AADECA 2004 XIX Congreso Argentino de Control Automático. Ethernet delay evaluation by an embedded real time Simulink model PC in asynchronous mode

Size: px
Start display at page:

Download "AADECA 2004 XIX Congreso Argentino de Control Automático. Ethernet delay evaluation by an embedded real time Simulink model PC in asynchronous mode"

Transcription

1 Ethernet delay evaluation by an embedded real time Simulink model PC in asynchronous mode Mario R. Modesti, Luis R. Canali, Jorge C. Vaschetti Grupo de Investigaciones en Informática para Ingeniería, Universidad Tecnológica Nacional Facultad Regional Córdoba CC 36 - X5016ZAA - Suc 16 Córdoba - Argentina mmodesti@scdt.frc.utn.edu.ar Abstract: This work presents two real time models to provide statistical behaviour of an Ethernet link delays to use it in adaptive compensation of distributed close loop control systems. It has been obtained using an embedded Simulink model with xpctarget toolbox on a standard PC. The model operates in asynchronous mode, and so there is not synchronization between the nodes. The measurements are indirect and they represent the behaviour of the network segment for use in a real system. UDP/IP is the protocol used. Keywords: Simulink, xpctarget, Ethernet, UDP/IP, Real Time model, network delay, stochastic distribution, asynchronous mode. 1 Introduction Ethernet is one of the most used area network technologies, but it is not intended for real time communications[1]. The massive number of existing installations will be more attractive in the future for all class of control systems, included closed loop ones. There are different ways to perform a control system, and this work is oriented to a distributed asynchronous mode, where no synchronization hardware or software exists. There is much work about traffic studies and delays in networks systems. Here is presented a way to measure indirectly, but in real time, the variations of the delay between different transmissions over UDP/IP protocol. Ethernet uses a bus access called CSMA/CD, this means that before sending a packet to the network, the station listens to the channel, and when the channel appears to be idle, transmission starts, If more than one station starts to transmit into the bus, a collision is detected, putting the station in idle mode in order to try a retransmission after a random wait. This is the main reason making Ethernet not safe in real time control. Delays can be modelled in different ways: constant delays, independent delays, or Markov chains [1]. The hardware platform core of the model is the intranet of a laboratory, and the software is built using Simulink and embedded into a standard PC by a xpctarget environment. This model has been developed for compensation of closed loop control systems with networks included [2], using it for development of adaptive filters. This work presents the results of a decentralized system without synchronization between the nodes. Available data, however limited, allows to make valid discussion and conclusions of overall system behaviour. It must be remembered that delay variations patterns within a network as detailed are random in nature. 2 Goals of the work Adaptive compensation for systems where the control loop includes networks has been proposed [2]. The configuration can be viewed as active noise cancellation. Results have been acceptable. However, it is necessary to have a model of the noise source for training the filter coefficients. The discussed adaptive control structure uses an LMS algorithm (Least Minimum Squares). It adapts the control strategy to the perturbations added by the communication network. To keep aware the filter about these perturbations, the control signal has been correlated with the noise source. In this work, an embedded Simulink model running on a standard PC has been used in the experiments using two possible ways for obtaining delay information in real time.

2 3 Measurement concepts d1+ D1 = T + D2 d1= T + d2 -D1 In an asynchronous system, as the one d2 + D2 = T + d3 d2 = T + d3 + D2 proposed, no hardware or software synchronization link exists between the nodes of the model used for delay evaluation, so it is necessary to have one node d1+ D1+ D2 = 2T + d3 d1= 2T + d3 D1 D2 Equation 1 as packets transmitter and another node as packets receiver. D1 and D2 correspond to two different The transmitter node sends to the receiver times of successive arrivals occurred in the node one packet at a fixed rate of T ms. The packet reception node, and there exists a direct relationship is also fixed in size and is composed of random between these times and period T of the number 8 bytes long. This permits the receiver node transmission node. to insert a timing flag for each packet arrived. Using simple time analysis, it is possible to The receiver node can thus know when the build a timing equations system but it shows linear packet arrives to the UDP socket. dependence. With this equation system it is not possible to calculate dn, knowing only t, and Dn. Figure 1 shows a timing diagram of a To achieve this goal, the first delay d1 will be distributed asynchronous system, where Tx estimated. represents a source node, providing a packet of data at intervals T. Rx represents the arriving event into the reception node, each one having a different time distance due to the different delays among different transmitted packets. d1 = T + d2 -D1 d1 T + D1= d2 Equation 2 Figure 1 Measurement concept Dn is the measured time between two successive arrivals to the reception node, and dn is the delay of the packet in agreement with its sequence. The arrival to the reception node is affected randomly by the instantaneous traffic state of the network and so Dn will be in general different for each packet. There is a real time clock within the receptor node, and each arrival produces a timestamp to calculate the time between two successive arrivals. The timing relationships are expressed in the system of Equation 1. In this way, for calculating each packet delay, is necessary to know the previous packet delay. From the statistics point of view, selecting any delay for the first packet will produce a mere time shift of the remaining delays. The variance of the set is not modified as soon as the first delay value is within the boundary of the delay range set. Packets are produced into the transmitter node at each interval T, and they are arriving to the receiver node with a delay of d ms. D is the time elapsed between two successive packets in the receiver node. Time of arrival to the receiver node will be affected in a random way by the network communications conditions. There are some relationships between this characteristic values as shown on Equation 1. The receiver node has a real time clock with 1 ms of period. This is the time resolution of the measurement because it is an event based system, and the node is able to obtain the time between two consecutive arrivals with this resolution. According with the information available, it will be possible to build a dependable equation system. However it is not possible to calculate the delays with these data. To know the value of each delay it is necessary to have the precedent delay. It s value can be any within the range of the possible delays. 4 Hardware model platform A system with three standard PC included is proposed, and linked by Ethernet as detailed on figure 2.

3 There are three stations labelled Target_1, Target_2 and Host_Matlab, all accessible using TCP/IP and having an individual IP assigned. The Targets are connected to the Host_Matlab so to receive the model compiled by xpctarget toolbox and the runtime environment is set to configure the target PC as a dedicated controller [3]. 5 Real time platform The available platform is Simulink, with xpctarget included, having TCP/IP and UDP/IP link capabilities. UDP protocol features are similar to TCP, but it has not the safety layer. This makes TCP safer and slower than UDP. It is possible to envision a network segment (where the process will run) having load conditions that are not extreme, permitting to skip the data safety benefits that TCP provides. 6 Building the model Distributing the system model into the target stations, two models have been developed corresponding to the transmitter node and the receiver node, see figure 2. The whole model results in a integration of Simulink and Stateflow modules (other available toolbox of Matlab ). The stateflow block permits the internal synchronization of the arriving packets from the transmitter node into the socket block in the receiver node. The resulting module is called Delay block and it provides of the discrete period count between two packet arrivals. The figure 3 a,b shows the Delay block detailed for both models. Two models for the Delay function are present, based on two different algorithms to obtain delay information, called delay_1 and delay_2 Figure 2 xpctarget Model respectively. xpctarget is a Matlab toolbox that provides real time solutions to test prototypes of PC-embedded and other micro controllers based systems. It permits to embed a Simulink model, compiled and linked according the environment conditions of the selected hardware target This algorithms has been developed using Stateflow ( a toolbox of Simulink ) that allows implementation of finite state models. This model is event-triggered. Triggering is produced by an incoming packet at the UDP port. A flag is positioned for time measuring whenever a new number is detected as content of the incoming packet, and as they are randomly

4 generated, time should be counted for each incoming packet interval. measurements have been obtained. This shows the network activity for an interrupted transmission each 500 ms. It is possible to verify that when the network load is low, a low delay is introduced. When the traffic into the network increases, the packets begin to have a greater delay time. a ( input data ) Figure 3(a) Steteflow Model delay_1 b ( media delay) Figure 3(b) Steteflow Model delay_2 The structure of the first model called Delay_1 is shown in figure 3(a) along with its operation principle. Trigger events force state transitions on the Stateflow module and for each transition the actual count of the real time clock is recorded an so intervals can be easily obtained. P is the period of the traffic generator and delay is obtained using eqs. (1). The second model does not estimate first arrival time, merely keeping track of delays. The block called delay_2 determinates the time elapsed between two successive arriving packets. This time will be called delay. 7 Results Figure 4 shows the results obtained for a data population obtained during 1 second by delay_1 (a) and delay_2 (b). They offer a clear idea of the behavior of the network segment used for the experience. The test is made in the receive node, the resolution being 1 ms. A million samples or c ( variance of the delay ) Figure 4 Statistical markers of the model This is an indirect measurement of the real delay of each packet, expressed in terms of mean value and variance. There are time lapses without no delays, a desirable but not very common situation in the entire time frame of communication. In figure 4 the results for both models are shown. In the second model, the results are not similar, but there are delay information correlated. There are difficulties to compare both algorithms, because the network operative conditions are changing permanently. Adding a network of this characteristics into the control loop produces perturbations discussed in others papers [4], [5]. Here an embedded model for obtaining delay information useful to provide statistic models that will be used in adaptive systems for compensation of control loop systems in asynchronous mode is proposed. The available tools of Simulink permit to obtain statistics information in a simple way for The evaluation of a network segment to be used in a telematic system. The test can be regarded

5 as an accessory added to the control scheme. It is possible to do so because the obtained model can be linked with the model of the control system. 8 Future work Next step of this work is to obtain the mathematical model of the com-munication delay using stochastic techniques in accordance to the nature of the problem. Adaptive delay compensation is to attempted using noise cancellation models 9 Acknowledgments The author would like to express his gratitude to the members of the communications & systems group (Fachhoschschule Braunsch-weig / Wolfenbüttel Germany ), specially Prof-Dr.Ing. Wolfhard Lawrenz, who are involved with this project for their kind support and valuable advice. This work was carried on partially supported by grants from DAAD ( Deutscher Akademischer Austauschdienst ) from Germany and from Universidad Tecnológica Nacional, Facultad Regional Córdoba in Argentina. 10 References [1] Real-Time control systems with delays, Johan Nilsson, Department of automatic control, Lund Institute of Technology, Sweden [2] Real Time platform of process with networks included into the loop, Mario R. Modesti [3] xpctarget for use with Real Time Workshop, Getting Started, User s Guide, I/O Reference Guide, The MathWorks [4] Stability Analysis networked Control Systems, Gregory C. Walsh, Hong Ye, Linda G. Bushnell, IEEE Transactions on control systems technology, Vol 10, Nro 3, May 2002 [5] On the nature of the time-variant communication delays, Peter Bauer, Mihail Sichitiu, ( Univ. of Notre Dame USA ), Kamal Premaratne ( Univ. of Miami USA ).

Markov Chains and Multiaccess Protocols: An. Introduction

Markov Chains and Multiaccess Protocols: An. Introduction Markov Chains and Multiaccess Protocols: An Introduction Laila Daniel and Krishnan Narayanan April 8, 2012 Outline of the talk Introduction to Markov Chain applications in Communication and Computer Science

More information

xpc Target communication efficiency when multiple targets are involved

xpc Target communication efficiency when multiple targets are involved xpc Target communication efficiency when multiple targets are involved * *University of Craiova, Department of Automatic Control, 200585-Craiova Romania (Tel: +40-251-438198; e-mail: madalin@automation.ucv.ro)

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 643921. TOOLS INTEGRATION UnCoVerCPS toolchain Goran Frehse, UGA Xavier

More information

Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation

Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation MATLAB Digest Modeling System Architecture and Resource Constraints Using Discrete-Event Simulation By Anuja Apte Optimizing system resource utilization is a key design objective for system engineers in

More information

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded Communication Roland Institute of Computer Engineering Vienna University of Technology 10. November 2010 Overview 1. Definition of a protocol 2. Protocol properties 3. Basic Principles 4. system communication

More information

ECE 653: Computer Networks Mid Term Exam all

ECE 653: Computer Networks Mid Term Exam all ECE 6: Computer Networks Mid Term Exam 16 November 004. Answer all questions. Always be sure to answer each question concisely but precisely! All questions have points each. 1. What are the different layers

More information

Transport protocols Introduction

Transport protocols Introduction Transport protocols 12.1 Introduction All protocol suites have one or more transport protocols to mask the corresponding application protocols from the service provided by the different types of network

More information

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15 Introduction to Real-Time Communications Real-Time and Embedded Systems (M) Lecture 15 Lecture Outline Modelling real-time communications Traffic and network models Properties of networks Throughput, delay

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

PROCESS CONTROL ACROSS NETWORK

PROCESS CONTROL ACROSS NETWORK PROCESS CONTROL ACROSS NETWORK Leena Yliniemi Dr University of Oulu Control Engineering Laboratory Box 4300- FIN 90014 University of Oulu Finland leena.yliniemi@oulu.fi Kauko Leiviskä Professor University

More information

Page 1 of 5 Print this Page Close this Window TECHNICAL ARTICLE: STANDARDS-BASED REAL TIME ETHERNET NOW OFF-THE-SHELF Almost every major user organisation is currently propagating its own Ethernet-based

More information

Multimedia in the Internet

Multimedia in the Internet Protocols for multimedia in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ > 4 4 3 < 2 Applications and protocol stack DNS Telnet

More information

Real-Time (Paradigms) (47)

Real-Time (Paradigms) (47) Real-Time (Paradigms) (47) Memory: Memory Access Protocols Tasks competing for exclusive memory access (critical sections, semaphores) become interdependent, a common phenomenon especially in distributed

More information

TSIN01 Information Networks Lecture 3

TSIN01 Information Networks Lecture 3 TSIN01 Information Networks Lecture 3 Danyo Danev Division of Communication Systems Department of Electrical Engineering Linköping University, Sweden September 10 th, 2018 Danyo Danev TSIN01 Information

More information

Unavoidable Constraints and Collision Avoidance Techniques in Performance Evaluation of Asynchronous Transmission WDMA Protocols

Unavoidable Constraints and Collision Avoidance Techniques in Performance Evaluation of Asynchronous Transmission WDMA Protocols 1th WEA International Conference on COMMUICATIO, Heraklion, reece, July 3-5, 8 Unavoidable Constraints and Collision Avoidance Techniques in Performance Evaluation of Asynchronous Transmission WDMA Protocols

More information

Lecture 12: Event based control

Lecture 12: Event based control Lecture 12: Event based Control HYCON EECI Graduate School on Control 2010 15 19 March 2010 Vijay Gupta University of Notre Dame U.S.A. Karl H. Johansson Royal Institute of Technology Sweden Lecture 12:

More information

Aloha and slotted aloha

Aloha and slotted aloha CSMA 2/13/06 Aloha and slotted aloha Slotted aloha: transmissions are synchronized and only start at the beginning of a time slot. Aloha sender A sender B collision sender C t Slotted Aloha collision sender

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

ETSF05/ETSF10 Internet Protocols. Routing on the Internet

ETSF05/ETSF10 Internet Protocols. Routing on the Internet ETSF05/ETSF10 Internet Protocols Routing on the Internet Circuit switched routing ETSF05/ETSF10 - Internet Protocols 2 Routing in Packet Switching Networks Key design issue for (packet) switched networks

More information

Random Assignment Protocols

Random Assignment Protocols Random Assignment Protocols Random assignment strategies attempt to reduce problem occur in fixed assignment strategy by eliminating pre allocation of bandwidth to communicating nodes. Random assignment

More information

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.

Lecture 17 Overview. Last Lecture. Wide Area Networking (2) This Lecture. Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9. Lecture 17 Overview Last Lecture Wide Area Networking (2) This Lecture Internet Protocol (1) Source: chapters 2.2, 2.3,18.4, 19.1, 9.2 Next Lecture Internet Protocol (2) Source: chapters 19.1, 19.2, 22,1

More information

Lab 3: Performance Analysis of ALOHA

Lab 3: Performance Analysis of ALOHA Lab 3: Performance Analysis of ALOHA ALOHA is one of the basic random access methods in mobile data networks. It is based on mobile terminals sending their packets without any coordination between them.

More information

Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of

Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of Hello, and welcome to this presentation of the STM32 Low Power Universal Asynchronous Receiver/Transmitter interface. It covers the main features of this interface, which is widely used for serial communications.

More information

Laboratory 5 Communication Interfaces

Laboratory 5 Communication Interfaces Laboratory 5 Communication Interfaces Embedded electronics refers to the interconnection of circuits (micro-processors or other integrated circuits) with the goal of creating a unified system. In order

More information

3. Data Link Layer 3-2

3. Data Link Layer 3-2 3. Data Link Layer 3.1 Transmission Errors 3.2 Error Detecting and Error Correcting Codes 3.3 Bit Stuffing 3.4 Acknowledgments and Sequence Numbers 3.5 Flow Control 3.6 Examples: HDLC, PPP 3. Data Link

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061/1110. Lecture 8. Medium Access Control Methods & LAN

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061/1110. Lecture 8. Medium Access Control Methods & LAN RMIT University Data Communication and Net-Centric Computing COSC 1111/2061/1110 Medium Access Control Methods & LAN Technology Slide 1 Lecture Overview During this lecture, we will Look at several Multiple

More information

Analysis of Throughput and Energy Efficiency in the IEEE Wireless Local Area Networks using Constant backoff Window Algorithm

Analysis of Throughput and Energy Efficiency in the IEEE Wireless Local Area Networks using Constant backoff Window Algorithm International Journal of Computer Applications (975 8887) Volume 6 No.8, July Analysis of Throughput and Energy Efficiency in the IEEE 8. Wireless Local Area Networks using Constant backoff Window Algorithm

More information

The Trigger-Time-Event System for the W7-X Experiment

The Trigger-Time-Event System for the W7-X Experiment The Trigger-Time-Event System for the W7-X Experiment Jörg Schacht, Helmut Niedermeyer, Christian Wiencke, Jens Hildebrandt and Andreas Wassatsch Abstract-- All control and data acquisition systems of

More information

Distributed Systems Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 2016 Exam 1 Review Paul Krzyzanowski Rutgers University Fall 2016 Question 1 Why does it not make sense to use TCP (Transmission Control Protocol) for the Network Time Protocol (NTP)?

More information

Laboratory Finite State Machines and Serial Communication

Laboratory Finite State Machines and Serial Communication Laboratory 11 11. Finite State Machines and Serial Communication 11.1. Objectives Study, design, implement and test Finite State Machines Serial Communication Familiarize the students with Xilinx ISE WebPack

More information

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Configuring TCP Header Compression

Configuring TCP Header Compression Header compression is a mechanism that compresses the IP header in a packet before the packet is transmitted. Header compression reduces network overhead and speeds up the transmission of either Real-Time

More information

Troubleshooting Ethernet Problems with Your Oscilloscope APPLICATION NOTE

Troubleshooting Ethernet Problems with Your Oscilloscope APPLICATION NOTE Troubleshooting Ethernet Problems with Your Oscilloscope Introduction Ethernet is a family of frame-based computer networking technologies for local area networks (LANs), initially developed at Xerox PARC

More information

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) TETCOS Transmission Control Protocol (TCP) Comparison of TCP Congestion Control Algorithms using NetSim @2017 Tetcos. This document is protected by copyright, all rights reserved Table of Contents 1. Abstract....

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

in the Internet Andrea Bianco Telecommunication Network Group Application taxonomy

in the Internet Andrea Bianco Telecommunication Network Group  Application taxonomy Multimedia traffic support in the Internet Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network Management and QoS Provisioning - 1 Application

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

Maximizing the Lifetime of Clustered Wireless Sensor Network VIA Cooperative Communication

Maximizing the Lifetime of Clustered Wireless Sensor Network VIA Cooperative Communication Vol., Issue.3, May-June 0 pp--7 ISSN: - Maximizing the Lifetime of Clustered Wireless Sensor Network VIA Cooperative Communication J. Divakaran, S. ilango sambasivan Pg student, Sri Shakthi Institute of

More information

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 9 th class; 19 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Contention-based MAC: ALOHA Users transmit whenever they have data to send Collisions occur,

More information

Configuring Cisco IOS IP SLA Operations

Configuring Cisco IOS IP SLA Operations CHAPTER 58 This chapter describes how to use Cisco IOS IP Service Level Agreements (SLA) on the switch. Cisco IP SLA is a part of Cisco IOS software that allows Cisco customers to analyze IP service levels

More information

DISTRIBUTED HIGH-SPEED COMPUTING OF MULTIMEDIA DATA

DISTRIBUTED HIGH-SPEED COMPUTING OF MULTIMEDIA DATA DISTRIBUTED HIGH-SPEED COMPUTING OF MULTIMEDIA DATA M. GAUS, G. R. JOUBERT, O. KAO, S. RIEDEL AND S. STAPEL Technical University of Clausthal, Department of Computer Science Julius-Albert-Str. 4, 38678

More information

Transport Protocols. CSCI 363 Computer Networks Department of Computer Science

Transport Protocols. CSCI 363 Computer Networks Department of Computer Science Transport Protocols CSCI 363 Computer Networks Department of Computer Science Expected Properties Guaranteed message delivery Message order preservation No duplication of messages Support for arbitrarily

More information

Transporting Voice by Using IP

Transporting Voice by Using IP Transporting Voice by Using IP Voice over UDP, not TCP Speech Small packets, 10 40 ms Occasional packet loss is not a catastrophe Delay-sensitive TCP: connection set-up, ack, retransmit delays 5 % packet

More information

NPort Operation Mode Guidance

NPort Operation Mode Guidance Make the Most Out of Your NPort Serial Device Server by Properly Matching Operation Modes with Advanced Functions Preface Moxa has been a leader in device connectivity for more than 20 years, and provides

More information

Link Layer and Ethernet

Link Layer and Ethernet Link Layer and Ethernet 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross traceroute Data Link Layer Multiple

More information

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols High Level View EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 Goal: share a communication medium among multiple hosts connected to it Problem: arbitrate between connected hosts Solution goals:

More information

Advantages and disadvantages

Advantages and disadvantages Advantages and disadvantages Advantages Disadvantages Asynchronous transmission Simple, doesn't require synchronization of both communication sides Cheap, timing is not as critical as for synchronous transmission,

More information

Time-Step Network Simulation

Time-Step Network Simulation Time-Step Network Simulation Andrzej Kochut Udaya Shankar University of Maryland, College Park Introduction Goal: Fast accurate performance evaluation tool for computer networks Handles general control

More information

Configuring TCP Header Compression

Configuring TCP Header Compression Configuring TCP Header Compression First Published: January 30, 2006 Last Updated: May 5, 2010 Header compression is a mechanism that compresses the IP header in a packet before the packet is transmitted.

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes CS 4: COMPUTER NETWORKS SPRING 03 FINAL May 6, 03 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable justification.

More information

Computer Communication III

Computer Communication III Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost

More information

ATM Technology in Detail. Objectives. Presentation Outline

ATM Technology in Detail. Objectives. Presentation Outline ATM Technology in Detail Professor Richard Harris Objectives You should be able to: Discuss the ATM protocol stack Identify the different layers and their purpose Explain the ATM Adaptation Layer Discuss

More information

Data and Computer Communications. Chapter 11 Local Area Network

Data and Computer Communications. Chapter 11 Local Area Network Data and Computer Communications Chapter 11 Local Area Network LAN Topologies Refers to the way in which the stations attached to the network are interconnected Bus Topology Used with multipoint medium

More information

Lixia Zhang M. I. T. Laboratory for Computer Science December 1985

Lixia Zhang M. I. T. Laboratory for Computer Science December 1985 Network Working Group Request for Comments: 969 David D. Clark Mark L. Lambert Lixia Zhang M. I. T. Laboratory for Computer Science December 1985 1. STATUS OF THIS MEMO This RFC suggests a proposed protocol

More information

Tutorial 2 : Networking

Tutorial 2 : Networking Lund University ETSN01 Advanced Telecommunication Tutorial 2 : Networking Author: Emma Fitzgerald Tutor: Farnaz Moradi November 26, 2015 Contents I Before you start 3 II Whole Class Exercise: Networking

More information

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part I: Medium Access Control Part II: Local Area Networks CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Chapter Overview Broadcast

More information

EE 122: Ethernet and

EE 122: Ethernet and EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 (* this talk is based in part on the on-line slides of J. Kurose & K. Rose) High Level View Goal: share a communication medium among multiple hosts

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

Continuous Real Time Data Transfer with UDP/IP

Continuous Real Time Data Transfer with UDP/IP Continuous Real Time Data Transfer with UDP/IP 1 Emil Farkas and 2 Iuliu Szekely 1 Wiener Strasse 27 Leopoldsdorf I. M., A-2285, Austria, farkas_emil@yahoo.com 2 Transilvania University of Brasov, Eroilor

More information

TrueTime Network A Network Simulation Library for Modelica

TrueTime Network A Network Simulation Library for Modelica TrueTime Network A Network Simulation Library for Modelica Philip Reuterswärd a, Johan Åkesson a,b, Anton Cervin a, Karl-Erik Årzén a a Department of Automatic Control, Lund University, Sweden b Modelon

More information

Links, clocks, optics and radios

Links, clocks, optics and radios Links, clocks, optics and radios end IP addresses Source Destination Data 171.64.74.55 176.22.45.66 176 10110000 start Example of On-Off Keying +5V 0V Volts 1 0 time Data 0 1 1 0 0 1 0 1 1 0 1 0 1 0

More information

3. (a) Explain WDMA protocol. (b) Explain wireless LAN protocol. [8+8]

3. (a) Explain WDMA protocol. (b) Explain wireless LAN protocol. [8+8] Code No: RR410402 Set No. 1 1. (a) List two advantages and two disadvantages of having international standards for network, Protocols? (b) With a neat diagram, explain the functionality of layers, protocols

More information

TSIN01 Information Networks Lecture 8

TSIN01 Information Networks Lecture 8 TSIN01 Information Networks Lecture 8 Danyo Danev Division of Communication Systems Department of Electrical Engineering Linköping University, Sweden September 24 th, 2018 Danyo Danev TSIN01 Information

More information

Functional Principle and the resulting Benefits.

Functional Principle and the resulting Benefits. Functional Principle and the resulting Benefits. 10.11.2010 EtherCAT Functional Principle: Ethernet on the fly Slave Device EtherCAT Slave Controller Slave Device EtherCAT Slave Controller Process data

More information

COS 140: Foundations of Computer Science

COS 140: Foundations of Computer Science COS 140: Foundations of Computer Science ALOHA Network Protocol Family Fall 2017 Homework 2 Introduction 3 Network Protocols.......................................................... 3 Problem.................................................................

More information

CSE 461 Module 10. Introduction to the Transport Layer

CSE 461 Module 10. Introduction to the Transport Layer CSE 461 Module 10 Introduction to the Transport Layer Last Time We finished up the Network layer Internetworks (IP) Routing (DV/RIP, LS/OSPF, BGP) It was all about routing: how to provide end-to-end delivery

More information

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College CHAPTER 7 MAC LAYER PROTOCOLS Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College MEDIUM ACCESS CONTROL - MAC PROTOCOLS When the two stations transmit data

More information

NETWORK TOPOLOGIES. Application Notes. Keywords Topology, P2P, Bus, Ring, Star, Mesh, Tree, PON, Ethernet. Author John Peter & Timo Perttunen

NETWORK TOPOLOGIES. Application Notes. Keywords Topology, P2P, Bus, Ring, Star, Mesh, Tree, PON, Ethernet. Author John Peter & Timo Perttunen Application Notes NETWORK TOPOLOGIES Author John Peter & Timo Perttunen Issued June 2014 Abstract Network topology is the way various components of a network (like nodes, links, peripherals, etc) are arranged.

More information

HDLC-USB. Portable Protocol Converter. Rev. Dec 25, Datasheet. Website:

HDLC-USB. Portable Protocol Converter. Rev. Dec 25, Datasheet.   Website: HDLC-USB Portable Protocol Converter Rev. Dec 25, 2017 HDLC-USB Datasheet Email: yacer@yacer.cn Website: www.yacer.cn 1 Overview... 3 1.1 Introduction... 3 1.2 Features... 3 1.3 Applications... 3 1.4 Technical

More information

HDLC-PCIE. Synchronous Serial Card. Rev. Dec 22, Datasheet. Website:

HDLC-PCIE. Synchronous Serial Card. Rev. Dec 22, Datasheet.   Website: HDLC-PCIE Synchronous Serial Card Rev. Dec 22, 2017 HDLC-PCIE Datasheet Email: yacer@yacer.cn Website: www.yacer.cn 1 Overview... 3 1.1 Introduction... 3 1.2 Features... 3 1.3 Driver Support... 3 1.4 Applications...

More information

KillTest ᦝ䬺 䬽䭶䭱䮱䮍䭪䎃䎃䎃ᦝ䬺 䬽䭼䯃䮚䮀 㗴 㓸 NZZV ]]] QORRZKYZ PV ٶ瀂䐘މ悹伥濴瀦濮瀃瀆ݕ 濴瀦

KillTest ᦝ䬺 䬽䭶䭱䮱䮍䭪䎃䎃䎃ᦝ䬺 䬽䭼䯃䮚䮀 㗴 㓸 NZZV ]]] QORRZKYZ PV ٶ瀂䐘މ悹伥濴瀦濮瀃瀆ݕ 濴瀦 KillTest Exam : 100-101 Title : CCNA Interconnecting Cisco Networking Devices 1 (ICND1) Version : Demo 1 / 15 1.Which three statements are true about the operation of a full-duplex Ethernet network? (Choose

More information

Reducing SpaceWire Time-code Jitter

Reducing SpaceWire Time-code Jitter Reducing SpaceWire Time-code Jitter Barry M Cook 4Links Limited The Mansion, Bletchley Park, Milton Keynes, MK3 6ZP, UK Email: barry@4links.co.uk INTRODUCTION Standards ISO/IEC 14575[1] and IEEE 1355[2]

More information

ICE 1332/0715 Mobile Computing (Summer, 2008)

ICE 1332/0715 Mobile Computing (Summer, 2008) ICE 1332/0715 Mobile Computing (Summer, 2008) Medium Access Control Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Simplified Reference Model Application layer Transport layer Network layer Data link

More information

Configuring Cisco IOS IP SLAs Operations

Configuring Cisco IOS IP SLAs Operations CHAPTER 50 This chapter describes how to use Cisco IOS IP Service Level Agreements (SLAs) on the switch. Cisco IP SLAs is a part of Cisco IOS software that allows Cisco customers to analyze IP service

More information

CIS 632 / EEC 687 Mobile Computing

CIS 632 / EEC 687 Mobile Computing CIS 632 / EEC 687 Mobile Computing TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

Communication Networks for the Next-Generation Vehicles

Communication Networks for the Next-Generation Vehicles Communication Networks for the, Ph.D. Electrical and Computer Engg. Dept. Wayne State University Detroit MI 48202 (313) 577-3855, smahmud@eng.wayne.edu January 13, 2005 4 th Annual Winter Workshop U.S.

More information

Introduction to MATLAB for Finance

Introduction to MATLAB for Finance Introduction to MATLAB for Finance Bratislava June 4, 2009 2009 The MathWorks, Inc. Jörg-M. Sautter Application Engineer The MathWorks MATLAB Benefits Solutions to access, explore, and share A seamless

More information

HDLC-ETH. Serial Ethernet Converter. Rev. Dec 20, Datasheet. Website:

HDLC-ETH. Serial Ethernet Converter. Rev. Dec 20, Datasheet.   Website: HDLC-ETH Serial Ethernet Converter Rev. Dec 20, 2017 HDLC-ETH Datasheet Email: yacer@yacer.cn Website: www.yacer.cn 1 Overview... 3 1.1 Introduction... 3 1.2 Features... 3 1.3 Applications... 3 1.4 Technical

More information

Modbus TCP + Ethernet EN

Modbus TCP + Ethernet EN Version 0.10 2015 dieentwickler Elektronik GmbH Linzer Straße 4, 4283 Bad Zell / AUSTRIA Telefon: +43 7263 20900-0, Telefax: +43 7263 20900-4 office@dieentwickler.at, www.dieentwickler.at Preface Table

More information

Strengthening Unlicensed Band Wireless Backhaul

Strengthening Unlicensed Band Wireless Backhaul be in charge Strengthening Unlicensed Band Wireless Backhaul Use TDD/TDMA Based Channel Access Mechanism WHITE PAPER Strengthening Unlicensed Band Wireless Backhaul: Use TDD/TDMA Based Channel Access Mechanism

More information

Comparison of ISO-OSI and TCP/IP Suit. Functions of Data Link Layer:

Comparison of ISO-OSI and TCP/IP Suit. Functions of Data Link Layer: Comparison of ISO-OSI and TCP/IP Suit Functions of Data Link Layer: 1. Frame generation ( Character Count, Character Stuffing, Bit Stuffing) 2. Error Processing (Parity(EVEN or ODD), Block Parity, Hamming

More information

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network Question No: 1( M a r k s: 1 ) A ---------- Relies on the hardware manufacturer to assign a unique physical

More information

Drive Control via EtherNet/IP using CIP Motion and CIP Sync Profile Extensions

Drive Control via EtherNet/IP using CIP Motion and CIP Sync Profile Extensions Drive Control via EtherNet/IP using CIP Motion and CIP Sync Profile Extensions High-Performance Closed Loop Drive Control Using EtherNet/IP 2 This session will discuss why Industrial Ethernet is emerging

More information

Chapter 6: Network Communications and Protocols

Chapter 6: Network Communications and Protocols Learning Objectives Chapter 6: Network Communications and Protocols Understand the function and structure of packets in a network, and analyze and understand those packets Understand the function of protocols

More information

Lecture 19. Principles behind data link layer services Framing Multiple access protocols

Lecture 19. Principles behind data link layer services Framing Multiple access protocols Link Layer Lecture 19 Principles behind data link layer services Framing Multiple access protocols ALOHA *The slides are adapted from ppt slides (in substantially unaltered form) available from Computer

More information

1: Review Of Semester Provide an overview of encapsulation.

1: Review Of Semester Provide an overview of encapsulation. 1: Review Of Semester 1 1.1.1.1. Provide an overview of encapsulation. Networking evolves to support current and future applications. By dividing and organizing the networking tasks into separate layers/functions,

More information

Link Layer and Ethernet

Link Layer and Ethernet Link Layer and Ethernet 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross traceroute Data Link Layer Multiple

More information

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I)

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I) ECE453 Introduction to Computer Networks Lecture 7 Multiple Access Control (I) 1 Broadcast vs. PPP Broadcast channel = multiaccess channel = random access channel Broadcast LAN Satellite network PPP WAN

More information

Unit 19 - Serial Communications 19.1

Unit 19 - Serial Communications 19.1 Unit 19 - Serial Communications 19.1 19.2 Serial Interfaces Embedded systems often use a serial interface to communicate with other devices. Serial implies that it sends or receives one bit at a time.

More information

COS 140: Foundations of Computer Science

COS 140: Foundations of Computer Science COS 140: Foundations of C S Network Protocol Family Fall 2017 Copyright c 2002 2017 UMaine School of Computing and Information S 1 / 25 Homework Homework Slides, book Chapter 24 on line Homework: All exercises

More information

LAN Systems. Bus topology LANs

LAN Systems. Bus topology LANs Bus topology LANs LAN Systems Design problems: not only MAC algorithm, not only collision domain management, but at the Physical level the signal balancing problem (signal adjustment): Signal must be strong

More information

L6: OSI Reference Model

L6: OSI Reference Model EECS 3213 Fall 2014 L6: OSI Reference Model Sebastian Magierowski York University 1 Outline The OSI Reference Model An organized way of thinking about network design (from low-level to high-level considerations)

More information

IMPLEMENTATION OF IEEE MAC TRANSMITTER USING VHDL

IMPLEMENTATION OF IEEE MAC TRANSMITTER USING VHDL JOURNAL OF INFORMATION, KNOWLEDGE AND RESEARCH IN COMMUNICATION ENGINEERING ELECTRONICS AND IMPLEMENTATION OF IEEE 802.3 MAC TRANSMITTER USING VHDL 1 MR. JANAK A.PATEL, 2 PROF. PANKAJ P.PRAJAPATI 1 M.E.[Communication

More information

802.1 TIME-SENSITIVE NETWORKING (TSN) ON 802.3CG MULTIDROP NETWORKS

802.1 TIME-SENSITIVE NETWORKING (TSN) ON 802.3CG MULTIDROP NETWORKS 802.1 TIME-SENSITIVE NETWORKING (TSN) ON 802.3CG MULTIDROP NETWORKS AUTHOR: CRAIG GUNTHER, HARMAN INTERNATIONAL SUPPORTERS: DON PANNELL, MARVELL RODNEY CUMMINGS, NATIONAL INSTRUMENTS September 2017 1 WHAT

More information

Mobile Communications Chapter 3 : Media Access

Mobile Communications Chapter 3 : Media Access Mobile Communications Chapter 3 : Media Access 2. Motivation 3. SDMA, FDMA, TDMA 1. Aloha and contention based schemes 4. Reservation schemes 5. Collision avoidance, MACA 6. Polling CDMA (Lecture 6) Prof.

More information

Chapter 16 Networking

Chapter 16 Networking Chapter 16 Networking Outline 16.1 Introduction 16.2 Network Topology 16.3 Network Types 16.4 TCP/IP Protocol Stack 16.5 Application Layer 16.5.1 Hypertext Transfer Protocol (HTTP) 16.5.2 File Transfer

More information

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP)

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP) Lecture (07) OSI layer 4 protocols TCP/UDP protocols By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Fall2014, Computer Networks II Introduction Most data-link protocols notice errors then discard frames

More information

IT 341: Introduction to System

IT 341: Introduction to System IT 341: Introduction to System Administration Private IP Addresses and the Internet Using IP Addresses to Communicate Over the Internet Network Address Translation Private IP Addresses and the Internet

More information