm, and ENN. This comparison directly shows the performance improvement when using the suggested technique. In particular, this experimentation points out that the most remarkable improvement is achieved on the most difficult problems (diabetes, heart) suggesting the consideration that such complex models are worth using on complex problems, while for simple problems (iris, wdbcin, wine) simple architectures are better. As regards cpu time, KSTAR, MB and VFI are very fast (1-2 seconds) because they are statistical clustering techniques which do not require a training stage. For PSO we got the results from [28] which does not report such an information, for ECNN, because of the complexity of the topology, the average training time is about 50 minutes and for the other methods the training time ranges from 25 to 190 seconds. CONCLUSION Complex networks like the scale-free model proposed by Barabasi-Albert are observed in many biological systems and the application of this topologies to artificial neural networks leads to interesting considerations. In this paper, we presented a preliminary study on how to evolve neural networks with complex topologies and in particular we focused on the scale-free model. Experimentation has been carried out on several well known benchmark problems and we compared the proposed approach to six different methods, including simple feed-forward neural networks. The experimentation we did is to be considered only the beginning of the exploration of the union between neural networks and complex topologies. It is needed to perform more extended tests and to compare the structures object of this paper with more optimisation and modelling methods. However, such preliminary results showed that the proposed models outperformed on average all the others, achieving the most remarkable performance on difficult problems. Future work will focus on the topological analysis (like connectivity) of the results and on the evolution of complex topologies. REFERENCES [1] Yao, X., 1999 Evolving Artificial Neural Networks, Proceedings of the IEEE, 87(9): [2] Alander, J. T., 1998 An indexed bibliography of genetic algorithms and neural networks, Technical Report NN, University of Vaasa, Department of Information Technology and Production Economics [3] Cant-Paz, E. and Kamath, C., 2005 An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics

7 [4] Watts DJ, Strogatz SH., 1998 Collective dynamics of 'small-world' networks, Nature.393(6684):440-2 [5] Gully A. P. C. Burns, Malcolm P. Y Oung, 2000 Analysis of the connectional organization of neural systems associated with the hippocampus in rats, Philosophical Transactions of the Royal Society B: Biological Sciences, Volume 355, Issue 1393, Pages [6] Victor M. Eguiluz, Dante R. Chialvo, Guillermo A. Cecchi, Marwan Baliki, and A. Vania Apkarian, 2005 Scale- Free Brain Functional Networks, Phys. Rev. Lett. 94, [7] Dorogotvsev, S. N., Mendes, J. F. F., 2002 Evolution of Networks, Advances in Physics, Vol. 51, n. 4, pp [8] Barabasi, A.-L. and Albert R., 1999 Emergence of scaling in random networks, Science, 286, [9] P Erdos, A Renyi, 1959 On random graphs, Publ. Math. Debrecen [10] Watts, D. J., 1999 Small Worlds: The Dynamics of Networks Between Order and Randomness, Princeton University Press [11] Coven, R., Havlin, S., ben-avraham, D., 2002 Structural Properties of Scale-Free Networks, chap. 4 in "Handbook of graphs and networks", Eds. S. Bornholdt and H. G. Schuster, Wiley-VCH [12] Jeong H., Neda Z. and Barabasi A.-L., 2003 Measuring preferential attachment for evolving networks, Euro. Phys. Lett [13] Langton, C., 1989 : Artificial Life, Addison-Wesley, Redwood City/CA, USA [14] Annunziato M., Bertini I., Lucchetti M., Pannicelli A., Pizzuti S., 2001 : Adaptivity of Artificial Life Environment for On-Line Optimization of Evolving Dynamical Systems, in Proc. EUNITE01, Tenerife, Spain [15] Annunziato M., Bertini I., Pannicelli A., Pizzuti S., Tsimring L., 2000 : Complexity and Control of Combustion Processes in Industry, Proc. of CCSI 2000 Complexity and Complex System in Industry, Warwick, UK [16] Annunziato M., Lucchetti M., Orsini G., Pizzuti S., 2005 : Artificial life and on-line flows optimisation in energy networks, IEEE Swarm Intelligence Sympusium, Pasadena (CA), USA [17] Annunziato M., Bertini I., Pannicelli A. and Pizzuti S., 2006 : A Nature-inspired-Modeling-Optimization-Control system applied to a waste incinerator plant, 2nd European Symposium NiSIS 06, Puerto de la Cruz, Tenerife (Spain) [18] Annunziato M., Bertini I., Pannicelli A., Pizzuti S., 2006 : Evolutionary Control and On-Line Optimization of an MSWC Energy Process, Journal of Systemics, Cybernetics and Informatics, Vol.4, Num. 4 [19] Annunziato M., Bertini I., Iannone R.., Pizzuti S., 2006 Evolving feed-forward neural networks through evolutionary mutation parameters, 7 th International Conference of Intelligent Data Engineering and Automated Learning (IDEAL 06), Burgos, Spain, [20] Annunziato M., Bruni C., Lucchetti M., Pizzuti S., 2003 : "Artificial life approach for continuous optimisation of non stationary dynamical systems", Integrated Computer-Aided Engineering, vol. 10, n.2, [21] Blake, C. L and Merz, C. J., 1998 : UCI repository of machine learning databases, University of California, Irvine, [22] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., 1986 : Learning representations by backpropagating errors. Nature, 323, [23] Cleary, J. G. and Trigg, L. E., 1995 : K*: An Instance- based Learner Using an Entropic Distance Measure, Proceedings of the 12th International Conference on Machine learning,

8 [24] Webb, G. I., 2000 : MultiBoosting: a technique for combining boosting and wagging, Machine Learning, vol. 40 (2), [25] Demiroz, G. and Guvenir, A., 1997 : Classification by voting feature intervals, ECML-97 [26] Kennedy, J. and Eberhart R.C., 1995 : Particle swarm optimization. Proc. IEEE International Conference on Neural Networks, IV. Piscataway, NJ: IEEE Service Center, [27] Witten, I. H. and Frank, E., 2000: Data mining: practical machine learning tool and technique with Java implementation, San Francisco: Morgan Kaufmann [28] De Falco, I., Della Cioppa, A. and Tarantino, E., 2005 : Impiego della particle swarm optimization per la classificazione in database, II Italian Artificial Life Workshop, Rome, Italy, ISTC-CNR

Evolving Complex Neural Networks

Evolving Complex Neural Networks Evolving Complex Neural Networks Mauro Annunziato, Ilaria Bertini, Matteo De Felice, Stefano Pizzuti Energy, New technology and Environment Agency (ENEA) Via Anguillarese 30, 003 Rome, Italy {mauro.annunziato,

More information

A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G, ()-"&"3 -"(' ( +-" " " % '.+ % ' -0(+$,

A *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G, ()-&3 -(' ( +-   % '.+ % ' -0(+$, The structure is a very important aspect in neural network design, it is not only impossible to determine an optimal structure for a given problem, it is even impossible to prove that a given structure

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 7, February 2013)

International Journal of Digital Application & Contemporary research Website:   (Volume 1, Issue 7, February 2013) Performance Analysis of GA and PSO over Economic Load Dispatch Problem Sakshi Rajpoot sakshirajpoot1988@gmail.com Dr. Sandeep Bhongade sandeepbhongade@rediffmail.com Abstract Economic Load dispatch problem

More information

Argha Roy* Dept. of CSE Netaji Subhash Engg. College West Bengal, India.

Argha Roy* Dept. of CSE Netaji Subhash Engg. College West Bengal, India. Volume 3, Issue 3, March 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Training Artificial

More information

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization 2017 2 nd International Electrical Engineering Conference (IEEC 2017) May. 19 th -20 th, 2017 at IEP Centre, Karachi, Pakistan Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

Using CODEQ to Train Feed-forward Neural Networks

Using CODEQ to Train Feed-forward Neural Networks Using CODEQ to Train Feed-forward Neural Networks Mahamed G. H. Omran 1 and Faisal al-adwani 2 1 Department of Computer Science, Gulf University for Science and Technology, Kuwait, Kuwait omran.m@gust.edu.kw

More information

Feature weighting using particle swarm optimization for learning vector quantization classifier

Feature weighting using particle swarm optimization for learning vector quantization classifier Journal of Physics: Conference Series PAPER OPEN ACCESS Feature weighting using particle swarm optimization for learning vector quantization classifier To cite this article: A Dongoran et al 2018 J. Phys.:

More information

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding

Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding e Scientific World Journal, Article ID 746260, 8 pages http://dx.doi.org/10.1155/2014/746260 Research Article Path Planning Using a Hybrid Evolutionary Algorithm Based on Tree Structure Encoding Ming-Yi

More information

Exploiting the Scale-free Structure of the WWW

Exploiting the Scale-free Structure of the WWW Exploiting the Scale-free Structure of the WWW Niina Päivinen Department of Computer Science, University of Kuopio P.O. Box 1627, FIN-70211 Kuopio, Finland email niina.paivinen@cs.uku.fi tel. +358-17-16

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

Evolving SQL Queries for Data Mining

Evolving SQL Queries for Data Mining Evolving SQL Queries for Data Mining Majid Salim and Xin Yao School of Computer Science, The University of Birmingham Edgbaston, Birmingham B15 2TT, UK {msc30mms,x.yao}@cs.bham.ac.uk Abstract. This paper

More information

Response Network Emerging from Simple Perturbation

Response Network Emerging from Simple Perturbation Journal of the Korean Physical Society, Vol 44, No 3, March 2004, pp 628 632 Response Network Emerging from Simple Perturbation S-W Son, D-H Kim, Y-Y Ahn and H Jeong Department of Physics, Korea Advanced

More information

arxiv:cond-mat/ v1 21 Oct 1999

arxiv:cond-mat/ v1 21 Oct 1999 Emergence of Scaling in Random Networks Albert-László Barabási and Réka Albert Department of Physics, University of Notre-Dame, Notre-Dame, IN 46556 arxiv:cond-mat/9910332 v1 21 Oct 1999 Systems as diverse

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization Richa Agnihotri #1, Dr. Shikha Agrawal #1, Dr. Rajeev Pandey #1 # Department of Computer Science Engineering, UIT,

More information

Evolutionary Algorithms. CS Evolutionary Algorithms 1

Evolutionary Algorithms. CS Evolutionary Algorithms 1 Evolutionary Algorithms CS 478 - Evolutionary Algorithms 1 Evolutionary Computation/Algorithms Genetic Algorithms l Simulate natural evolution of structures via selection and reproduction, based on performance

More information

Using a genetic algorithm for editing k-nearest neighbor classifiers

Using a genetic algorithm for editing k-nearest neighbor classifiers Using a genetic algorithm for editing k-nearest neighbor classifiers R. Gil-Pita 1 and X. Yao 23 1 Teoría de la Señal y Comunicaciones, Universidad de Alcalá, Madrid (SPAIN) 2 Computer Sciences Department,

More information

Neural Network Weight Selection Using Genetic Algorithms

Neural Network Weight Selection Using Genetic Algorithms Neural Network Weight Selection Using Genetic Algorithms David Montana presented by: Carl Fink, Hongyi Chen, Jack Cheng, Xinglong Li, Bruce Lin, Chongjie Zhang April 12, 2005 1 Neural Networks Neural networks

More information

Improving Tree-Based Classification Rules Using a Particle Swarm Optimization

Improving Tree-Based Classification Rules Using a Particle Swarm Optimization Improving Tree-Based Classification Rules Using a Particle Swarm Optimization Chi-Hyuck Jun *, Yun-Ju Cho, and Hyeseon Lee Department of Industrial and Management Engineering Pohang University of Science

More information

Hybrid Particle Swarm-Based-Simulated Annealing Optimization Techniques

Hybrid Particle Swarm-Based-Simulated Annealing Optimization Techniques Hybrid Particle Swarm-Based-Simulated Annealing Optimization Techniques Nasser Sadati Abstract Particle Swarm Optimization (PSO) algorithms recently invented as intelligent optimizers with several highly

More information

Performance Analysis of Data Mining Classification Techniques

Performance Analysis of Data Mining Classification Techniques Performance Analysis of Data Mining Classification Techniques Tejas Mehta 1, Dr. Dhaval Kathiriya 2 Ph.D. Student, School of Computer Science, Dr. Babasaheb Ambedkar Open University, Gujarat, India 1 Principal

More information

NEURO-PREDICTIVE CONTROL DESIGN BASED ON GENETIC ALGORITHMS

NEURO-PREDICTIVE CONTROL DESIGN BASED ON GENETIC ALGORITHMS NEURO-PREDICTIVE CONTROL DESIGN BASED ON GENETIC ALGORITHMS I.Sekaj, S.Kajan, L.Körösi, Z.Dideková, L.Mrafko Institute of Control and Industrial Informatics Faculty of Electrical Engineering and Information

More information

Research on Applications of Data Mining in Electronic Commerce. Xiuping YANG 1, a

Research on Applications of Data Mining in Electronic Commerce. Xiuping YANG 1, a International Conference on Education Technology, Management and Humanities Science (ETMHS 2015) Research on Applications of Data Mining in Electronic Commerce Xiuping YANG 1, a 1 Computer Science Department,

More information

Genetic Programming for Data Classification: Partitioning the Search Space

Genetic Programming for Data Classification: Partitioning the Search Space Genetic Programming for Data Classification: Partitioning the Search Space Jeroen Eggermont jeggermo@liacs.nl Joost N. Kok joost@liacs.nl Walter A. Kosters kosters@liacs.nl ABSTRACT When Genetic Programming

More information

Inertia Weight. v i = ωv i +φ 1 R(0,1)(p i x i )+φ 2 R(0,1)(p g x i ) The new velocity update equation:

Inertia Weight. v i = ωv i +φ 1 R(0,1)(p i x i )+φ 2 R(0,1)(p g x i ) The new velocity update equation: Convergence of PSO The velocity update equation: v i = v i +φ 1 R(0,1)(p i x i )+φ 2 R(0,1)(p g x i ) for some values of φ 1 and φ 2 the velocity grows without bound can bound velocity to range [ V max,v

More information

Automatic Programming with Ant Colony Optimization

Automatic Programming with Ant Colony Optimization Automatic Programming with Ant Colony Optimization Jennifer Green University of Kent jg9@kent.ac.uk Jacqueline L. Whalley University of Kent J.L.Whalley@kent.ac.uk Colin G. Johnson University of Kent C.G.Johnson@kent.ac.uk

More information

An Evolving Network Model With Local-World Structure

An Evolving Network Model With Local-World Structure The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 47 423 An Evolving Network odel With

More information

Smallest small-world network

Smallest small-world network Smallest small-world network Takashi Nishikawa, 1, * Adilson E. Motter, 1, Ying-Cheng Lai, 1,2 and Frank C. Hoppensteadt 1,2 1 Department of Mathematics, Center for Systems Science and Engineering Research,

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

Efficient Pruning Method for Ensemble Self-Generating Neural Networks

Efficient Pruning Method for Ensemble Self-Generating Neural Networks Efficient Pruning Method for Ensemble Self-Generating Neural Networks Hirotaka INOUE Department of Electrical Engineering & Information Science, Kure National College of Technology -- Agaminami, Kure-shi,

More information

Estimating Missing Attribute Values Using Dynamically-Ordered Attribute Trees

Estimating Missing Attribute Values Using Dynamically-Ordered Attribute Trees Estimating Missing Attribute Values Using Dynamically-Ordered Attribute Trees Jing Wang Computer Science Department, The University of Iowa jing-wang-1@uiowa.edu W. Nick Street Management Sciences Department,

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make), already installed in GR B001 Webots simulation software Webots User Guide Webots

More information

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem

Using Genetic Algorithm with Triple Crossover to Solve Travelling Salesman Problem Proc. 1 st International Conference on Machine Learning and Data Engineering (icmlde2017) 20-22 Nov 2017, Sydney, Australia ISBN: 978-0-6480147-3-7 Using Genetic Algorithm with Triple Crossover to Solve

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

An experimental evaluation of a parallel genetic algorithm using MPI

An experimental evaluation of a parallel genetic algorithm using MPI 2009 13th Panhellenic Conference on Informatics An experimental evaluation of a parallel genetic algorithm using MPI E. Hadjikyriacou, N. Samaras, K. Margaritis Dept. of Applied Informatics University

More information

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116

ISSN: [Keswani* et al., 7(1): January, 2018] Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AUTOMATIC TEST CASE GENERATION FOR PERFORMANCE ENHANCEMENT OF SOFTWARE THROUGH GENETIC ALGORITHM AND RANDOM TESTING Bright Keswani,

More information

The movement of the dimmer firefly i towards the brighter firefly j in terms of the dimmer one s updated location is determined by the following equat

The movement of the dimmer firefly i towards the brighter firefly j in terms of the dimmer one s updated location is determined by the following equat An Improved Firefly Algorithm for Optimization Problems Amarita Ritthipakdee 1, Arit Thammano, Nol Premasathian 3, and Bunyarit Uyyanonvara 4 Abstract Optimization problem is one of the most difficult

More information

The Complex Network Phenomena. and Their Origin

The Complex Network Phenomena. and Their Origin The Complex Network Phenomena and Their Origin An Annotated Bibliography ESL 33C 003180159 Instructor: Gerriet Janssen Match 18, 2004 Introduction A coupled system can be described as a complex network,

More information

1 Lab 5: Particle Swarm Optimization

1 Lab 5: Particle Swarm Optimization 1 Lab 5: Particle Swarm Optimization This laboratory requires the following: (The development tools are installed in GR B0 01 already): C development tools (gcc, make, etc.) Webots simulation software

More information

Why Do Computer Viruses Survive In The Internet?

Why Do Computer Viruses Survive In The Internet? Why Do Computer Viruses Survive In The Internet? Margarita Ifti a and Paul Neumann b a Department of Physics, Faculty of Natural Sciences, University of Tirana Bul. Zog I, Tirana, Albania b Department

More information

Evolutionary Optimization of Neural Networks for Face Detection

Evolutionary Optimization of Neural Networks for Face Detection Evolutionary Optimization of Neural Networks for Face Detection Stefan Wiegand Christian Igel Uwe Handmann Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany Viisage Technology

More information

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows)

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Average clustering coefficient of a graph Overall measure

More information

Designing Radial Basis Neural Networks using a Distributed Architecture

Designing Radial Basis Neural Networks using a Distributed Architecture Designing Radial Basis Neural Networks using a Distributed Architecture J.M. Valls, A. Leal, I.M. Galván and J.M. Molina Computer Science Department Carlos III University of Madrid Avenida de la Universidad,

More information

Simulation of Back Propagation Neural Network for Iris Flower Classification

Simulation of Back Propagation Neural Network for Iris Flower Classification American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-1, pp-200-205 www.ajer.org Research Paper Open Access Simulation of Back Propagation Neural Network

More information

Wrapper Feature Selection using Discrete Cuckoo Optimization Algorithm Abstract S.J. Mousavirad and H. Ebrahimpour-Komleh* 1 Department of Computer and Electrical Engineering, University of Kashan, Kashan,

More information

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 950 954 c International Academic Publishers Vol. 45, No. 5, May 15, 2006 Small World Properties Generated by a New Algorithm Under Same Degree of All

More information

Comparative Analysis of Swarm Intelligence Techniques for Data Classification

Comparative Analysis of Swarm Intelligence Techniques for Data Classification Int'l Conf. Artificial Intelligence ICAI'17 3 Comparative Analysis of Swarm Intelligence Techniques for Data Classification A. Ashray Bhandare and B. Devinder Kaur Department of EECS, The University of

More information

Neuro-fuzzy, GA-Fuzzy, Neural-Fuzzy-GA: A Data Mining Technique for Optimization

Neuro-fuzzy, GA-Fuzzy, Neural-Fuzzy-GA: A Data Mining Technique for Optimization International Journal of Computer Science and Software Engineering Volume 3, Number 1 (2017), pp. 1-9 International Research Publication House http://www.irphouse.com Neuro-fuzzy, GA-Fuzzy, Neural-Fuzzy-GA:

More information

A Parallel Evolutionary Algorithm for Discovery of Decision Rules

A Parallel Evolutionary Algorithm for Discovery of Decision Rules A Parallel Evolutionary Algorithm for Discovery of Decision Rules Wojciech Kwedlo Faculty of Computer Science Technical University of Bia lystok Wiejska 45a, 15-351 Bia lystok, Poland wkwedlo@ii.pb.bialystok.pl

More information

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM

GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM Journal of Al-Nahrain University Vol.10(2), December, 2007, pp.172-177 Science GENETIC ALGORITHM VERSUS PARTICLE SWARM OPTIMIZATION IN N-QUEEN PROBLEM * Azhar W. Hammad, ** Dr. Ban N. Thannoon Al-Nahrain

More information

PARALLEL PARTICLE SWARM OPTIMIZATION IN DATA CLUSTERING

PARALLEL PARTICLE SWARM OPTIMIZATION IN DATA CLUSTERING PARALLEL PARTICLE SWARM OPTIMIZATION IN DATA CLUSTERING YASIN ORTAKCI Karabuk University, Computer Engineering Department, Karabuk, Turkey E-mail: yasinortakci@karabuk.edu.tr Abstract Particle Swarm Optimization

More information

LEARNING WEIGHTS OF FUZZY RULES BY USING GRAVITATIONAL SEARCH ALGORITHM

LEARNING WEIGHTS OF FUZZY RULES BY USING GRAVITATIONAL SEARCH ALGORITHM International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 4, April 2013 pp. 1593 1601 LEARNING WEIGHTS OF FUZZY RULES BY USING GRAVITATIONAL

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

Using Genetic Algorithms in Integer Programming for Decision Support

Using Genetic Algorithms in Integer Programming for Decision Support Doi:10.5901/ajis.2014.v3n6p11 Abstract Using Genetic Algorithms in Integer Programming for Decision Support Dr. Youcef Souar Omar Mouffok Taher Moulay University Saida, Algeria Email:Syoucef12@yahoo.fr

More information

Feature Selection Algorithm with Discretization and PSO Search Methods for Continuous Attributes

Feature Selection Algorithm with Discretization and PSO Search Methods for Continuous Attributes Feature Selection Algorithm with Discretization and PSO Search Methods for Continuous Attributes Madhu.G 1, Rajinikanth.T.V 2, Govardhan.A 3 1 Dept of Information Technology, VNRVJIET, Hyderabad-90, INDIA,

More information

SIMULTANEOUS COMPUTATION OF MODEL ORDER AND PARAMETER ESTIMATION FOR ARX MODEL BASED ON MULTI- SWARM PARTICLE SWARM OPTIMIZATION

SIMULTANEOUS COMPUTATION OF MODEL ORDER AND PARAMETER ESTIMATION FOR ARX MODEL BASED ON MULTI- SWARM PARTICLE SWARM OPTIMIZATION SIMULTANEOUS COMPUTATION OF MODEL ORDER AND PARAMETER ESTIMATION FOR ARX MODEL BASED ON MULTI- SWARM PARTICLE SWARM OPTIMIZATION Kamil Zakwan Mohd Azmi, Zuwairie Ibrahim and Dwi Pebrianti Faculty of Electrical

More information

CloNI: clustering of JN -interval discretization

CloNI: clustering of JN -interval discretization CloNI: clustering of JN -interval discretization C. Ratanamahatana Department of Computer Science, University of California, Riverside, USA Abstract It is known that the naive Bayesian classifier typically

More information

GA is the most popular population based heuristic algorithm since it was developed by Holland in 1975 [1]. This algorithm runs faster and requires les

GA is the most popular population based heuristic algorithm since it was developed by Holland in 1975 [1]. This algorithm runs faster and requires les Chaotic Crossover Operator on Genetic Algorithm Hüseyin Demirci Computer Engineering, Sakarya University, Sakarya, 54187, Turkey Ahmet Turan Özcerit Computer Engineering, Sakarya University, Sakarya, 54187,

More information

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Kouhei Sugiyama, Hiroyuki Ohsaki and Makoto Imase Graduate School of Information Science and Technology,

More information

Seismic regionalization based on an artificial neural network

Seismic regionalization based on an artificial neural network Seismic regionalization based on an artificial neural network *Jaime García-Pérez 1) and René Riaño 2) 1), 2) Instituto de Ingeniería, UNAM, CU, Coyoacán, México D.F., 014510, Mexico 1) jgap@pumas.ii.unam.mx

More information

APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS IN MATLAB

APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS IN MATLAB APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS IN MATLAB Z. Dideková, S. Kajan Institute of Control and Industrial Informatics, Faculty of Electrical Engineering and Information Technology, Slovak University

More information

Evolutionary form design: the application of genetic algorithmic techniques to computer-aided product design

Evolutionary form design: the application of genetic algorithmic techniques to computer-aided product design Loughborough University Institutional Repository Evolutionary form design: the application of genetic algorithmic techniques to computer-aided product design This item was submitted to Loughborough University's

More information

Approach Using Genetic Algorithm for Intrusion Detection System

Approach Using Genetic Algorithm for Intrusion Detection System Approach Using Genetic Algorithm for Intrusion Detection System 544 Abhijeet Karve Government College of Engineering, Aurangabad, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra-

More information

Artificial Neural Network Evolutionary Algorithm (ANNEVA) Abstract

Artificial Neural Network Evolutionary Algorithm (ANNEVA) Abstract Artificial Neural Network Evolutionary Algorithm (ANNEVA) Tyler Haugen Dr. Jeff McGough Math and Computer Science Department South Dakota School of Mines and Technology Rapid City, SD 57701 tyler.haugen@mines.sdsmt.edu

More information

1 Lab + Hwk 5: Particle Swarm Optimization

1 Lab + Hwk 5: Particle Swarm Optimization 1 Lab + Hwk 5: Particle Swarm Optimization This laboratory requires the following equipment: C programming tools (gcc, make). Webots simulation software. Webots User Guide Webots Reference Manual. The

More information

Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting

Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting Math. Model. Nat. Phenom. Vol. 5, No. 7, 010, pp. 13-138 DOI: 10.1051/mmnp/01057 Hybrid Particle Swarm and Neural Network Approach for Streamflow Forecasting A. Sedki and D. Ouazar Department of Civil

More information

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra

1. Introduction. 2. Motivation and Problem Definition. Volume 8 Issue 2, February Susmita Mohapatra Pattern Recall Analysis of the Hopfield Neural Network with a Genetic Algorithm Susmita Mohapatra Department of Computer Science, Utkal University, India Abstract: This paper is focused on the implementation

More information

Towardsunderstanding: Astudy ofthe SourceForge.net community using modeling and simulation

Towardsunderstanding: Astudy ofthe SourceForge.net community using modeling and simulation Towardsunderstanding: Astudy ofthe SourceForge.net community using modeling and simulation YongqinGao,GregMadey DepartmentofComputerScience and Engineering UniversityofNotreDame ygao,gmadey@nd.edu Keywords:

More information

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press,   ISSN Optimizing the structure of neural networks using evolution techniques S. D. Likothanassis**, E. Georgopoulos* & D. Fotakis** "Department of Computer Engineering and Informatics, Un/vg^/Yy q/^f 6zrmj,

More information

A Study on Optimization Algorithms for Clustering Gene Expression Data

A Study on Optimization Algorithms for Clustering Gene Expression Data A Study on Optimization Algorithms for Clustering Gene Expression Data Athul Jose 1, Chandrasekar P 2 PG scholor Dept of CSE, Bannari Amman Institute of technology, Sathyamangalam, Tamilnadu, India 1,

More information

The Establishment Game. Motivation

The Establishment Game. Motivation Motivation Motivation The network models so far neglect the attributes, traits of the nodes. A node can represent anything, people, web pages, computers, etc. Motivation The network models so far neglect

More information

Kyrre Glette INF3490 Evolvable Hardware Cartesian Genetic Programming

Kyrre Glette INF3490 Evolvable Hardware Cartesian Genetic Programming Kyrre Glette kyrrehg@ifi INF3490 Evolvable Hardware Cartesian Genetic Programming Overview Introduction to Evolvable Hardware (EHW) Cartesian Genetic Programming Applications of EHW 3 Evolvable Hardware

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Topology and Dynamics of Complex Networks

Topology and Dynamics of Complex Networks CS 790R Seminar Modeling & Simulation Topology and Dynamics of Complex Networks ~ Lecture 3: Review based on Strogatz (2001), Barabási & Bonabeau (2003), Wang, X. F. (2002) ~ René Doursat Department of

More information

The Design of Pole Placement With Integral Controllers for Gryphon Robot Using Three Evolutionary Algorithms

The Design of Pole Placement With Integral Controllers for Gryphon Robot Using Three Evolutionary Algorithms The Design of Pole Placement With Integral Controllers for Gryphon Robot Using Three Evolutionary Algorithms Somayyeh Nalan-Ahmadabad and Sehraneh Ghaemi Abstract In this paper, pole placement with integral

More information

Using Decision Boundary to Analyze Classifiers

Using Decision Boundary to Analyze Classifiers Using Decision Boundary to Analyze Classifiers Zhiyong Yan Congfu Xu College of Computer Science, Zhejiang University, Hangzhou, China yanzhiyong@zju.edu.cn Abstract In this paper we propose to use decision

More information

Universal Behavior of Load Distribution in Scale-free Networks

Universal Behavior of Load Distribution in Scale-free Networks Universal Behavior of Load Distribution in Scale-free Networks K.-I. Goh, B. Kahng, and D. Kim School of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea (February

More information

A Lazy Approach for Machine Learning Algorithms

A Lazy Approach for Machine Learning Algorithms A Lazy Approach for Machine Learning Algorithms Inés M. Galván, José M. Valls, Nicolas Lecomte and Pedro Isasi Abstract Most machine learning algorithms are eager methods in the sense that a model is generated

More information

CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM

CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM 1 CONCEPT FORMATION AND DECISION TREE INDUCTION USING THE GENETIC PROGRAMMING PARADIGM John R. Koza Computer Science Department Stanford University Stanford, California 94305 USA E-MAIL: Koza@Sunburn.Stanford.Edu

More information

Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?)

Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?) SKIP - May 2004 Hardware Neuronale Netzwerke - Lernen durch künstliche Evolution (?) S. G. Hohmann, Electronic Vision(s), Kirchhoff Institut für Physik, Universität Heidelberg Hardware Neuronale Netzwerke

More information

A NEW APPROACH TO SOLVE ECONOMIC LOAD DISPATCH USING PARTICLE SWARM OPTIMIZATION

A NEW APPROACH TO SOLVE ECONOMIC LOAD DISPATCH USING PARTICLE SWARM OPTIMIZATION A NEW APPROACH TO SOLVE ECONOMIC LOAD DISPATCH USING PARTICLE SWARM OPTIMIZATION Manjeet Singh 1, Divesh Thareja 2 1 Department of Electrical and Electronics Engineering, Assistant Professor, HCTM Technical

More information

Binary Differential Evolution Strategies

Binary Differential Evolution Strategies Binary Differential Evolution Strategies A.P. Engelbrecht, Member, IEEE G. Pampará Abstract Differential evolution has shown to be a very powerful, yet simple, population-based optimization approach. The

More information

Index Terms PSO, parallel computing, clustering, multiprocessor.

Index Terms PSO, parallel computing, clustering, multiprocessor. Parallel Particle Swarm Optimization in Data Clustering Yasin ORTAKCI Karabuk University, Computer Engineering Department, Karabuk, Turkey yasinortakci@karabuk.edu.tr Abstract Particle Swarm Optimization

More information

Small World Network Based Dynamic Topology for Particle Swarm Optimization

Small World Network Based Dynamic Topology for Particle Swarm Optimization Small World Network Based Dynamic Topology for Particle Swarm Optimization Qingxue Liu 1,2, Barend Jacobus van Wyk 1 1 Department of Electrical Engineering Tshwane University of Technology Pretoria, South

More information

WEIGHTED K NEAREST NEIGHBOR CLASSIFICATION ON FEATURE PROJECTIONS 1

WEIGHTED K NEAREST NEIGHBOR CLASSIFICATION ON FEATURE PROJECTIONS 1 WEIGHTED K NEAREST NEIGHBOR CLASSIFICATION ON FEATURE PROJECTIONS 1 H. Altay Güvenir and Aynur Akkuş Department of Computer Engineering and Information Science Bilkent University, 06533, Ankara, Turkey

More information

Review: Final Exam CPSC Artificial Intelligence Michael M. Richter

Review: Final Exam CPSC Artificial Intelligence Michael M. Richter Review: Final Exam Model for a Learning Step Learner initially Environm ent Teacher Compare s pe c ia l Information Control Correct Learning criteria Feedback changed Learner after Learning Learning by

More information

IN recent years, neural networks have attracted considerable attention

IN recent years, neural networks have attracted considerable attention Multilayer Perceptron: Architecture Optimization and Training Hassan Ramchoun, Mohammed Amine Janati Idrissi, Youssef Ghanou, Mohamed Ettaouil Modeling and Scientific Computing Laboratory, Faculty of Science

More information

Ant Colony Optimization for dynamic Traveling Salesman Problems

Ant Colony Optimization for dynamic Traveling Salesman Problems Ant Colony Optimization for dynamic Traveling Salesman Problems Carlos A. Silva and Thomas A. Runkler Siemens AG, Corporate Technology Information and Communications, CT IC 4 81730 Munich - Germany thomas.runkler@siemens.com

More information

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS

A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS A GENETIC ALGORITHM FOR CLUSTERING ON VERY LARGE DATA SETS Jim Gasvoda and Qin Ding Department of Computer Science, Pennsylvania State University at Harrisburg, Middletown, PA 17057, USA {jmg289, qding}@psu.edu

More information

ARMA MODEL SELECTION USING PARTICLE SWARM OPTIMIZATION AND AIC CRITERIA. Mark S. Voss a b. and Xin Feng.

ARMA MODEL SELECTION USING PARTICLE SWARM OPTIMIZATION AND AIC CRITERIA. Mark S. Voss a b. and Xin Feng. Copyright 2002 IFAC 5th Triennial World Congress, Barcelona, Spain ARMA MODEL SELECTION USING PARTICLE SWARM OPTIMIZATION AND AIC CRITERIA Mark S. Voss a b and Xin Feng a Department of Civil and Environmental

More information

V.Petridis, S. Kazarlis and A. Papaikonomou

V.Petridis, S. Kazarlis and A. Papaikonomou Proceedings of IJCNN 93, p.p. 276-279, Oct. 993, Nagoya, Japan. A GENETIC ALGORITHM FOR TRAINING RECURRENT NEURAL NETWORKS V.Petridis, S. Kazarlis and A. Papaikonomou Dept. of Electrical Eng. Faculty of

More information

A Generalized Feedforward Neural Network Architecture and Its Training Using Two Stochastic Search Methods

A Generalized Feedforward Neural Network Architecture and Its Training Using Two Stochastic Search Methods A Generalized Feedforward Neural Network Architecture and Its Training Using Two tochastic earch Methods Abdesselam Bouzerdoum 1 and Rainer Mueller 2 1 chool of Engineering and Mathematics Edith Cowan

More information

Effect of the PSO Topologies on the Performance of the PSO-ELM

Effect of the PSO Topologies on the Performance of the PSO-ELM 2012 Brazilian Symposium on Neural Networks Effect of the PSO Topologies on the Performance of the PSO-ELM Elliackin M. N. Figueiredo and Teresa B. Ludermir Center of Informatics Federal University of

More information

Character Recognition Using Convolutional Neural Networks

Character Recognition Using Convolutional Neural Networks Character Recognition Using Convolutional Neural Networks David Bouchain Seminar Statistical Learning Theory University of Ulm, Germany Institute for Neural Information Processing Winter 2006/2007 Abstract

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

A New Crossover Technique for Cartesian Genetic Programming

A New Crossover Technique for Cartesian Genetic Programming A New Crossover Technique for Cartesian Genetic Programming Genetic Programming Track Janet Clegg Intelligent Systems Group, Department of Electronics University of York, Heslington York, YO DD, UK jc@ohm.york.ac.uk

More information