Properties of Biological Networks

Size: px
Start display at page:

Download "Properties of Biological Networks"

Transcription

1 Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási & Zoltán N. Oltvai Nature Reviews Genetics, 2004 An Introduction to Systems Biology: Design Principles of Biological Circuits By Uri Alon

2 General background on biological research Introduction A key aim of post-genomic biomedical research is to systematically catalogue all molecules and their interactions within a living cell. There is a need to understand how these molecules and the interactions between them determine the function of this enormously complex machinery, both in isolation and when surrounded by other cells. We will understand how, and develop basic understanding of the properties of biological cellular networks.

3 Shifting point in biological research Reductionism individual cellular components and their functions. complex interactions between the cell s numerous constituents, such as proteins, DNA, RNA and small molecules. Network biology quantifiable tools of network theory offer unforeseen possibilities to understand the cell s internal organization and evolution, fundamentally altering our view of cell biology.

4 Shifting point in biological research net of networks Various types of interaction webs, or networks emerge from the sum of these interactions. None of these networks are independent, instead they form a network of networks that is responsible for the behavior of the cell. challenge figure out how to integrate, map out, model, and understand the topological & dynamical properties of cellular networks.

5 Universality Realization The behavior of most complex systems, from the cell to the Internet, emerges from the orchestrated activity of many components that interact with each other through pairwise interactions. internet Computer Chips society Research has shown that these networks are governed by a few universal laws. Do these same laws apply to biological networks?

6 Basic Network Nomenclature Degree (connectivity) - <k> Directed and undirected graph. High k is a hub. Average degree in undirected graph with L links and N nodes : <k> = 2L/N What is the degree of node A?

7 Basic Network Nomenclature Degree distribution P(k) P(k) is obtained by counting the number of nodes with k links and dividing by N. The degree distribution is used to classify networks, for example: peaked degree distribution The system has a characteristic degree and no hubs. power-law degree distribution few hubs hold together numerous small nodes.

8 Network Basic Network measures Nomenclature Shortest path and mean path length - < l > The shortest path between two nodes is the minimum number of links that must be traversed to travel from one node to the other. The mean path length <l> is the average of the shortest paths between all pairs of nodes. l BA = 1 l AB = 3

9 Network Basic Network measures Nomenclature Clustering Coefficient - <C> The clustering coefficient measures the tendency of nodes to form clusters. If a is connected to b and b is connected to c, then a is connected to c? C i = 2n i /k(k 1) where n i is the number of links connecting the k i neighbors of node i to each other, i.e. C i gives us the number of triangles that go through node i. <C> is the average clustering coefficient. It measures the overall tendency of nodes to form clusters. C(k) is the average clustering coefficient of all nodes with k links.

10 Network Basic Network measures Nomenclature Clustering Coefficient - <C> Example: n A = 1 C i = 2n i /k(k 1) C A = 2 1/5 (5 1) = 2/20 C F = C D = C E = C G = 0

11 Network Basic Network measures Nomenclature General diagnostics Depend on the size of the network : <k> average degree. <l> average length. <C> average clustering coefficient. Independent of the network s size : P(k) degree distribution C(k) average clustering coefficient function. capture a network s generic features, which allows them to be used to classify various networks.

12 Network Architectural measures features of cellular networks Network models Random nodes randomly connected with edges Scale-free lack of any typical node to compare the others Hierarchical similar to scale-free, but forms unique modules (clusters)

13 Network Architectural measures features of cellular networks Random Networks Paul Erdös and Alfréd Rényi, who in 1960 initiated the study of the mathematical properties of random networks. The Erdös Rényi (ER) model of a random network: starts with N nodes (a fixed number of nodes ). connects each pair of nodes with probability p. Results in a graph with approximately pn(n 1)/2 randomly placed links. P(k) follows a Poisson distribution - most nodes have a degree that is close to <k> C(k) is constant. The mean path length <l> ~ log N, which indicates that the network has the small world property (which we will discuss soon)

14 Network Architectural measures features of cellular networks Scale-Free Networks Their feature is the coexistence of nodes of widely different degree (scales), so they could be easily called scale-rich as well. Networks with a power-law degree distribution P k ~ k γ where γ is the degree exponent. For most networks 2 < γ < 3. The smaller γ is, the more important the role of hubs is. When γ > 3, scale-free features disappear and network behaves like a random one. Scale-free networks are characterized by a few hub nodes of high degree, and many nodes of low degree. C(k) is constant, like random networks. <l> ~ log log N, which means it has ultra-small-world property (which we will discuss soon).

15 Network Architectural measures features of cellular networks Hierarchical Networks A hierarchical architecture implies that sparsely connected nodes are part of highly clustered areas, with communication between the clusters being maintained by a few hubs. P(k) follows a power-law degree distribution. C(k) ~k 1, unlike random and scale- free networks.

16 Network Architectural measures features of cellular networks Cellular Networks

17 Network Architectural measures features of cellular networks Cellular Networks Yeast protein interaction Network a few highly connected nodes -hubs hold the network together. The largest cluster, which contains ~78% of all proteins, is shown.

18 Network Architectural measures features of cellular networks Cellular networks are scale-free A key feature of scale-free networks is the presence of hubs First evidence seen in metabolic network Most metabolic substrates participate in only one or two reactions A few participate in dozens (hubs) More evidence in PPI network maps, transcription regulatory networks, and more.

19 The importance of the hubs Small-world effect Random networks have the small world property. Hubs allow for a smaller mean path length. The ultra-small-world effect scale-free networks are ultra small - their path length is much shorter than predicted by the small-world effect. Ultra-small-world effect was first documented for metabolism, where paths of only three to four reactions can link most pairs of metabolites. Everyone in the world knows everyone else through an average chain of relatively few people.

20 The importance of the hubs Assortativity Social networks are assortative Well connected people tend to know each other. Cellular networks are dissassortative Highly connected nodes don t link directly to each other. Hubs tend to link to nodes with small degree why do hubs avoid linking directly to each other? Remains unexplained

21 Network How did measures networks evolve this way? Evolutionary origin of scale-free networks Two fundamental processes have a key role in the development of real networks - Growth process - Preferential attachment Both are jointly responsible for the emergence of the scale-free property in complex networks

22 Network How did measures networks evolve this way? Growth Process new nodes join the system over an extended time period. Preferential attachment [New] nodes prefer to connect to more connected nodes. This node will therefore gain new links at a higher rate than its less connected peers and will turn into a hub. Growth and preferential attachment generate hubs through a rich-gets-richer mechanism.

23 Network How did measures networks evolve this way? Gene duplication [example] In protein interaction networks, scale-free topology see to have its origin in gene duplication. Part b shows a small protein interaction network (blue) and the genes that encode the proteins (green).

24 Network Motifes, modules measures and hierarchical networks Cellular function is modular Modularity: group of physically or functionally linked molecules (nodes) that work together to achieve a distinct function. Biology is full of examples of modularity High modularity is an inherent part of cellular networks Questions of interest: Is a given network modular? What are the modules in a network? What are their relationships in a given network?.

25 Motifes, modules and hierarchical networks High Clustering in Cellular Networks In a network representation, a module appears as a highly interconnected group of nodes Each module can be reduced to a set of triangles, and the clustering coefficient can be computed to quantify modularity. a high density of triangles is reflected by the clustering coefficient is the signature of a network s potential modularity. Random networks have much lower <C> values Metabolic, PPI, and protein domain networks have all exhibited high clustering

26 Network Motifes, modules measures and hierarchical networks Motifs are elementary units of cellular networks Examples of motifs: A Motif is a sub-graph which is over represented as compared to a randomized version of the same network. The directed triangle motif that is known as the feed-forward loop (FFL) emerges in both transcription-regulatory and neural networks.

27 Network Motifes, modules measures and hierarchical networks Motifs are elementary units of cellular networks The motifs and sub-graphs that occur in a given network are not independent of each other.

28 Network Motifes, modules measures and hierarchical networks Hierarchical modularity As the number of nodes increases, the number of modules increases exponentially The quantifiable signature of hierarchical modularity is the dependence of the clustering coefficient on the degree of a node, which follows C k ~ k 1 The coexistence of modularity (clusters) and scale-free topology (hubs) in many real systems leads to the assumption clusters combine in an iterative manner, generating a hierarchical network.

29 Network robustness Robustness of biological networks A key feature of many complex systems is their robustness, which refers to the system s ability to respond to changes in the external conditions or internal organization while maintaining relatively normal behavior. Complex systems, from the cell to the Internet, can be amazingly resilient against component failure. The distinct modules probably limit the effects of local changes in cellular networks. Robustness is inevitably accompanied by vulnerabilities we ll see how in a minute

30 Network robustness Topological robustness In random networks, if a random critical fraction of nodes is removed, the network breaks into tiny islands of nodes. In scale-free networks, even if 80% randomly selected nodes are removed, the rest still form a compact cluster with a path connecting any two nodes! The secret: statistics - only few hubs Trade-off: attack vulnerability - the removal of just a few key hubs kills the network. Shows a positive relationship between the degree of the node and its biological importance

31 Network robustness Functional and dynamical robustness Each node has a different biological function - the effect of a change is not depended on the node s degree only. Experimentally identified protein complexes tend to be composed of uniformly essential or nonessential molecules. Whereas some environmental and local important parameters must remain unchanged, others canvary widely.

32 Shifting point in biological research Concluding thoughts Network and systems biology are still in their infancy, but have come a long way Structure, topology, network usage, robustness, and function are all connected Will eventually have important implications for the study of disease and the practice of medicine

33 Thank you for your attention!

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

Structure of biological networks. Presentation by Atanas Kamburov

Structure of biological networks. Presentation by Atanas Kamburov Structure of biological networks Presentation by Atanas Kamburov Seminar Gute Ideen in der theoretischen Biologie / Systembiologie 08.05.2007 Overview Motivation Definitions Large-scale properties of cellular

More information

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows)

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Average clustering coefficient of a graph Overall measure

More information

Advanced Algorithms and Models for Computational Biology -- a machine learning approach

Advanced Algorithms and Models for Computational Biology -- a machine learning approach Advanced Algorithms and Models for Computational Biology -- a machine learning approach Biological Networks & Network Evolution Eric Xing Lecture 22, April 10, 2006 Reading: Molecular Networks Interaction

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms!

V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms! V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms! How Does a Cell Work?! A cell is a crowded environment! => many different proteins,! metabolites, compartments,! On a microscopic level!

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

Supply chains involve complex webs of interactions among suppliers, manufacturers,

Supply chains involve complex webs of interactions among suppliers, manufacturers, D e p e n d a b l e A g e n t S y s t e m s Survivability of Multiagent-Based Supply Networks: A Topological Perspective Hari Prasad Thadakamalla, Usha Nandini Raghavan, Soundar Kumara, and Réka Albert,

More information

Complex Networks: A Review

Complex Networks: A Review Complex Networks: A Review International Journal of Computer Applications (0975 8887) Kriti Sharma Student - M.tech (CSE) CSE Dept., Guru Nanak Dev University, RC Gurdaspur, India Minni Ahuja Astt. Prof.

More information

A Study of Random Duplication Graphs and Degree Distribution Pattern of Protein-Protein Interaction Networks

A Study of Random Duplication Graphs and Degree Distribution Pattern of Protein-Protein Interaction Networks A Study of Random Duplication Graphs and Degree Distribution Pattern of Protein-Protein Interaction Networks by Zheng Ma A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Graph-theoretic Properties of Networks

Graph-theoretic Properties of Networks Graph-theoretic Properties of Networks Bioinformatics: Sequence Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Graphs A graph is a set of vertices, or nodes, and edges that connect pairs

More information

Biological Networks Analysis Dijkstra s algorithm and Degree Distribution

Biological Networks Analysis Dijkstra s algorithm and Degree Distribution iological Networks nalysis ijkstra s algorithm and egree istribution Genome 373 Genomic Informatics Elhanan orenstein Networks: Networks vs. graphs The Seven ridges of Königsberg collection of nodes and

More information

The Betweenness Centrality Of Biological Networks

The Betweenness Centrality Of Biological Networks The Betweenness Centrality Of Biological Networks Shivaram Narayanan Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

An Evolving Network Model With Local-World Structure

An Evolving Network Model With Local-World Structure The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 47 423 An Evolving Network odel With

More information

Complex Networks: Ubiquity, Importance and Implications. Alessandro Vespignani

Complex Networks: Ubiquity, Importance and Implications. Alessandro Vespignani Contribution : 2005 NAE Frontiers of Engineering Complex Networks: Ubiquity, Importance and Implications Alessandro Vespignani School of Informatics and Department of Physics, Indiana University, USA 1

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Network Theory: Social, Mythological and Fictional Networks. Math 485, Spring 2018 (Midterm Report) Christina West, Taylor Martins, Yihe Hao

Network Theory: Social, Mythological and Fictional Networks. Math 485, Spring 2018 (Midterm Report) Christina West, Taylor Martins, Yihe Hao Network Theory: Social, Mythological and Fictional Networks Math 485, Spring 2018 (Midterm Report) Christina West, Taylor Martins, Yihe Hao Abstract: Comparative mythology is a largely qualitative and

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

Case Studies in Complex Networks

Case Studies in Complex Networks Case Studies in Complex Networks Introduction to Scientific Modeling CS 365 George Bezerra 08/27/2012 The origin of graph theory Königsberg bridge problem Leonard Euler (1707-1783) The Königsberg Bridge

More information

Biological Networks Analysis

Biological Networks Analysis Biological Networks Analysis Introduction and Dijkstra s algorithm Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein The clustering problem: partition genes into distinct

More information

SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE

SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE SELF-HEALING NETWORKS: REDUNDANCY AND STRUCTURE Guido Caldarelli IMT, CNR-ISC and LIMS, London UK DTRA Grant HDTRA1-11-1-0048 INTRODUCTION The robustness and the shape Baran, P. On distributed Communications

More information

NETWORK BASICS OUTLINE ABSTRACT ORGANIZATION NETWORK MEASURES. 1. Network measures 2. Small-world and scale-free networks 3. Connectomes 4.

NETWORK BASICS OUTLINE ABSTRACT ORGANIZATION NETWORK MEASURES. 1. Network measures 2. Small-world and scale-free networks 3. Connectomes 4. NETWORK BASICS OUTLINE 1. Network measures 2. Small-world and scale-free networks 3. Connectomes 4. Motifs ABSTRACT ORGANIZATION In systems/mechanisms in the real world Entities have distinctive properties

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 16th, 2014 Outline n Network Science A Random History n Network Analysis Network

More information

An Introduction to Complex Systems Science

An Introduction to Complex Systems Science DEIS, Campus of Cesena Alma Mater Studiorum Università di Bologna andrea.roli@unibo.it Disclaimer The field of Complex systems science is wide and it involves numerous themes and disciplines. This talk

More information

3 Global Properties of Networks

3 Global Properties of Networks 3 Global Properties of Networks Ralf Steuer a and Gorka Zamora-López b a Humboldt University Berlin, Institute for Theoretical Biology, Invalidenstr. 43, 10115 Berlin, Germany. b University of Potsdam,

More information

Biological Networks Analysis Network Motifs. Genome 373 Genomic Informatics Elhanan Borenstein

Biological Networks Analysis Network Motifs. Genome 373 Genomic Informatics Elhanan Borenstein Biological Networks Analysis Network Motifs Genome 373 Genomic Informatics Elhanan Borenstein Networks: Networks vs. graphs A collection of nodes and links A quick review Directed/undirected; weighted/non-weighted,

More information

On Reshaping of Clustering Coefficients in Degreebased Topology Generators

On Reshaping of Clustering Coefficients in Degreebased Topology Generators On Reshaping of Clustering Coefficients in Degreebased Topology Generators Xiafeng Li, Derek Leonard, and Dmitri Loguinov Texas A&M University Presented by Derek Leonard Agenda Motivation Statement of

More information

A quick review. The clustering problem: Hierarchical clustering algorithm: Many possible distance metrics K-mean clustering algorithm:

A quick review. The clustering problem: Hierarchical clustering algorithm: Many possible distance metrics K-mean clustering algorithm: The clustering problem: partition genes into distinct sets with high homogeneity and high separation Hierarchical clustering algorithm: 1. Assign each object to a separate cluster.. Regroup the pair of

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein Complex networks Phys 7682: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network structure,

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Associate Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection,

More information

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand

Effect of age and dementia on topology of brain functional networks. Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand Effect of age and dementia on topology of brain functional networks Paul McCarthy, Luba Benuskova, Liz Franz University of Otago, New Zealand 1 Structural changes in aging brain Age-related changes in

More information

Universal Properties of Mythological Networks Midterm report: Math 485

Universal Properties of Mythological Networks Midterm report: Math 485 Universal Properties of Mythological Networks Midterm report: Math 485 Roopa Krishnaswamy, Jamie Fitzgerald, Manuel Villegas, Riqu Huang, and Riley Neal Department of Mathematics, University of Arizona,

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

Response Network Emerging from Simple Perturbation

Response Network Emerging from Simple Perturbation Journal of the Korean Physical Society, Vol 44, No 3, March 2004, pp 628 632 Response Network Emerging from Simple Perturbation S-W Son, D-H Kim, Y-Y Ahn and H Jeong Department of Physics, Korea Advanced

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 3 Aug 2000

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 3 Aug 2000 Error and attack tolerance of complex networks arxiv:cond-mat/0008064v1 [cond-mat.dis-nn] 3 Aug 2000 Réka Albert, Hawoong Jeong, Albert-László Barabási Department of Physics, University of Notre Dame,

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong On Complex Dynamical Networks G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong 1 Complex Networks: Some Typical Examples 2 Complex Network Example: Internet (William

More information

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Kouhei Sugiyama, Hiroyuki Ohsaki and Makoto Imase Graduate School of Information Science and Technology,

More information

Biological Networks Analysis

Biological Networks Analysis iological Networks nalysis Introduction and ijkstra s algorithm Genome 559: Introduction to Statistical and omputational Genomics Elhanan orenstein The clustering problem: partition genes into distinct

More information

Networked CPS: Some Fundamental Challenges

Networked CPS: Some Fundamental Challenges Networked CPS: Some Fundamental Challenges John S. Baras Institute for Systems Research Department of Electrical and Computer Engineering Fischell Department of Bioengineering Department of Mechanical

More information

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network

More information

Examples of Complex Networks

Examples of Complex Networks Examples of Complex Networks Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-

More information

Heuristics for the Critical Node Detection Problem in Large Complex Networks

Heuristics for the Critical Node Detection Problem in Large Complex Networks Heuristics for the Critical Node Detection Problem in Large Complex Networks Mahmood Edalatmanesh Department of Computer Science Submitted in partial fulfilment of the requirements for the degree of Master

More information

arxiv:cond-mat/ v1 21 Oct 1999

arxiv:cond-mat/ v1 21 Oct 1999 Emergence of Scaling in Random Networks Albert-László Barabási and Réka Albert Department of Physics, University of Notre-Dame, Notre-Dame, IN 46556 arxiv:cond-mat/9910332 v1 21 Oct 1999 Systems as diverse

More information

Memory As an Organizer of Dynamic Modules In a Network of Potential Interactions

Memory As an Organizer of Dynamic Modules In a Network of Potential Interactions Memory As an Organizer of Dynamic Modules In a Network of Potential Interactions Mesut Yucel 1 and Uri Hershberg 2* Abstract Networks are amongst the most common tools to describe interactions in a spatial

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

E6885 Network Science Lecture 5: Network Estimation and Modeling

E6885 Network Science Lecture 5: Network Estimation and Modeling E 6885 Topics in Signal Processing -- Network Science E6885 Network Science Lecture 5: Network Estimation and Modeling Ching-Yung Lin, Dept. of Electrical Engineering, Columbia University October 7th,

More information

Plan of the lecture I. INTRODUCTION II. DYNAMICAL PROCESSES. I. Networks: definitions, statistical characterization, examples II. Modeling frameworks

Plan of the lecture I. INTRODUCTION II. DYNAMICAL PROCESSES. I. Networks: definitions, statistical characterization, examples II. Modeling frameworks Plan of the lecture I. INTRODUCTION I. Networks: definitions, statistical characterization, examples II. Modeling frameworks II. DYNAMICAL PROCESSES I. Resilience, vulnerability II. Random walks III. Epidemic

More information

caution in interpreting graph-theoretic diagnostics

caution in interpreting graph-theoretic diagnostics April 17, 2013 What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network a collection of more or less identical agents or objects,

More information

Failure in Complex Social Networks

Failure in Complex Social Networks Journal of Mathematical Sociology, 33:64 68, 2009 Copyright # Taylor & Francis Group, LLC ISSN: 0022-250X print/1545-5874 online DOI: 10.1080/00222500802536988 Failure in Complex Social Networks Damon

More information

Networks and Discrete Mathematics

Networks and Discrete Mathematics Aristotle University, School of Mathematics Master in Web Science Networks and Discrete Mathematics Small Words-Scale-Free- Model Chronis Moyssiadis Vassilis Karagiannis 7/12/2012 WS.04 Webscience: lecture

More information

A quick review. Which molecular processes/functions are involved in a certain phenotype (e.g., disease, stress response, etc.)

A quick review. Which molecular processes/functions are involved in a certain phenotype (e.g., disease, stress response, etc.) Gene expression profiling A quick review Which molecular processes/functions are involved in a certain phenotype (e.g., disease, stress response, etc.) The Gene Ontology (GO) Project Provides shared vocabulary/annotation

More information

V 2 Clusters, Dijkstra, and Graph Layout

V 2 Clusters, Dijkstra, and Graph Layout Bioinformatics 3 V 2 Clusters, Dijkstra, and Graph Layout Mon, Oct 31, 2016 Graph Basics A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges. Degree distribution P(k) Random

More information

γ : constant Goett 2 P(k) = k γ k : degree

γ : constant Goett 2 P(k) = k γ k : degree Goett 1 Jeffrey Goett Final Research Paper, Fall 2003 Professor Madey 19 December 2003 Abstract: Recent observations by physicists have lead to new theories about the mechanisms controlling the growth

More information

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA PhD course in Electronics, Automation and Complex Systems Control-XXIV Cycle DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA E DEI SISTEMI ing.

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Characteristics of Preferentially Attached Network Grown from. Small World

Characteristics of Preferentially Attached Network Grown from. Small World Characteristics of Preferentially Attached Network Grown from Small World Seungyoung Lee Graduate School of Innovation and Technology Management, Korea Advanced Institute of Science and Technology, Daejeon

More information

1 Random Graph Models for Networks

1 Random Graph Models for Networks Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture : Jan 6, 0 Scribes: Geoffrey Fairchild and Jason Fries Random Graph Models for Networks. Graph Modeling A random graph is a

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

An introduction to the physics of complex networks

An introduction to the physics of complex networks An introduction to the physics of complex networks Alain Barrat CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://www.cxnets.org http://www.sociopatterns.org REVIEWS: Statistical

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Biological Networks Department of Computing Imperial College London Spring 2010 1. Motivation Large Networks model many real-world phenomena technological: www, internet,

More information

RANDOM-REAL NETWORKS

RANDOM-REAL NETWORKS RANDOM-REAL NETWORKS 1 Random networks: model A random graph is a graph of N nodes where each pair of nodes is connected by probability p: G(N,p) Random networks: model p=1/6 N=12 L=8 L=10 L=7 The number

More information

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yinan Liu. February 12th, 2016

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yinan Liu. February 12th, 2016 Master s Thesis Title A Study on the Effect of Physical Topology on the Robustness of Fractal Virtual Networks Supervisor Professor Masayuki Murata Author Yinan Liu February 12th, 2016 Department of Information

More information

arxiv:cond-mat/ v5 [cond-mat.dis-nn] 16 Aug 2006

arxiv:cond-mat/ v5 [cond-mat.dis-nn] 16 Aug 2006 arxiv:cond-mat/0505185v5 [cond-mat.dis-nn] 16 Aug 2006 Characterization of Complex Networks: A Survey of measurements L. da F. Costa F. A. Rodrigues G. Travieso P. R. Villas Boas Instituto de Física de

More information

Evolutionary origins of modularity

Evolutionary origins of modularity Evolutionary origins of modularity Jeff Clune, Jean-Baptiste Mouret and Hod Lipson Proceedings of the Royal Society B 2013 Presented by Raghav Partha Evolvability Evolvability capacity to rapidly adapt

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

Overview of Network Theory, I

Overview of Network Theory, I Overview of Network Theory, I ECS 253 / MAE 253, Spring 2016, Lecture 1 Prof. Raissa D Souza University of California, Davis Raissa s background: 1999, PhD, Physics, Massachusetts Inst of Tech (MIT): Joint

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Introduction to Networks Computational Social Science D-GESS Olivia Woolley Meza

More information

Dynamic network generative model

Dynamic network generative model Dynamic network generative model Habiba, Chayant Tantipathanananandh, Tanya Berger-Wolf University of Illinois at Chicago. In this work we present a statistical model for generating realistic dynamic networks

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

Importance of IP Alias Resolution in Sampling Internet Topologies

Importance of IP Alias Resolution in Sampling Internet Topologies Importance of IP Alias Resolution in Sampling Internet Topologies Mehmet H. Gunes and Kamil Sarac Global Internet Symposium 007, Anchorage, AK Introduction: Internet Mapping Topology measurement studies

More information

INTRODUCTION SECTION 9.1

INTRODUCTION SECTION 9.1 SECTION 9. INTRODUCTION Belgium appears to be the model bicultural society: 59% of its citizens are Flemish, speaking Dutch and 40% are Walloons who speak French. As multiethnic countries break up all

More information

BMC Bioinformatics. Open Access. Abstract

BMC Bioinformatics. Open Access. Abstract BMC Bioinformatics BioMed Central Research article Clustering under the line graph transformation: application to reaction network Jose C Nacher*, Nobuhisa Ueda, Takuji Yamada, Minoru Kanehisa and Tatsuya

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

The Gene Modular Detection of Random Boolean Networks by Dynamic Characteristics Analysis

The Gene Modular Detection of Random Boolean Networks by Dynamic Characteristics Analysis Journal of Materials, Processing and Design (2017) Vol. 1, Number 1 Clausius Scientific Press, Canada The Gene Modular Detection of Random Boolean Networks by Dynamic Characteristics Analysis Xueyi Bai1,a,

More information

University of Twente

University of Twente University of Twente Faculty of Electrical Engineering, Mathematics and Informatics Bachelor of Science thesis Error tolerance analysis of the Telefónica de España optical fibre network Pieter van Wijngaarden

More information

Topology and Dynamics of Complex Networks

Topology and Dynamics of Complex Networks CS 790R Seminar Modeling & Simulation Topology and Dynamics of Complex Networks ~ Lecture 3: Review based on Strogatz (2001), Barabási & Bonabeau (2003), Wang, X. F. (2002) ~ René Doursat Department of

More information

Structured prediction using the network perceptron

Structured prediction using the network perceptron Structured prediction using the network perceptron Ta-tsen Soong Joint work with Stuart Andrews and Prof. Tony Jebara Motivation A lot of network-structured data Social networks Citation networks Biological

More information

Modelling data networks research summary and modelling tools

Modelling data networks research summary and modelling tools Modelling data networks research summary and modelling tools a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) December 2011 Available online at

More information

An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based

An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based Greg Madey Computer Science & Engineering University of Notre Dame UIUC - NSF Workshop

More information

Incoming, Outgoing Degree and Importance Analysis of Network Motifs

Incoming, Outgoing Degree and Importance Analysis of Network Motifs Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 6, June 2015, pg.758

More information

1 More configuration model

1 More configuration model 1 More configuration model In the last lecture, we explored the definition of the configuration model, a simple method for drawing networks from the ensemble, and derived some of its mathematical properties.

More information

Network analysis. Martina Kutmon Department of Bioinformatics Maastricht University

Network analysis. Martina Kutmon Department of Bioinformatics Maastricht University Network analysis Martina Kutmon Department of Bioinformatics Maastricht University What's gonna happen today? Network Analysis Introduction Quiz Hands-on session ConsensusPathDB interaction database Outline

More information

Attack Vulnerability of Network with Duplication-Divergence Mechanism

Attack Vulnerability of Network with Duplication-Divergence Mechanism Commun. Theor. Phys. (Beijing, China) 48 (2007) pp. 754 758 c International Academic Publishers Vol. 48, No. 4, October 5, 2007 Attack Vulnerability of Network with Duplication-Divergence Mechanism WANG

More information

Graph Theory for Network Science

Graph Theory for Network Science Graph Theory for Network Science Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Networks or Graphs We typically

More information

Networks and stability

Networks and stability Networks and stability Part 1A. Network topology www.weaklink.sote.hu csermelypeter@yahoo.com Peter Csermely 1. network topology 2. network dynamics 3. examples for networks 4. synthesis (complex equilibria,

More information

Resilient Networking. Thorsten Strufe. Module 3: Graph Analysis. Disclaimer. Dresden, SS 15

Resilient Networking. Thorsten Strufe. Module 3: Graph Analysis. Disclaimer. Dresden, SS 15 Resilient Networking Thorsten Strufe Module 3: Graph Analysis Disclaimer Dresden, SS 15 Module Outline Why bother with theory? Graphs and their representations Important graph metrics Some graph generators

More information

SNA 8: network resilience. Lada Adamic

SNA 8: network resilience. Lada Adamic SNA 8: network resilience Lada Adamic Outline Node vs. edge percolation Resilience of randomly vs. preferentially grown networks Resilience in real-world networks network resilience Q: If a given fraction

More information

On the impact of small-world on local search

On the impact of small-world on local search On the impact of small-world on local search Andrea Roli andrea.roli@unibo.it DEIS Università degli Studi di Bologna Campus of Cesena p. 1 Motivation The impact of structure whatever it is on search algorithms

More information