Taccumulation of the social network data has raised
|
|
- Amice Cunningham
- 1 years ago
- Views:
Transcription
1 International Journal of Advanced Research in Social Sciences, Environmental Studies & Technology Hard Print: Online: September, 2016 Vol. 2, No. 1 Review Social Network Analysis and Mining: Link Prediction 1 Kabir Ismail Umar & 2 Fatima Chiroma 1 Department of Information Technology, Modibbo Adama University of Technology Yola 2 Software Department, American University of Nigeria A b s t r a c t he rapid generation and uncontrollable Taccumulation of the social network data has raised a real issue now, because the data are vast, noisy, distributed, unstructured and dynamic. Since this data can be mined by using web mining techniques, social network analysis and link prediction algorithms, this article tries to understand the social structure and issues surrounding mining social network data. We will also be looking at the link prediction problems in dynamic social networks and the important techniques that can be applied as an attempt for a resolution. Keywords: Social Network, Social Network Analysis, Link Prediction and Web Mining. Corresponding Author: Kabir Ismail Umar Environmental Jour 161
2 Background to the Study The social network, which is a social structure comprising of people who are linked by different types of interdependency, has changed the nature of information in terms of volume, availability and importance (G. Nandi and A. Das, 2013). According to Gupta et. Al., (2015) a social network is denoted by a graph fig. 1, where the nodes represent a user and edges represent relationships among nodes which are the users. Fig. 1. Social Network. It is normally formed by continuous interactions between people. Gupta et. al., (2015) claimed that social networks are dynamic in nature, as they grow over time through the addition of new users, creation of new relationships and ending of some old relationships. Nandi et al strongly agrees that social networks are dynamic and even went further to state that the data generated from online social network is vast, noisy and distributed as well therefore to analyze such complex and dynamic social network data appropriate data mining techniques are required. Through the Social Network, participants publish or publicly reveal a lot of personal information (communications, relationships and behaviors) and this information have real values that can be mined, utilized and monetized. With this information interested parties can examine, determine and even predict things about a user or group of users for many purposes such as to improve decision making, control costs and minimize risks. This data also has research implications that will enable researchers to improve the design and robustness of several systems such as recommender engines. Users on social networks publish personal information that has real economic values. With this information, interested parties can examine and predict things about a user or group of users for many purposes. Such as to improve decision making, control costs and minimize risks. This scenario is showing Fig. 2 as a Link Prediction Causal Loop. Environmental Jour 162
3 Fig. 2. Link Prediction Causal Loop Social networks are highly dynamic objects as they grow and change quickly over time through the addition of new edges, signifying the appearance of new interactions in the underlying social structure (Liben-Nowell and Klienberg, 2007). As social networks continue to grow, excess data needs to be mined and Chakrabarti (2003) claimed that web mining is the most suitable. Web mining is an application of data mining (which is the technique of discovering and extracting useful information from large data sets or databases) used to discover and extract useful information from the web (Hand et. al., 2001). There are three web mining techniques namely the web content mining, web usage mining and web structure mining. These techniques have been used to mine contents, discover interaction patterns between users and identify structures and links between web pages. Additionally, Ting (2008) stated that social network analysis is a vital technique that will aid the understanding of social behaviors, social relationships and social structure (Nandi, and Das, 2013). According to G. Nandi, and A. Das (2013) Social network analysis is the mapping and measuring of relationships and flows between people, groups, computers and other connected information/knowledge entities which provides both a visual and a mathematical analysis of human relationships. It is similar to web mining but it is about data extraction from different resources (Nandi, and Das, 2013). Other important and popular techniques that are used for social network mining are the data mining techniques such as sequential pattern analysis, visualization, association rule generation, clustering and classification which have been used by several researchers. Additionally, Borgatti claimed that in the past the real problem with social network analysis (and mining) was its inability to statistically test hypotheses however this is less of a problem now with the advent of permutation tests (Hand et. al., 2001). Although, that is not to say that the social network analysis and mining problem has been eradicated in fact there are still several problems surrounding it and even Nandi et al stated that the problems related to mining social networks are still in the infancy state as such there is subsequent need to develop techniques for further improvements (G. Nandi, and A. Das, 2014). Although, to Environmental Jour 163
4 specifically mine data to make predictions, link prediction algorithm is additionally required because it is a link mining task that tries to find new edges within a given graph and attempt to imitate them (Gastulla, and Cortes, 2014). According to S. Yu, and S. Kak (2012) most social media predictions can be done better by expert human agents however there is need to automate predictions. For example, automated predictions are unbiased, cost effective, more accurate and performs better than human agents. The problem statement here is given any social network graph at a time t (Fig.3), accurately predict the new relationships that will be created on the network after an interval of time t1. Fig. 3. Link Prediction at time t1. Literature Review Research interest in the area of Social Network Analysis specifically link prediction (scalability) is increasing due to its importance. Previous research works have revealed several problems with link prediction such as scalability, accuracy and efficiency/performance. Gupta el. al., (2013) Nandi, and Das (2014) in particular have recently worked on related research and they have emphasized on the importance of finding a solution to the scalability problem of link prediction. Fire et. al., (2011) has also done some research where he claimed that the massive growth of social networks has brought about several research directions in which the structural and behavioral properties of large-scale social networks are examined. Additionally, Gupta et. al., (2015) did some work which agrees with Fire el at claim but they were more specific as they believe that the dynamic change forms the base of link prediction algorithms which involves trying to understand the process of the dynamic changes and trying to replicate them. Additionally, Nandi and Das (2013) have identified seven other key representative research issues in their research namely influence propagation, community or group detection, expert finding, recommender systems, behavior and mood analysis, predicting trust and distrust among individuals, and opinion mining. Furthermore, in Fire et. al., (2011) they also described the link prediction (problem) as a problem of predicting the existence of hidden links or creating new ones in social networks. They further stated the relevance of this problem to different circumstances as in recent years several algorithms have been proposed so as to solve the problem but majority of which were merely tested on bibliographic or co-authorship data sets (Fire et. al., 2011). Although not disputing Fire's claim for the description of the link prediction problem, Environmental Jour 164
5 Nandi and Das (2013) stated that research on link prediction has evolved over the years however the main concern is the scalability of solutions that have were proposed for link predictions. Fire et al did however state that in addition to the link prediction problem, existing link prediction techniques lack the scalability required for full application on a continuously growing social network (Fire et. al., 2011). Gupta et. al.,(2015) similarly agrees that there is a scalability problem with dynamic networks as they earlier stated that link prediction algorithms involves trying to understand the process of the networks dynamic changes and try to replicate them. In their work, Nandi and Das (2014) concluded that most of the existing work on link prediction focuses on building models that are based solely on the structure of the network, while others were built based on categorical attributes of the nodes but they strongly believe that algorithms and techniques can still be developed that will provide more accuracy and speed that is based on implicit social networks which is formed due to the daily interaction between users i.e. dynamic networks. They further suggested that the key factors to consider while designing a new propagation model is its reliability on very large number of parameters but most importantly it should have the ability to handle the problem of scalability (Nandi and Das, 2014) (Wang et. al., 2015) (Xiaoyi, 2014). Result/ Analysis The result of the analysis will provide an informative rather than conclusive result, which will serve as an evidence of the validity of the proposed method. The presentation of the results will be well structured and readable, while the result itself will be vital to readers that plan on using the proposed method as it will give an idea on what to expect. The result can also be used as a benchmark or means of comparison to better comprehend the method. Since this proposed method will be applied to a social network which is known to be dynamic, knowing the size of the data used is very important because the proposed method may not be scalable or applied to certain sized data. Additionally, the logic behind the choice of social network will be presented as it will aid in knowing which type of social network this proposed method can be applied to. Conclusion The best approach to study the question is to use the quantitative approach/method to carry out a comparison analysis of the different link prediction algorithms in a social network using performance metrics as a base and similarity as a measure of calculation. Furthermore, the main reason for using the quantitative approach is because a conclusive and more descriptive result is required to arrive at an accurate conclusion as such a standard measurement is used to avoid unfairness. Additionally, the data that will be used from Facebook to analyze the algorithm is structured in the form of numbers so as to get a result that can be used to measure the accuracy of the link prediction algorithms. Research in this area is in its infancy stage and the interest is increasing due to its importance. Therefore, it is essential for researchers to fine tune the approaches and processes used for Social Network Analysis and Mining especially link prediction, in order to obtain efficient and accurate results. That is the purpose of this article as it will contribute to overcoming the challenges in social network data analysis and mining by attempting to resolve the link prediction problem thru proposing a scalable framework/model based on the analysis carried out. Furthermore, if link prediction is effective and accurate for dynamic Environmental Jour 165
6 social networks the results of the analysis will be beneficial to other network domains. That is, this research will as well benefit other fields in obtaining maximum accuracy, such as Bioinformatics, E-commerce and Security, it has become critical that link prediction algorithms are accurate on small and large datasets or dynamic networks. References Chakrabarti, S. (2003). Mining the web: discovering knowledge from hypertext data. California: Morgan Kaufmann publishers. Cortes, D. G.-G. (2014). Link prediction in very large directed graphs: exploiting hierarchical properties in parallel. 3rd workshop on on knowledge discovery and data mining meets linked open data-11th Extended Semantic Web Conference, (pp. 1-13). Das, G. N. (2014, April). Online social network mining: current trents and research issues. International Journal of Research in Engineering and Technology, 3, Das, G. N. (n.d.). A survey on using data mining techniques for on-line social network analysis. International Journal on computer science, 10, Elovic, M. F. (2011). Link Pridiction on social Network using Computationally Efficient Topological Features IEEE Third International Conference on Privacy, Security, Risk and Trust(PASSAT) and 2011 IEEE Third International Conference on social Computing (Socialcom), (pp ). Ferrara, E. (2012). Mining and analysis of social networks, PhD.dissertation. Messina: Department of Mathematics University Press. Kak, S. Y. (2012). A survey of prediction using social media. Klienberg, D. L.-N. (2007, May). The prediction problem for social networks. Journal of American society for Information Science and Technology, 58, Lanzi, F. F. (2003). Recent development in web usage mining research. LNCS 2737, Ch Data Warehousing and Knowledge Discovery Shukla, S. G. (2015, February). Comparison analysis of link pridiction algorithms in social network. International Journal of computer Applications, 111, Smyth, D. H. (2001). Principles of data mining. Massachusetts: MIT Press. Sravanthi, E. R. (2012, October). Analysis of social network using the techniques of web mining. International Journal of Avanced Research in Computer Science and Software Engineering, 2, Ting, I. (2008). Web mining techniques for on-line social network. Proceedings of International Conference on Service Systems and Service Management, (pp. 1-5). Xiaoyi, L. (2014). A deep learning approach to link prediction in dynamic networks. Preceedinds of the 2014 SIAM International Conference on Data Mining, (pp ). Zhou, P. W. (2015, January). Link pediction in social networks: the state-of-the-art. Science China information Sciences. 58, Environmental Jour 166
WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS
1 WEB SEARCH, FILTERING, AND TEXT MINING: TECHNOLOGY FOR A NEW ERA OF INFORMATION ACCESS BRUCE CROFT NSF Center for Intelligent Information Retrieval, Computer Science Department, University of Massachusetts,
A Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA)
International Journal of Innovation and Scientific Research ISSN 2351-8014 Vol. 12 No. 1 Nov. 2014, pp. 217-222 2014 Innovative Space of Scientific Research Journals http://www.ijisr.issr-journals.org/
Semantic Web Mining and its application in Human Resource Management
International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, August 2011 60 Semantic Web Mining and its application in Human Resource Management Ridhika Malik 1, Kunjana Vasudev 2
Information mining and information retrieval : methods and applications
Information mining and information retrieval : methods and applications J. Mothe, C. Chrisment Institut de Recherche en Informatique de Toulouse Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse
KDD, SEMMA AND CRISP-DM: A PARALLEL OVERVIEW. Ana Azevedo and M.F. Santos
KDD, SEMMA AND CRISP-DM: A PARALLEL OVERVIEW Ana Azevedo and M.F. Santos ABSTRACT In the last years there has been a huge growth and consolidation of the Data Mining field. Some efforts are being done
Comparison of FP tree and Apriori Algorithm
International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 6 (June 2014), PP.78-82 Comparison of FP tree and Apriori Algorithm Prashasti
Web Data mining-a Research area in Web usage mining
IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 1 (Jul. - Aug. 2013), PP 22-26 Web Data mining-a Research area in Web usage mining 1 V.S.Thiyagarajan,
Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion
Introduction Types of Social Network Analysis Social Networks in the Online Age Data Mining for Social Network Analysis Applications Conclusion References Social Network Social Network Analysis Sociocentric
Theme Identification in RDF Graphs
Theme Identification in RDF Graphs Hanane Ouksili PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles France hanane.ouksili@prism.uvsq.fr Abstract. An increasing number of RDF datasets is published
Election Analysis and Prediction Using Big Data Analytics
Election Analysis and Prediction Using Big Data Analytics Omkar Sawant, Chintaman Taral, Roopak Garbhe Students, Department Of Information Technology Vidyalankar Institute of Technology, Mumbai, India
Selection of Best Web Site by Applying COPRAS-G method Bindu Madhuri.Ch #1, Anand Chandulal.J #2, Padmaja.M #3
Selection of Best Web Site by Applying COPRAS-G method Bindu Madhuri.Ch #1, Anand Chandulal.J #2, Padmaja.M #3 Department of Computer Science & Engineering, Gitam University, INDIA 1. binducheekati@gmail.com,
How are XML-based Marc21 and Dublin Core Records Indexed and ranked by General Search Engines in Dynamic Online Environments?
How are XML-based Marc21 and Dublin Core Records Indexed and ranked by General Search Engines in Dynamic Online Environments? A. Hossein Farajpahlou Professor, Dept. Lib. and Info. Sci., Shahid Chamran
Hybrid Feature Selection for Modeling Intrusion Detection Systems
Hybrid Feature Selection for Modeling Intrusion Detection Systems Srilatha Chebrolu, Ajith Abraham and Johnson P Thomas Department of Computer Science, Oklahoma State University, USA ajith.abraham@ieee.org,
Graph Sampling Approach for Reducing. Computational Complexity of. Large-Scale Social Network
Journal of Innovative Technology and Education, Vol. 3, 216, no. 1, 131-137 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/jite.216.6828 Graph Sampling Approach for Reducing Computational Complexity
International Journal of Computer Science Trends and Technology (IJCST) Volume 3 Issue 3, May-June 2015
RESEARCH ARTICLE OPEN ACCESS A Semantic Link Network Based Search Engine For Multimedia Files Anuj Kumar 1, Ravi Kumar Singh 2, Vikas Kumar 3, Vivek Patel 4, Priyanka Paygude 5 Student B.Tech (I.T) [1].
WEB MINING: A KEY TO IMPROVE BUSINESS ON WEB
WEB MINING: A KEY TO IMPROVE BUSINESS ON WEB Prof. Pradnya Purandare Assistant Professor Symbiosis Centre for Information Technology, Symbiosis International University Plot 15, Rajiv Gandhi InfoTech Park,
Automatic Wrapper Adaptation by Tree Edit Distance Matching
Automatic Wrapper Adaptation by Tree Edit Distance Matching E. Ferrara 1 R. Baumgartner 2 1 Department of Mathematics University of Messina, Italy 2 Lixto Software GmbH Vienna, Austria 2nd International
Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005
Data Mining with Oracle 10g using Clustering and Classification Algorithms Nhamo Mdzingwa September 25, 2005 Abstract Deciding on which algorithm to use, in terms of which is the most effective and accurate
Dynamic Clustering of Data with Modified K-Means Algorithm
2012 International Conference on Information and Computer Networks (ICICN 2012) IPCSIT vol. 27 (2012) (2012) IACSIT Press, Singapore Dynamic Clustering of Data with Modified K-Means Algorithm Ahamed Shafeeq
Dynamic Visualization of Hubs and Authorities during Web Search
Dynamic Visualization of Hubs and Authorities during Web Search Richard H. Fowler 1, David Navarro, Wendy A. Lawrence-Fowler, Xusheng Wang Department of Computer Science University of Texas Pan American
Evaluation of Keyword Search System with Ranking
Evaluation of Keyword Search System with Ranking P.Saranya, Dr.S.Babu UG Scholar, Department of CSE, Final Year, IFET College of Engineering, Villupuram, Tamil nadu, India Associate Professor, Department
The Establishment of Large Data Mining Platform Based on Cloud Computing. Wei CAI
2017 International Conference on Electronic, Control, Automation and Mechanical Engineering (ECAME 2017) ISBN: 978-1-60595-523-0 The Establishment of Large Data Mining Platform Based on Cloud Computing
A REVIEW PAPER ON BIG DATA ANALYTICS
A REVIEW PAPER ON BIG DATA ANALYTICS Kirti Bhatia 1, Lalit 2 1 HOD, Department of Computer Science, SKITM Bahadurgarh Haryana, India bhatia.kirti.it@gmail.com 2 M Tech 4th sem SKITM Bahadurgarh, Haryana,
Grid Computing Models for Discovering the Resources
Grid Computing Models for Discovering the Resources Prarthana T,V 1, Jebah Jaykumar 2 1Asst. Professor, BNM Institute of technology, Karnataka, India 2 Asst. Professor, BNM Institute of technology, Karnataka,
Sequences Modeling and Analysis Based on Complex Network
Sequences Modeling and Analysis Based on Complex Network Li Wan 1, Kai Shu 1, and Yu Guo 2 1 Chongqing University, China 2 Institute of Chemical Defence People Libration Army {wanli,shukai}@cqu.edu.cn
DMSA TECHNIQUE FOR FINDING SIGNIFICANT PATTERNS IN LARGE DATABASE
DMSA TECHNIQUE FOR FINDING SIGNIFICANT PATTERNS IN LARGE DATABASE Saravanan.Suba Assistant Professor of Computer Science Kamarajar Government Art & Science College Surandai, TN, India-627859 Email:saravanansuba@rediffmail.com
Competitive Intelligence and Web Mining:
Competitive Intelligence and Web Mining: Domain Specific Web Spiders American University in Cairo (AUC) CSCE 590: Seminar1 Report Dr. Ahmed Rafea 2 P age Khalid Magdy Salama 3 P age Table of Contents Introduction
Graph Database Model for Querying, Searching and Updating
2012 International Conference on Software and Computer Applications (ICSCA 2012) IPCSIT vol. 41 (2012) (2012) IACSIT Press, Singapore Graph Database Model for Querying, Searching and Updating Prashish
High Performance Computing on MapReduce Programming Framework
International Journal of Private Cloud Computing Environment and Management Vol. 2, No. 1, (2015), pp. 27-32 http://dx.doi.org/10.21742/ijpccem.2015.2.1.04 High Performance Computing on MapReduce Programming
A Composite Graph Model for Web Document and the MCS Technique
A Composite Graph Model for Web Document and the MCS Technique Kaushik K. Phukon Department of Computer Science, Gauhati University, Guwahati-14,Assam, India kaushikphukon@gmail.com Abstract It has been
The Comparison of CBA Algorithm and CBS Algorithm for Meteorological Data Classification Mohammad Iqbal, Imam Mukhlash, Hanim Maria Astuti
Information Systems International Conference (ISICO), 2 4 December 2013 The Comparison of CBA Algorithm and CBS Algorithm for Meteorological Data Classification Mohammad Iqbal, Imam Mukhlash, Hanim Maria
Implementation of Enhanced Web Crawler for Deep-Web Interfaces
Implementation of Enhanced Web Crawler for Deep-Web Interfaces Yugandhara Patil 1, Sonal Patil 2 1Student, Department of Computer Science & Engineering, G.H.Raisoni Institute of Engineering & Management,
Ontology Creation and Development Model
Ontology Creation and Development Model Pallavi Grover, Sonal Chawla Research Scholar, Department of Computer Science & Applications, Panjab University, Chandigarh, India Associate. Professor, Department
Web Page Classification using FP Growth Algorithm Akansha Garg,Computer Science Department Swami Vivekanad Subharti University,Meerut, India
Web Page Classification using FP Growth Algorithm Akansha Garg,Computer Science Department Swami Vivekanad Subharti University,Meerut, India Abstract - The primary goal of the web site is to provide the
MINING OPERATIONAL DATA FOR IMPROVING GSM NETWORK PERFORMANCE
MINING OPERATIONAL DATA FOR IMPROVING GSM NETWORK PERFORMANCE Antonio Leong, Simon Fong Department of Electrical and Electronic Engineering University of Macau, Macau Edison Lai Radio Planning Networks
Historical Text Mining:
Historical Text Mining Historical Text Mining, and Historical Text Mining: Challenges and Opportunities Dr. Robert Sanderson Dept. of Computer Science University of Liverpool azaroth@liv.ac.uk http://www.csc.liv.ac.uk/~azaroth/
Genetic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem
etic Algorithm Performance with Different Selection Methods in Solving Multi-Objective Network Design Problem R. O. Oladele Department of Computer Science University of Ilorin P.M.B. 1515, Ilorin, NIGERIA
Sentiment Classification of Food Reviews
Sentiment Classification of Food Reviews Hua Feng Department of Electrical Engineering Stanford University Stanford, CA 94305 fengh15@stanford.edu Ruixi Lin Department of Electrical Engineering Stanford
CS423: Data Mining. Introduction. Jakramate Bootkrajang. Department of Computer Science Chiang Mai University
CS423: Data Mining Introduction Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS423: Data Mining 1 / 29 Quote of the day Never memorize something that
Study on Computer Network Technology of Digital Library
International Symposium on Computers & Informatics (ISCI 2015) Study on Computer Network Technology of Digital Library Yanming Sui LinYi University, Linyi, China suiyanming@lyu.edu.cn Abstract With the
Developing ArXivSI to Help Scientists to Explore the Research Papers in ArXiv
Submitted on: 19.06.2015 Developing ArXivSI to Help Scientists to Explore the Research Papers in ArXiv Zhixiong Zhang National Science Library, Chinese Academy of Sciences, Beijing, China. E-mail address:
Research Article Apriori Association Rule Algorithms using VMware Environment
Research Journal of Applied Sciences, Engineering and Technology 8(2): 16-166, 214 DOI:1.1926/rjaset.8.955 ISSN: 24-7459; e-issn: 24-7467 214 Maxwell Scientific Publication Corp. Submitted: January 2,
Application of Data Mining in Manufacturing Industry
International Journal of Information Sciences and Application. ISSN 0974-2255 Volume 3, Number 2 (2011), pp. 59-64 International Research Publication House http://www.irphouse.com Application of Data Mining
Concept Tree Based Clustering Visualization with Shaded Similarity Matrices
Syracuse University SURFACE School of Information Studies: Faculty Scholarship School of Information Studies (ischool) 12-2002 Concept Tree Based Clustering Visualization with Shaded Similarity Matrices
ScienceDirect. An Efficient Association Rule Based Clustering of XML Documents
Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 50 (2015 ) 401 407 2nd International Symposium on Big Data and Cloud Computing (ISBCC 15) An Efficient Association Rule
Face Detection using Hierarchical SVM
Face Detection using Hierarchical SVM ECE 795 Pattern Recognition Christos Kyrkou Fall Semester 2010 1. Introduction Face detection in video is the process of detecting and classifying small images extracted
Survey Paper on Efficient and Secure Dynamic Auditing Protocol for Data Storage in Cloud
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 1, January 2014,
Analysis of Matrix Multiplication Computational Methods
European Journal of Scientific Research ISSN 1450-216X / 1450-202X Vol.121 No.3, 2014, pp.258-266 http://www.europeanjournalofscientificresearch.com Analysis of Matrix Multiplication Computational Methods
Normalization based K means Clustering Algorithm
Normalization based K means Clustering Algorithm Deepali Virmani 1,Shweta Taneja 2,Geetika Malhotra 3 1 Department of Computer Science,Bhagwan Parshuram Institute of Technology,New Delhi Email:deepalivirmani@gmail.com
Towards Rule Learning Approaches to Instance-based Ontology Matching
Towards Rule Learning Approaches to Instance-based Ontology Matching Frederik Janssen 1, Faraz Fallahi 2 Jan Noessner 3, and Heiko Paulheim 1 1 Knowledge Engineering Group, TU Darmstadt, Hochschulstrasse
Enhancing K-means Clustering Algorithm with Improved Initial Center
Enhancing K-means Clustering Algorithm with Improved Initial Center Madhu Yedla #1, Srinivasa Rao Pathakota #2, T M Srinivasa #3 # Department of Computer Science and Engineering, National Institute of
NETWORK FAULT DETECTION - A CASE FOR DATA MINING
NETWORK FAULT DETECTION - A CASE FOR DATA MINING Poonam Chaudhary & Vikram Singh Department of Computer Science Ch. Devi Lal University, Sirsa ABSTRACT: Parts of the general network fault management problem,
Managing Changes to Schema of Data Sources in a Data Warehouse
Association for Information Systems AIS Electronic Library (AISeL) AMCIS 2001 Proceedings Americas Conference on Information Systems (AMCIS) December 2001 Managing Changes to Schema of Data Sources in
CLASSIFICATION FOR SCALING METHODS IN DATA MINING
CLASSIFICATION FOR SCALING METHODS IN DATA MINING Eric Kyper, College of Business Administration, University of Rhode Island, Kingston, RI 02881 (401) 874-7563, ekyper@mail.uri.edu Lutz Hamel, Department
O&M Service for Sustainable Social Infrastructure
O&M Service for Sustainable Social Infrastructure Hitachi Review Vol. 62 (2013), No. 7 370 Toshiyuki Moritsu, Ph. D. Takahiro Fujishiro, Ph. D. Katsuya Koda Tatsuya Kutsuna OVERVIEW: Hitachi is developing
Load balancing with Modify Approach Ranjan Kumar Mondal 1, Enakshmi Nandi 2, Payel Ray 3, Debabrata Sarddar 4
RESEARCH ARTICLE International Journal of Computer Techniques - Volume 3 Issue 1, Jan- Feb 2015 Load balancing with Modify Approach Ranjan Kumar Mondal 1, Enakshmi Nandi 2, Payel Ray 3, Debabrata Sarddar
Data Mining. Chapter 1: Introduction. Adapted from materials by Jiawei Han, Micheline Kamber, and Jian Pei
Data Mining Chapter 1: Introduction Adapted from materials by Jiawei Han, Micheline Kamber, and Jian Pei 1 Any Question? Just Ask 3 Chapter 1. Introduction Why Data Mining? What Is Data Mining? A Multi-Dimensional
A Framework for Source Code metrics
A Framework for Source Code metrics Neli Maneva, Nikolay Grozev, Delyan Lilov Abstract: The paper presents our approach to the systematic and tool-supported source code measurement for quality analysis.
Data Mining Technology Based on Bayesian Network Structure Applied in Learning
, pp.67-71 http://dx.doi.org/10.14257/astl.2016.137.12 Data Mining Technology Based on Bayesian Network Structure Applied in Learning Chunhua Wang, Dong Han College of Information Engineering, Huanghuai
Just in time and relevant knowledge thanks to recommender systems and Semantic Web.
Just in time and relevant knowledge thanks to recommender systems and Semantic Web. Plessers, Ben (1); Van Hyfte, Dirk (2); Schreurs, Jeanne (1) Organization(s): 1 Hasselt University, Belgium; 2 i.know,
Efficient Algorithm for Frequent Itemset Generation in Big Data
Efficient Algorithm for Frequent Itemset Generation in Big Data Anbumalar Smilin V, Siddique Ibrahim S.P, Dr.M.Sivabalakrishnan P.G. Student, Department of Computer Science and Engineering, Kumaraguru
Defenses against Large Scale Online Password Guessing by Using Persuasive Cued Click Points
Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 2, Issue. 4, April 2013,
IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: 2.114
IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY EVALUATING ISO STANDARDS APPLICATION OF SECURITY REQUIREMENTS OF E- BANKING IN SUDAN Inshirah M. O. Elmaghrabi*, Hoida A. Abdelgadir,
Detection of Missing Values from Big Data of Self Adaptive Energy Systems
Detection of Missing Values from Big Data of Self Adaptive Energy Systems MVD tool detect missing values in timeseries energy data Muhammad Nabeel Computer Science Department, SST University of Management
VANS: Visual Ad hoc Network Simulator
VANS: Visual Ad hoc Network Simulator Masako Shinohara, Hideki Hayashi, Takahiro Hara, Akimitsu Kanzaki and Shojiro Nishio Graduate School of Information Science and Tech., Osaka University {sinohara.masako,
Research Article A Two-Level Cache for Distributed Information Retrieval in Search Engines
The Scientific World Journal Volume 2013, Article ID 596724, 6 pages http://dx.doi.org/10.1155/2013/596724 Research Article A Two-Level Cache for Distributed Information Retrieval in Search Engines Weizhe
Web Usage Mining: A Research Area in Web Mining
Web Usage Mining: A Research Area in Web Mining Rajni Pamnani, Pramila Chawan Department of computer technology, VJTI University, Mumbai Abstract Web usage mining is a main research area in Web mining
SDC: A Distributed Clustering Protocol for Peer-to-Peer Networks
SDC: A Distributed Clustering Protocol for Peer-to-Peer Networks Yan Li 1, Li Lao 2, and Jun-Hong Cui 1 1 Computer Science & Engineering Dept., University of Connecticut, CT 06029 2 Computer Science Dept.,
Clustering Analysis based on Data Mining Applications Xuedong Fan
Applied Mechanics and Materials Online: 203-02-3 ISSN: 662-7482, Vols. 303-306, pp 026-029 doi:0.4028/www.scientific.net/amm.303-306.026 203 Trans Tech Publications, Switzerland Clustering Analysis based
DUAL-LAYER NETWORK REPRESENTATION EXPLOITING INFORMATION CHARACTERIZATION
DUAL-LAYER NETWORK REPRESENTATION EXPLOITING INFORMATION CHARACTERIZATION Virginia De Bernardinis 1, Rui Fa, Marco Carli 1, Asoke K. Nandi,3 1 Applied Electronics Department, Università degli Studi Roma
A Novel Method for the Comparison of Graphical Data Models
3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD01 CROATIA) A Novel Method for the Comparison of Graphical Data Models Katarina Tomičić-Pupek University of Zagreb, Faculty of Organization
International Journal of Computer Science Trends and Technology (IJCST) Volume 4 Issue 5, Sep - Oct 2016
RESEARCH ARTICLE OPEN ACCESS Investigating the Impact of Simulation Time on Convergence Activity & Duration of EIGRP, OSPF Routing Protocols under Link Failure and Link Recovery in WAN Using OPNET Modeler
Data Centric Computing
Piyush Chaudhary HPC Solutions Development Data Centric Computing SPXXL/SCICOMP Summer 2011 Agenda What is Data Centric Computing? What is Driving Data Centric Computing? Puzzle vs.
Detecting Controversial Articles in Wikipedia
Detecting Controversial Articles in Wikipedia Joy Lind Department of Mathematics University of Sioux Falls Sioux Falls, SD 57105 Darren A. Narayan School of Mathematical Sciences Rochester Institute of
Fall Principles of Knowledge Discovery in Databases. University of Alberta
Principles of Knowledge Discovery in Databases Fall 1999 Dr. Osmar R. Zaïane 2 1 Class and Office Hours Class: Mondays, Wednesdays and Fridays from 10:00 to 10:50 Office Hours: Tuesdays from 11:00 to 11:55
Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services
1 2005 Nokia V1-Filename.ppt / yyyy-mm-dd / Initials Mobile Wireless Sensor Network enables convergence of ubiquitous sensor services Dr. Jian Ma, Principal Scientist Nokia Research Center, Beijing 2 2005
A SURVEY OF IMAGE MINING TECHNIQUES AND APPLICATIONS
A SURVEY OF IMAGE MINING TECHNIQUES AND APPLICATIONS R. Vijayalatha Research Scholar, Manonmaniam Sundaranar University, Tirunelveli (India) ABSTRACT In the area of Data Mining, Image Mining technology
A SURVEY- WEB MINING TOOLS AND TECHNIQUE
International Journal of Latest Trends in Engineering and Technology Vol.(7)Issue(4), pp.212-217 DOI: http://dx.doi.org/10.21172/1.74.028 e-issn:2278-621x A SURVEY- WEB MINING TOOLS AND TECHNIQUE Prof.
Research on Construction of Road Network Database Based on Video Retrieval Technology
Research on Construction of Road Network Database Based on Video Retrieval Technology Fengling Wang 1 1 Hezhou University, School of Mathematics and Computer Hezhou Guangxi 542899, China Abstract. Based
Ontology Matching with CIDER: Evaluation Report for the OAEI 2008
Ontology Matching with CIDER: Evaluation Report for the OAEI 2008 Jorge Gracia, Eduardo Mena IIS Department, University of Zaragoza, Spain {jogracia,emena}@unizar.es Abstract. Ontology matching, the task
User Control Mechanisms for Privacy Protection Should Go Hand in Hand with Privacy-Consequence Information: The Case of Smartphone Apps
User Control Mechanisms for Privacy Protection Should Go Hand in Hand with Privacy-Consequence Information: The Case of Smartphone Apps Position Paper Gökhan Bal, Kai Rannenberg Goethe University Frankfurt
ISSN: (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies
ISSN: 2321-7782 (Online) Volume 2, Issue 2, February 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at:
Performance Evaluation of Semantic Registries: OWLJessKB and instancestore
Service Oriented Computing and Applications manuscript No. (will be inserted by the editor) Performance Evaluation of Semantic Registries: OWLJessKB and instancestore Simone A. Ludwig 1, Omer F. Rana 2
STORAGE AREA NETWORKS COURSE PLAN. BIJAYA KUMAR BISWAL Assistant Professor, CSE
STORAGE AREA NETWORKS COURSE PLAN BIJAYA KUMAR BISWAL Assistant Professor, CSE COURSE PLAN FACULTY DETAILS: Designation: Department: Assistant Professor Computer Science & Engineering COURSE DETAILS :
Performance Based Study of Association Rule Algorithms On Voter DB
Performance Based Study of Association Rule Algorithms On Voter DB K.Padmavathi 1, R.Aruna Kirithika 2 1 Department of BCA, St.Joseph s College, Thiruvalluvar University, Cuddalore, Tamil Nadu, India,
CSE 626: Data mining. Instructor: Sargur N. Srihari. Phone: , ext. 113
CSE 626: Data mining Instructor: Sargur N. Srihari E-mail: srihari@cedar.buffalo.edu Phone: 645-6164, ext. 113 1 What is Data Mining? Different perspectives: CSE, Business, IT As a field of research in
For many years, the creation and dissemination
Standards in Industry John R. Smith IBM The MPEG Open Access Application Format Florian Schreiner, Klaus Diepold, and Mohamed Abo El-Fotouh Technische Universität München Taehyun Kim Sungkyunkwan University
Incremental K-means Clustering Algorithms: A Review
Incremental K-means Clustering Algorithms: A Review Amit Yadav Department of Computer Science Engineering Prof. Gambhir Singh H.R.Institute of Engineering and Technology, Ghaziabad Abstract: Clustering
Analyzing traffic source impact on returning visitors ratio in information provider website
IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Analyzing traffic source impact on returning visitors ratio in information provider website To cite this article: A Prasetio et
Transforming Quantitative Transactional Databases into Binary Tables for Association Rule Mining Using the Apriori Algorithm
Transforming Quantitative Transactional Databases into Binary Tables for Association Rule Mining Using the Apriori Algorithm Expert Systems: Final (Research Paper) Project Daniel Josiah-Akintonde December
RECORD DEDUPLICATION USING GENETIC PROGRAMMING APPROACH
Int. J. Engg. Res. & Sci. & Tech. 2013 V Karthika et al., 2013 Research Paper ISSN 2319-5991 www.ijerst.com Vol. 2, No. 2, May 2013 2013 IJERST. All Rights Reserved RECORD DEDUPLICATION USING GENETIC PROGRAMMING
Semi supervised clustering for Text Clustering
Semi supervised clustering for Text Clustering N.Saranya 1 Assistant Professor, Department of Computer Science and Engineering, Sri Eshwar College of Engineering, Coimbatore 1 ABSTRACT: Based on clustering
The Data Mining usage in Production System Management
The Data Mining usage in Production System Management Pavel Vazan, Pavol Tanuska, Michal Kebisek Abstract The paper gives the pilot results of the project that is oriented on the use of data mining techniques
Enriching Lifelong User Modelling with the Social e- Networking and e-commerce Pieces of the Puzzle
Enriching Lifelong User Modelling with the Social e- Networking and e-commerce Pieces of the Puzzle Demetris Kyriacou Learning Societies Lab School of Electronics and Computer Science, University of Southampton
Number of Node Estimation in Mobile Ad Hoc Networks
Number of Node Estimation in Mobile Ad Hoc Networks https://doi.org/10.3991/ijim.v11i6.6986 Saher Manaseer!! ", Ibrahem Alhabash The University of Jordan, Amman, Jordan saher@ju.edu.jo Abstract Mobile
Entropy-Based Recommendation Trust Model for Machine to Machine Communications
Entropy-Based Recommendation Trust Model for Machine to Machine Communications Saneeha Ahmed and Kemal Tepe 1 University of Windsor, Windsor, Ontario, Canada {ahmed13m,ktepe}@uwindsor.ca Abstract. In a
A Cloud Framework for Big Data Analytics Workflows on Azure
A Cloud Framework for Big Data Analytics Workflows on Azure Fabrizio MAROZZO a, Domenico TALIA a,b and Paolo TRUNFIO a a DIMES, University of Calabria, Rende (CS), Italy b ICAR-CNR, Rende (CS), Italy Abstract.
Performance Analysis of Data Mining Classification Techniques
Performance Analysis of Data Mining Classification Techniques Tejas Mehta 1, Dr. Dhaval Kathiriya 2 Ph.D. Student, School of Computer Science, Dr. Babasaheb Ambedkar Open University, Gujarat, India 1 Principal
Hierarchical Multi level Approach to graph clustering
Hierarchical Multi level Approach to graph clustering by: Neda Shahidi neda@cs.utexas.edu Cesar mantilla, cesar.mantilla@mail.utexas.edu Advisor: Dr. Inderjit Dhillon Introduction Data sets can be presented
Creating Large-scale Training and Test Corpora for Extracting Structured Data from the Web
Creating Large-scale Training and Test Corpora for Extracting Structured Data from the Web Robert Meusel and Heiko Paulheim University of Mannheim, Germany Data and Web Science Group {robert,heiko}@informatik.uni-mannheim.de