Abstract of the Book

Size: px
Start display at page:

Download "Abstract of the Book"

Transcription

1 Book Keywords IEEE , IEEE m, mobile WiMAX, 4G, IMT-Advanced, 3GPP LTE, 3GPP LTE-Advanced, Broadband Wireless, Wireless Communications, Cellular Systems, Network Architecture

2 Abstract of the Book This book presents the new IEEE m standard and is the first book to take a systematic, top-down approach to describing mobile WiMAX and its next generation, giving detailed algorithmic and theoretical descriptions together with explanations of the principles behind the design and operation of individual air-interface protocols and network components. The present book features a systematic and detailed, top-down approach to the design of 4G cellular systems based on IEEE m and 3GPP LTE/LTE-Advanced technologies. It further provides a systematic approach to understanding IEEE m radio access network and mobile WiMAX network architecture protocols. This book is a comprehensive technical reference on the design, development and performance evaluation of IMT- Advanced systems, including the theoretical background and design principles as well as implementation considerations. In this book, the protocol layers and functional elements of both the IEEE m- and 3GPP LTE- Advanced-based radio access and core networks are described. While the main focus of the book (as understood from the title) is to provide readers with an in-depth understanding of the IEEE m radio access system design, and to demonstrate the operation of the end-to-end system; detailed description of the 3GPP LTE Release 9 and 3GPP LTE-Advanced Release 10 systems are provided to allow the readers to better comprehend the similarities and differences between the two systems by contrasting the protocols and functional elements. The book begins with an introduction to the history of broadband mobile wireless access and an overview of the IEEE and 3GPP standards and standardization processes in Chapter 1. It then proceeds to describing the access and core network components and protocols following by description of the reference model and protocol structure of IEEE m and 3GPP LTE/LTE-Advanced including the operation and behavior of each entity (base station, mobile station, and relay station), as well as functional components and their interactions in the protocol stack. The remaining chapters of this book are organized to be consistent with the protocol layers, starting from the network layer and moving down to the physical layer. The overall operation of the mobile station, relay station, and base station and their corresponding state machines are described in Chapter 4. Chapter 5 describes the interface with the packet data network. Chapters 6 through 10 describe the medium access control and physical layer functions and protocols. The security aspects of the systems under consideration are described in Chapter 8. The multi-carrier operation of the IEEE m and 3GPP LTE-Advanced are described in Chapter 11. The performance evaluation of the IEEE m and 3GPP LTE-Advanced against the IMT-Advanced requirements has been described in Chapter 12, where all the performance metrics are defined and link-level and system-level simulation methodologies and parameters are elaborated.

3 Abstract of Chapter 1 In Chapter 1, the current status of broadband wireless access technologies are discussed and the efforts that are made by prominent standardization organizations to materialize the vision and to fulfill the objectives for the next generation of broadband radio access systems. Presently, the most important activities in this area are conducted by the IEEE and 3GPP. These two organizations have historically contributed to the development and advancement of fixed and mobile broadband systems such as the IEEE , IEEE , IEEE 802.3, and the UMTS family of standards. Both organizations have already taken significant steps toward realization of the next generation of fixed and mobile broadband wireless access technologies also known as IMT-Advanced systems.

4 Abstract of Chapter 2 The WiMAX network architecture is a non-hierarchical end-to-end all-ip framework for mobile WiMAX systems that is based on maximal use of non-proprietary standard IP protocols, and is compatible with external service enablers such as IP Multimedia Subsystem. A distinctive feature of WiMAX network architecture is decoupling of access, connectivity, and service networks to allow combination of multi-vendor implementations of physical network entities, as long as they comply with the normative protocols and procedures across applicable interfaces that are defined in the WiMAX network specification. Chapter 2 provides a top-down systematic description of WiMAX and 3GPP evolved packet core network architecture, starting at the most general level and working toward details or specifics of the network components and their interconnections.

5 Abstract of Chapter 3 The latest revision of the IEEE standard defines a generic reference model where major functional blocks (i.e., physical layer, security sub-layer, MAC common part sub-layer, and service specific convergence sub-layer) and their interfaces, the premises of IEEE entity, and a general network control and management system are specified. The IEEE m has modified this reference model by further classifying the MAC common part sublayer functions into two functional groups, resulting in a more structured approach to characterizing the data link layer functions and their interoperation. Chapter 3 provides a top-down systematic description of IEEE m and 3GPP LTE/LTE-Advanced reference models and protocol structures, starting at the most general level and working toward details or specifics of the protocol layers, their functional constituents and interconnections.

6 Abstract of Chapter 4 State diagrams are used to describe the behavior of a system. They can describe possible states of a system and transitions between them as certain events occur. The system described by a state diagram must be composed of a finite number of states. However, in some cases, the state diagram may represent a reasonable abstraction of the system. A state is defined as a finite set of procedures or functions that are executed in a unique order. In the state diagram, each state may have some inputs and outputs, where deterministic transitions to other states or the same state happen based on certain conditions. In this chapter, the notion of mode is used to describe a sub-state or a collection of procedures/protocols that are associated with a certain state. The unique definition of states and their corresponding modes and protocols, and internal and external transitions, is imperative to the unambiguous behavior of the system. Also, it is important to show the reaction of the system to an unsuccessful execution of a certain procedure. Chapter 4 provides a detailed description of the operation of IEEE m entities (i.e., mobile station, base station, femto base station, and relay station) through use of state diagrams and call flows. An attempt has been made to characterize the behavior of IEEE m systems in various operating conditions such as system entry/re-entry, cell selection/reselection, intra/inter-radio access network handover, power management, and inactivity intervals.

7 Abstract of Chapter 5 Chapter 5 provides a detailed description of the functional components and protocols associated with the IEEE m service-specific convergence sub-layer. The convergence sub-layer is located on top of the IEEE MAC sub-layer and interfaces the MAC sublayer with the network layer protocols and further performs IP flow classification and payload header compression. The convergence sub-layer is part of data-link layer protocol class and is interfaced with network layer and MAC sub-layer through two service access points. The convergence sublayers of the IEEE m and IEEE standard have very similar behavior; the only differences are in the assignment and use of connection identifiers in the two standards, as well as exclusion of some unused legacy protocols. The packet data convergence protocol of 3GPP LTE/LTE-Advanced differs from that of IEEE m in certain aspects such as ciphering and encryption of the service data units in the convergence sub-layer.

8 Abstract of Chapter 6 The IEEE m MAC layer is connection-oriented. For the purpose of mapping services to varying levels of QoS at mobile stations, all data communications are manifested in the form of transport connections. Service flows may be provisioned when an MS enters into the system. Following MS registration with the serving BS, transport connections are established and associated with the service flows (one connection per service flow) to provide a reference for requesting bandwidth. Furthermore, new transport connections may be established when a user s service needs to change. A transport connection defines both the mapping between peer convergence sub-layers that utilize the MAC and a service flow. The service flow defines the QoS parameters for the protocol data units that are exchanged on the connection. The concept of service flow mapping to a transport connection is essential to the operation of the MAC protocols. Service flows provide a mechanism for downlink/uplink QoS management. In particular, they are an integral part of the bandwidth allocation process. An MS requests uplink bandwidth per connection basis by implicitly identifying the service flow. The bandwidth is granted by the serving BS to an MS as an aggregate of grants in response to per-connection requests from the MS. Chapter 6 describes the functional and operational aspects of IEEE m MAC common part sub-layer on the control-plane. The radio resource control and management functions include radio resource management; mobility management; network-entry management; location management; idle mode management; security management; system configuration management; enhanced-multicast and broadcast service; service flow and connection management; relay functions; self organization; and multi-carrier operation. The control-plane portion of the MAC sub-layer further includes functional blocks which are related to the physical layer and link control such as physical layer control and signaling; sleep mode management; QoS; scheduling and resource multiplexing; multi-radio coexistence; data forwarding; interference management; and inter-bs coordination.

9 Abstract of Chapter 7 The IEEE m MAC layer is connection-oriented. For the purpose of mapping services to varying levels of QoS at mobile stations, all data communications are manifested in the form of transport connections. Service flows may be provisioned when an MS enters into the system. Following MS registration with the serving BS, transport connections are established and associated with the service flows (one connection per service flow) to provide a reference for requesting bandwidth. Furthermore, new transport connections may be established when a user s service needs to change. A transport connection defines both the mapping between peer convergence sub-layers that utilize the MAC and a service flow. The service flow defines the QoS parameters for the MAC protocol data units that are exchanged on the connection. The concept of service flow mapping to a transport connection is essential to the operation of the MAC protocols. Service flows provide a mechanism for downlink/uplink QoS management. In particular, they are an integral part of the bandwidth allocation process. An MS requests uplink bandwidth per connection basis by implicitly identifying the service flow. The bandwidth is granted by the serving BS to an MS as an aggregate of grants in response to per-connection requests from the MS. Chapter 7 describes the functional and operational aspects of the IEEE m MAC common part sub-layer on the data-plane. The data-plane portion of the MAC sub-layer is responsible for fragmentation/packing of MAC service data units; ARQ; and formation of MAC protocol data units. The (theoretical) principles of ARQ and HARQ functions have been described in this chapter.

10 Abstract of Chapter 8 A wireless system uses an intrinsically open and unsecure radio channel for transmission of user signaling and traffic between the base station and mobile stations. As such, reliable and robust security and encryption procedures must be employed in order to protect confidentiality, privacy, and integrity of user traffic and credentials, and to prevent security breaches and theft of service in cellular networks. Chapter 8 describes the security aspects of the IEEE m standard. The security functions provide users with privacy, authentication, and confidentiality by applying cryptographic transforms to MAC protocol data units that are transported over the connections between the MS and the BS. In addition, the security sub-layer enables the operators to prevent unauthorized access to data transport services by securing the associated service flows across the network. The security sub-layer employs an authenticated client/server key management protocol in which the BS (the server) controls distribution of keying material to the MS (the client). In addition, the basic security mechanisms are reinforced by adding digital-certificate-based MS device-authentication to the key management protocol.

11 Abstract of Chapter 9 The physical layer is the lowest protocol layer in baseband signal processing that interfaces with the physical media (in this case the air interface) through which the signal is transmitted and received. The physical layer receives the MAC protocol data units and processes them through channel coding, interleaving, baseband modulation, multiantenna encoding, precoding, resource and antenna mapping. The choice of an appropriate modulation and coding scheme, as well as multi-antenna transmission mode, is critical to achieve the desired reliability and system throughput in mobile wireless data communications. Typical mobile radio channels tend to be dispersive and timevariant and exhibit severe Doppler effects, multipath delay variation, intra-cell and inter-cell interference, and fading. A good and robust design of the physical layer ensures that the system can normally operate and overcome the above deleterious effects, and can provide the maximum throughput and lowest latency under various operating conditions. The chapters on the physical layer in this book are dedicated to the systematic design of physical layer protocols and functional blocks of 4 th generation cellular systems, the theoretical background on physical layer procedures, and performance evaluation of the physical layer components. The theoretical background is provided to make the book self-contained, and to ensure that the reader understands the basic theory behind the operation of various functional blocks and procedures. While the focus is mainly on the techniques that were incorporated in the design of the IEEE m physical layer, the author has attempted to take a more generic and systematic approach to the design of the 4 th generation cellular system physical layer, so that the reader can understand and apply the learning to the design and implementation of any OFDM-based physical layer component, irrespective of the radio access technology. The physical layer processes both control- and data-plane signals; however, due to different design requirements and reliability and performance criteria, the procedures tend to be different. Chapter 9 provides description of the physical layer procedures and measurements such as multiple access schemes, frame structure, subchannelization schemes, coding and modulation, as well as physical layer synchronization and broadcast information.

12 Abstract of Chapter 10 Chapter 10 describes the control and signaling mechanisms, as well as the multi-antenna techniques used in IEEE m. The theoretical aspects and basic concepts of practical multi-antenna techniques including single-user and multi-user schemes, transmit and receive diversity techniques, beamforming, feedback requirements, and collaborative multi-antenna communication are discussed so that the multi-antenna operation at the physical layers of IEEE m can be better understood. The control signaling mechanisms of the legacy system have undergone a substantial change in IEEE m to improve reliability and coverage, and to reduce the signaling overhead and control-plane and user-plane latencies. The IEEE m system requirements called for improved link-budget in the downlink and uplink for both traffic and control channels. As a result, the use of dual transmit-antenna at the base station as a minimum configuration has been mandated. Unlike the legacy system, all downlink control channels in IEEE m use frequency-domain transmit diversity as the default multi-antenna mode of operation. The reduction in layer 2 signaling overhead, use of more robust multi-antenna techniques along with user-dedicated precoded reference signals, and improved feedback schemes have resulted in a significant increase of VoIP and data capacity compared to the legacy system.

13 Abstract of Chapter 11 The concept of spectrum aggregation consists of exploiting multiple, small spectrum fragments simultaneously to deliver a wider band service (i.e., not otherwise achievable when using a single spectrum fragment). Spectrum aggregation can be useful when an operator s dedicated band is not continuous; rather it is split into two or more segments. In addition, spectrum aggregation can happen in scenarios in which an operator accesses both a dedicated band, and a spectrum sharing band which is separated in frequencies from the dedicated operator s band. Spectrum aggregation allows new high data rate wireless communication systems to coexist with their legacy systems when deployed in the same spectrum. This is also valid for the inter-operator scenario. In this context, it can be very beneficial to explore the scenarios for joint use of spectrum aggregation techniques and radio resource management in radio access networks. Support of wider bandwidths up to 100 MHz is one of the distinctive features of IMT-Advanced systems. In order to support wider transmission bandwidths IEEE m and 3GPP LTE-Advanced systems introduced the carrier aggregation concept; where two or more component carriers belonging to a single frequency band or different frequency bands can be aggregated. The support of system bandwidths up to 100 MHz will allow an increase in both the peak data rate and the system capacity. In the scenarios of interest, the peak data rate increases almost linearly proportional to increasing bandwidth. Hence, for example, to obtain the required peak data rate of 1 Gbps in the downlink with 30 bps/hz peak spectral efficiency (assuming 8-layer MIMO transmission), a bandwidth of only 40 MHz is sufficient. It is noted that in addition to an increase in the peak data rate, the bandwidth extension results in higher data rates for all mobile terminals in a cell, due to increased average and cell-edge throughputs. In Chapter 11, we review the physical layer and MAC layer aspects of bandwidth extension and carrier aggregation schemes that have been utilized in the IEEE m and the 3GPP LTE-Advanced. It will be seen that the two technologies use very similar techniques in order to support larger bandwidths in a contiguous or non-contiguous spectrum.

14 Abstract of Chapter 12 Link-level and system-level simulations are used to evaluate the performance of mobile radio access technologies under various operating conditions and deployment scenarios. While the simulations do not model the entire deployment parameters and propagation conditions that may be involved in a practical scenario due to increased computational complexity of the model, the statistical modeling of the parameters and estimation/measurement errors should be sufficiently accurate such that the simulation results are a faithful representative of the performance in an actual deployment. The evaluation of the IMT-Advanced candidates was comprehensively performed in strict compliance with the technical parameters and the methodology that were specified by the ITU-R. Each requirement is independently evaluated, except for the cell and cell edge user spectral efficiencies criteria that were jointly assessed using the same system-level simulation, consequently the candidates were required to simultaneously satisfy the corresponding minimum requirements. Furthermore, the system-level simulation set-up used in the assessment of the mobility requirement was the same as that used for the evaluation of cell spectral efficiency and cell edge user spectral efficiency. Chapter 12 describes the link-level and system-level evaluation of the IEEE m and 3GPP LTE-Advanced against the ITU-R requirements for IMT-Advanced systems using the methodology specified by the ITU-R. The theoretical background, including the definition of performance metrics, channel models, physical layer abstraction schemes, and traffic models are provided to ensure in-depth understanding of the evaluation process and the results.

IEEE m Reference Model

IEEE m Reference Model CHAPTER IEEE 802.16m Reference Model 3 and Protocol Structure INTRODUCTION The IEEE 802.16-2009 standard defines a generic reference model where major functional blocks (i.e., physical layer, security

More information

Mobile WiMAX EPL 657. Panayiotis Kolios

Mobile WiMAX EPL 657. Panayiotis Kolios Mobile WiMAX EPL 657 Panayiotis Kolios 1 WiMAX Based on the 802.16 suite of protocols Air interface OFDMA defined under 802.16-2004 Mobility enhancements made under 802.16e include multi-path performance

More information

Original Circular Letter

Original Circular Letter LTE-Advanced Original Circular Letter LTE-Advanced will be an evolution of LTE. Therefore LTE- Advanced must be backward compatible with LTE Release 8. LTE-Advanced requirements will meet or even exceed

More information

Overview of WiMAX (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai

Overview of WiMAX (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai Background on IEEE 802.16 and WiMAX (Table 2.1 and Table 2.2) Salient Features of WiMAX OFDM-based physical layer: good resistance to

More information

LTE-Advanced The solution for IMT-Advanced

LTE-Advanced The solution for IMT-Advanced LTE-Advanced The solution for IMT-Advanced Hideshi Murai, Maria Edvardsson and Erik Dahlman Ericsson Research Definitions IMT-Advanced A family of radio-access technologies fulfilling IMT- Advanced requirements

More information

Institute of Electrical and Electronics Engineers (IEEE)

Institute of Electrical and Electronics Engineers (IEEE) 2006-03-08 IEEE L802.16-06/004 INTERNATIONAL TELECOMMUNICATION UNION RADIOCOMMUNICATION STUDY GROUPS Document 8A/IEEE-2-E Document 8F/IEEE-1-E 8 March 2006 English only Received: TECHNOLOGY Subject: Question

More information

IEEE Working Group on Mobile Broadband Wireless Access < UMBFDD System Requirements Compliance Report

IEEE Working Group on Mobile Broadband Wireless Access <  UMBFDD System Requirements Compliance Report Project Title IEEE 802.20 Working Group on Mobile Broadband Wireless Access UMBFDD System Requirements Compliance Report Date Submitted Source(s) 2007-3-11 (11

More information

Introduction to WiMAX Technology

Introduction to WiMAX Technology 1 Introduction to WiMAX Technology Wonil Roh and Vladimir Yanover WiMAX stands for Worldwide Interoperability for Microwave Access. WiMAX technology enables ubiquitous delivery of wireless broadband service

More information

LTE : The Future of Mobile Broadband Technology

LTE : The Future of Mobile Broadband Technology LTE : The Future of Mobile Broadband Technology Erick Setiawan tukangbajaksawah@gmail.com 1 Become a necessity today, where the wireless broadband technology needed to meet increasing expectations in terms

More information

HSPA evolution. ericsson White paper July beyond 3gpp release 10

HSPA evolution. ericsson White paper July beyond 3gpp release 10 ericsson White paper 284 23-3156 July 2011 HSPA evolution HSPA evolution beyond 3gpp release 10 Many mobile operators around the world have HSPA technology to thank for their mobile broadband success.

More information

1.1 Beyond 3G systems

1.1 Beyond 3G systems 1 Introduction The cellular wireless communications industry witnessed tremendous growth in the past decade with over four billion wireless subscribers worldwide. The first generation (1G) analog cellular

More information

WCDMA evolution: HSPA and MBMS

WCDMA evolution: HSPA and MBMS Chapter: 3G Evolution 8 WCDMA evolution: HSPA and MBMS Isael Diaz isael.diaz@eit.lth.se Department of Electrical and Information Technology 02-Apr-2009 3G Evolution - HSPA and LTE for Mobile Broadband

More information

Advanced Concepts 5G

Advanced Concepts 5G Advanced Concepts 5G Background Applications & Requirements Radio Technology Candidates Networking Trends Status and Timeline Parts of the presentation are taken from material that has been provided by

More information

4G Broadband Services for Differentiated Market Segments

4G Broadband Services for Differentiated Market Segments 4G Broadband Services for Differentiated Market Segments Dr. Mo Shakouri Corporate VP Copyright Alvarion Ltd. Wireless Broadband Market Trends 2 Increasing network usage Increasing penetration worldwide

More information

This is the future. Michael Mikulandra (X2Rail-1), Igor Lopez (Connecta)

This is the future. Michael Mikulandra (X2Rail-1), Igor Lopez (Connecta) This is the future Next Generation TCMS and Adaptable Communication System Michael Mikulandra (X2Rail-1), Igor Lopez (Connecta) 1 INNOVATION PROGRAMS 2 Adaptable Communication System Metro / Urban Mainline

More information

Throughput Considerations for Wireless Networks

Throughput Considerations for Wireless Networks Wi4Net White Paper: Throughput Considerations for Wireless Networks About us CelPlan Technologies has been a worldwide leading provider of wireless network design, optimization and performance evaluation

More information

Wireless Communication

Wireless Communication Wireless Communication Hwajung Lee Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Wireless Communications Bluetooth Wi-Fi Mobile Communications LTE LTE-Advanced Mobile Communications

More information

DAY 2. HSPA Systems Architecture and Protocols

DAY 2. HSPA Systems Architecture and Protocols DAY 2 HSPA Systems Architecture and Protocols 1 LTE Basic Reference Model UE: User Equipment S-GW: Serving Gateway P-GW: PDN Gateway MME : Mobility Management Entity enb: evolved Node B HSS: Home Subscriber

More information

Mobile Broadband Comparison. CDMA Development Group March 2008

Mobile Broadband Comparison. CDMA Development Group March 2008 Mobile Broadband Comparison CDMA Development Group March 2008 Assumptions and Notes for the Technology Comparison This document compares the performance of existing and future mobile communications systems

More information

Coordinated Multi-Point in Mobile Communications

Coordinated Multi-Point in Mobile Communications Coordinated Multi-Point in Mobile Communications From Theory to Practice Edited by PATRICK MARSCH Nokia Siemens Networks, Wroctaw, Poland GERHARD P. FETTWEIS Technische Universität Dresden, Germany Pf

More information

Wireless Communication

Wireless Communication Wireless Communication Hwajung Lee Key Reference: Prof. Jong-Moon Chung s Lecture Notes at Yonsei University Wireless Communications Bluetooth Wi-Fi Mobile Communications LTE LTE-Advanced Mobile Communications

More information

LTE: MIMO Techniques in 3GPP-LTE

LTE: MIMO Techniques in 3GPP-LTE Nov 5, 2008 LTE: MIMO Techniques in 3GPP-LTE PM101 Dr Jayesh Kotecha R&D, Cellular Products Group Freescale Semiconductor Proprietary Information Freescale and the Freescale logo are trademarks of Freescale

More information

A Study on Systems Beyond IMT-2000 in Korea

A Study on Systems Beyond IMT-2000 in Korea A Study on Systems Beyond IMT-2000 in Korea May 28, 2002 Vice President Ki-Chul Han, Ph.D (kchan kchan@etri.re. @etri.re.kr kr) Mobile Telecommunication Research Laboratory Electronics and Telecommunciations

More information

WIRELESS ACCESS PRINCIPLES OF AND LOCALIZATION. Wiley. Kaveh Pahlavan. Prashant Krishnamurthy. University of Pittsburgh, Pittsburgh, Pennsylvania, USA

WIRELESS ACCESS PRINCIPLES OF AND LOCALIZATION. Wiley. Kaveh Pahlavan. Prashant Krishnamurthy. University of Pittsburgh, Pittsburgh, Pennsylvania, USA PRINCIPLES OF WIRELESS ACCESS AND LOCALIZATION Kaveh Pahlavan Worcester Polytechnic Institute, Worcester, Massachusetts, USA Prashant Krishnamurthy University of Pittsburgh, Pittsburgh, Pennsylvania, USA

More information

Separation of data and control planes

Separation of data and control planes planes Senior scientist 5Green Summer School KTH, Sweden 28 August 2014 2 Table of content Introduction Concept of separating user and control planes Modelling of control signalling traffic Impact to the

More information

HSPA+ Advanced Smart Networks: Multipoint Transmission

HSPA+ Advanced Smart Networks: Multipoint Transmission Qualcomm Incorporated February 2011 Table of Contents 1. Introduction... 1 2. Multipoint HSPA Description... 2 Single Frequency Multipoint HSPA... 2 Dual Frequency Multipoint HSPA... 3 3. Advantages...

More information

A Review on Soft Handover Schemes in LTE Cellular Networks

A Review on Soft Handover Schemes in LTE Cellular Networks http:// A Review on Soft Handover Schemes in LTE Cellular Networks Shreedhar K V M Department of Computer Science and Engineering R V College of Engineering Bengaluru, India - 560095 Abstract - Long Term

More information

Over-The-Top (OTT) Aggregation Solutions

Over-The-Top (OTT) Aggregation Solutions Over-The-Top (OTT) Aggregation Solutions Omkar Dharmadhikari, Wireless Architect odharmadhikari@cablelabscom CableLabs February 12, 2019 Agenda Introduction Why aggregation is important? Traditional Aggregation

More information

Mobile Broadband Communications

Mobile Broadband Communications Mobile Broadband Communications (WiMAX & LTE) Teaching By Asst.Prof.Dr. Suwat Pattaramalai suwat.pat@kmutt.ac.th Tel. 02-470-9079 3GPP WiMAX FORUM Mobile Broadband Communications Contents Part I Fundamentals

More information

Towards 5G RAN Virtualization Enabled by Intel and ASTRI*

Towards 5G RAN Virtualization Enabled by Intel and ASTRI* white paper Communications Service Providers C-RAN Towards 5G RAN Virtualization Enabled by Intel and ASTRI* ASTRI* has developed a flexible, scalable, and high-performance virtualized C-RAN solution to

More information

DELIVERING MULTIMEDIA CONTENT FOR THE FUTURE GENERATION MOBILE NETWORKS

DELIVERING MULTIMEDIA CONTENT FOR THE FUTURE GENERATION MOBILE NETWORKS Research Article DELIVERING MULTIMEDIA CONTENT FOR THE FUTURE GENERATION MOBILE NETWORKS S. Swarna Parvathi, Dr. K. S. Eswarakumar Address for Correspondence S. Swarna Parvathi, PhD Scholar Department

More information

Development of MD8430A for LTE-Advanced Tests

Development of MD8430A for LTE-Advanced Tests Masaki Hizume, Hidenori Konno, Toshiro Miyazaki, Masato Sasaki, Katsuo Sakurai, Satoshi Wakasa, Shinichi Segawa, Tomoyuki Fujiwara, Yuji Sakai [Summary] As part of the expansion of LTE (Long Term Evolution)

More information

A Glimpse at the Wireless Data Communications Standards. Fanny Mlinarsky 8 August 2007

A Glimpse at the Wireless Data Communications Standards. Fanny Mlinarsky 8 August 2007 A Glimpse at the Wireless Data Communications Standards Fanny Mlinarsky 8 August 2007 IMS Infrastructure for FMC IP Multimedia Subsystem (IMS) IP Network Fixed Mobile Convergence Mobile Fixed www.octoscope.com

More information

Key Performance Aspects of an LTE FDD based Smart Grid Communications Network

Key Performance Aspects of an LTE FDD based Smart Grid Communications Network Key Performance Aspects of an LTE FDD based Smart Grid Communications Network Presented by: Ran Zhang Supervisors: Prof. Sherman(Xuemin) Shen, Prof. Liang-liang Xie Main Reference Jason Brown, and Jamil

More information

The Open System Interconnect model

The Open System Interconnect model The Open System Interconnect model Telecomunicazioni Undergraduate course in Electrical Engineering University of Rome La Sapienza Rome, Italy 2007-2008 1 Layered network design Data networks are usually

More information

CHAPTER 5. QoS RPOVISIONING THROUGH EFFECTIVE RESOURCE ALLOCATION

CHAPTER 5. QoS RPOVISIONING THROUGH EFFECTIVE RESOURCE ALLOCATION CHAPTER 5 QoS RPOVISIONING THROUGH EFFECTIVE RESOURCE ALLOCATION 5.1 PRINCIPLE OF RRM The success of mobile communication systems and the need for better QoS, has led to the development of 3G mobile systems

More information

Introduction to Mobile Broadband (imb)

Introduction to Mobile Broadband (imb) Introduction to Mobile Broadband (imb) Teaching By Asst.Prof.Dr. Suwat Pattaramalai suwat.pat@kmutt.ac.th Tel. 02-470-9079 Material: http://webstaff.kmutt.ac.th/~suwat.pat/ 3GPP WiMAX FORUM Introduction

More information

3G Technical Evolution as an evolving broadband solution

3G Technical Evolution as an evolving broadband solution ITU-D Regional Development Forum for the Asia Pacific Region NGN and Broadband, Opportunities and Challenges Yogyakarta, Indonesia, 27 29 July 2009 3G Technical Evolution as an evolving broadband solution

More information

IEEE Broadband Wireless Access Working Group <

IEEE Broadband Wireless Access Working Group < IEEE 0.m-0/00r Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy IEEE 0. Broadband Wireless Access Working Group Draft IEEE 0.m Requirements 00-0-

More information

Enhancing Packet Data Access in WCDMA

Enhancing Packet Data Access in WCDMA Enhancing Packet Data Access in WCDMA Janne Peisa a, Stefan Parkvall b, Erik Dahlman b, Pål Frenger b, Per Beming b a Ericsson Research, FIN-02420 Jorvas, Finland b Ericsson Research, 164 80 Stockholm,

More information

HSPA+ R8. February 2009

HSPA+ R8. February 2009 HSPA+ R8 February 2009 Disclaimer Nothing in this presentation is an offer to sell any of the parts referenced herein. This presentation may reference and/or show images of parts and/or devices utilizing

More information

4G LTE Technologies: System Concepts

4G LTE Technologies: System Concepts 4G LTE Technologies: System Concepts CK Toh, PhD, Chief Technology Advisor, ALICO Systems Inc., Torrance, CA, US ABSTRACT Recently, we have witnessed the roll out of LTE (Long Term Evolution, or so called

More information

Rab Nawaz Jadoon DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology. Mobile Communication

Rab Nawaz Jadoon DCS. Assistant Professor. Department of Computer Science. COMSATS Institute of Information Technology. Mobile Communication Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication Motivation 2 LTE World Wide Adoption of LTE technology as of December

More information

MAC Overview NCHU CSE WMAN - 1

MAC Overview NCHU CSE WMAN - 1 MAC Overview NCHU CSE WMAN - 1 MAC Overview Connection-oriented Supports difficult user environments High bandwidth, hundreds of users per channel For variable Continuous and Burst traffic Very efficient

More information

Minimum Technical Performance Requirements for IMT-2020 radio interface(s)

Minimum Technical Performance Requirements for IMT-2020 radio interface(s) Minimum Technical Performance Requirements for IMT-2020 radio interface(s) Eiman Mohyeldin ITU-R Workshop on IMT-2020 terrestrial radio interfaces 1 Nokia 2016 Introduction The capabilities of IMT-2020

More information

WiBRO (Mobile WiMAX)

WiBRO (Mobile WiMAX) WiBRO (Mobile WiMAX) Mobile WiMAX: The Best Personal Broadband Experience! WiMAX Forum, June 2006 WiBRO: A Wireless Broadband Technology Daehyoung Hong, KCIST2006 2006-10-11 Jihoon Lee () 4541.774 Topics

More information

LTE multi-cellular system in urban environment: inter-cell interference Impact on the Downlink radio transmission

LTE multi-cellular system in urban environment: inter-cell interference Impact on the Downlink radio transmission LTE multi-cellular system in urban environment: inter-cell interference Impact on the Downlink radio transmission Younes BALBOUL Signals, Systems and Components Lab Faculty of Science and Technology, Fez,

More information

Evaluation of 3GPP LTE and IEEE as Candidate IMT-Advanced Systems

Evaluation of 3GPP LTE and IEEE as Candidate IMT-Advanced Systems Mobility Evaluation of 3GPP LTE and IEEE 802.16 as Candidate IMT-Advanced Systems Ryan van den Bergh & Prof. H. Hanrahan School of Electrical and Information Engineering, University of the Witwatersrand

More information

Dr. Evaldas Stankevičius, Regulatory and Security Expert.

Dr. Evaldas Stankevičius, Regulatory and Security Expert. 2018-08-23 Dr. Evaldas Stankevičius, Regulatory and Security Expert Email: evaldas.stankevicius@tele2.com 1G: purely analog system. 2G: voice and SMS. 3G: packet switching communication. 4G: enhanced mobile

More information

5G NR to high capacity and

5G NR to high capacity and July 11, 2018 @qualcomm Webinar How can CoMP extend 5G NR to high capacity and ultra-reliable communications? Dr. Durga Malladi SVP, Engineering & GM, 4G/5G Qualcomm Technologies, Inc. Enabler to the factory

More information

Business Drivers for Selecting LTE Technology. HSPA+ & LTE Executive Briefing, Jan 27, 2009 Hank Kafka, Vice President, Network Architecture, AT&T

Business Drivers for Selecting LTE Technology. HSPA+ & LTE Executive Briefing, Jan 27, 2009 Hank Kafka, Vice President, Network Architecture, AT&T Business Drivers for Selecting LTE Technology HSPA+ & LTE Executive Briefing, Jan 27, 2009 Hank Kafka, Vice President, Network Architecture, AT&T Why LTE? HSPA, HSPA+ provides great data speeds with impressive

More information

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc.

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc. Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc. This presentation addresses potential use cases and views on characteristics of 5G technology and is not intended to reflect

More information

Overview of Mobile Networking Initiatives at WINLAB

Overview of Mobile Networking Initiatives at WINLAB Overview of Mobile Networking Initiatives at WINLAB Introduction: The Next Generation MSC Custom Mobile Infrastructure (e.g. GSM, 3G) BTS Public Switched Network (PSTN) BSC GGSN, etc. WLAN Access Point

More information

NETWORK PLANNING AND QOS SIMULATION SOFTWARE DESIGN FOR 4TH GENERATION BROADBAND WIRELESS TECHNOLOGIES

NETWORK PLANNING AND QOS SIMULATION SOFTWARE DESIGN FOR 4TH GENERATION BROADBAND WIRELESS TECHNOLOGIES NETWORK PLANNING AND QOS SIMULATION SOFTWARE DESIGN FOR 4TH GENERATION BROADBAND WIRELESS TECHNOLOGIES (Selected from CEMA 12 Conference) L. Narbutaitė, R. Brūzgienė, E. Kačerginskis Kaunas University

More information

Protection Schemes for 4G Multihop wireless Networks

Protection Schemes for 4G Multihop wireless Networks Protection Schemes for 4G Multihop wireless Networks Sridevi, Assistant Professor, Department of Computer Science, Karnatak University, Dharwad Abstract:-This paper describes the relay node protection

More information

NETWORK DIAGNOSTICS Testing HSDPA, HSUPA for 3G mobile apps

NETWORK DIAGNOSTICS Testing HSDPA, HSUPA for 3G mobile apps NETWORK DIAGNOSTICS Testing HSDPA, HSUPA for 3G mobile apps By Simon Binar Protocol Monitoring Division Tektronix Inc. The market for broadband cellular data services is rapidly evolving. From its deployment

More information

Initial PHY Layer System Proposal for Sub 11 GHz BWA

Initial PHY Layer System Proposal for Sub 11 GHz BWA Initial PHY Layer System Proposal for Sub 11 GHz BWA Document Number: 802.16.3p-00/40 Date Submitted: 2000-11-08 Source: Anader Benyamin-Seeyar Voice: (514) 822-2014 Harris Corporation Inc. Fax: (514)

More information

CCNC 2016 A System-level Assessment of Uplink CoMP in LTE-A Heterogeneous Networks. Mohamad Tavakoli, Claudio Casetti

CCNC 2016 A System-level Assessment of Uplink CoMP in LTE-A Heterogeneous Networks. Mohamad Tavakoli, Claudio Casetti CCNC 2016 A System-level Assessment of Uplink CoMP in LTE-A Heterogeneous Networks Mohamad Tavakoli, Claudio Casetti LTE-A and CoMP LTE-Advanced: higher capacity and bitrates in a cost-efficient way Increased

More information

Figure Potential 5G applications

Figure Potential 5G applications 6. 5G Key Concept 6.1 Key Concepts of 5G End-to-end (E2E) quality required by applications and/or users will be far more diversified in the 5G era than what we have seen in the preceding generations. For

More information

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 Towards 5G: Advancements from IoT to mmwave Communcations Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 5G requirements and challenges 1000x network capacity 10x higher data rate,

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research 5G in Reality Mikael Höök, Director Radio Research Ericsson Research FORECAST ~29 billion connected devices, 18 billion related to IoT 2018 2019 2020 2022 2021 ~550 million 5G subscriptions IoT devices

More information

LTE Radio Interface Architecture. Sherif A. Elgohari

LTE Radio Interface Architecture. Sherif A. Elgohari LTE Radio Interface Architecture Sherif A. Elgohari (selgohari@ieee.org) Agenda Overall System Architecture Radio Protocol Architecture Radio Link Control Medium Access Control Physical Layer Control Plan

More information

Third generation WCDMA radio evolution

Third generation WCDMA radio evolution WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 2003; 3:987 992 (DOI: 10.1002/wcm.134) Third generation WCDMA radio evolution Harri Holma*,y and Antti Toskala Nokia Networks, IP

More information

NTT DOCOMO s Views on 5G

NTT DOCOMO s Views on 5G NTT DOCOMO s Views on 5G NTT DOCOMO, INC. NTT DOCOMO, INC., Copyright 2014, All rights reserved. 1 Network/Communication Society in 2020 and Beyond Everything Connected by Wireless Monitor/collect information

More information

QualNet 4.5 Cellular Model Library

QualNet 4.5 Cellular Model Library QualNet 4.5 Cellular Model Library February 2008 Scalable Network Technologies, Inc. 6701 Center Drive West, Suite 520 Los Angeles, CA 90045 Phone: 310-338-3318 Fax: 310-338-7213 http://www.scalable-networks.com

More information

LTE evolution and road to 5G

LTE evolution and road to 5G LTE evolution and road to 5G Dino Flore Chairman of 3GPP RAN (Qualcomm Technologies Inc.) 3GPP 2015 1 Introduction 3GPP continues to expand the LTE platform to new services, while improving its efficiency

More information

Mobile Network Evolution Part 2

Mobile Network Evolution Part 2 Mobile Network Evolution Part 2 From UMTS to LTE or How to Further Increase Network Capacity and QoS Andreas Mitschele-Thiel Advanced Mobile Communication Networks 1 Outline Evolution from Circuit Switching

More information

Preface Preliminaries. Introduction to VoIP Networks. Public Switched Telephone Network (PSTN) Switching Routing Connection hierarchy Telephone

Preface Preliminaries. Introduction to VoIP Networks. Public Switched Telephone Network (PSTN) Switching Routing Connection hierarchy Telephone VoIP quality and performance issues Delay Jitter Packet loss Echo and talk overlap Approaches to maintaining VoIP quality Network-level QoS VoIP codecs VoIP applications and services Fax Emergency numbers

More information

Alcatel-Lucent Public Safety 700 MHz Broadband Solution

Alcatel-Lucent Public Safety 700 MHz Broadband Solution Alcatel-Lucent Public Safety 700 MHz Broadband Solution Deployed Today, Evolving with the Future Kenneth C. Budka, Ph.D. Bell Labs June, 2007 Alcatel-Lucent Market Leader and Innovator in Network Infrastructure

More information

ETSI Project BRAN Hiperlan Type 2 for IEEE 1394 Applications System Overview

ETSI Project BRAN Hiperlan Type 2 for IEEE 1394 Applications System Overview ETSI Project BRAN Hiperlan Type 2 for IEEE 1394 Applications System Overview Source : Jamshid Khun Jush (Ericsson) (THOMSON multimedia) 1 HIPERLAN/2 Standard A new standard developed by the ETSI Project

More information

IEEE m-07/002r4. IEEE Broadband Wireless Access Working Group <http://ieee802.org/16>

IEEE m-07/002r4. IEEE Broadband Wireless Access Working Group <http://ieee802.org/16> 00-0- IEEE 0.m-0/00r Project Title Date Submitted Source(s) Re: Abstract Purpose Notice Release Patent Policy IEEE 0. Broadband Wireless Access Working Group IEEE 0.m System Requirements

More information

4G Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India

4G Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India Abstract-Wireless services have the highest demand in internet

More information

MPEG4 VIDEO OVER PACKET SWITCHED CONNECTION OF THE WCDMA AIR INTERFACE

MPEG4 VIDEO OVER PACKET SWITCHED CONNECTION OF THE WCDMA AIR INTERFACE MPEG4 VIDEO OVER PACKET SWITCHED CONNECTION OF THE WCDMA AIR INTERFACE Jamil Y. Khan 1, Pratik Das 2 School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW 238,

More information

Module 1. Introduction. Version 2, CSE IIT, Kharagpur

Module 1. Introduction. Version 2, CSE IIT, Kharagpur Module 1 Introduction Version 2, CSE IIT, Kharagpur Introduction In this module we shall highlight some of the basic aspects of computer networks in two lessons. In lesson 1.1 we shall start with the historical

More information

Multi-RAT Traffic Steering Why, when, and how could it be beneficial?

Multi-RAT Traffic Steering Why, when, and how could it be beneficial? Multi-RAT Traffic Steering Why, when, and how could it be beneficial? M. Danish Nisar, Volker Pauli, Eiko Seidel, Nomor Research GmbH, Munich, Germany December, 2011 Summary Simultaneous deployment of

More information

Next-generation Mobile Communications System: 5G

Next-generation Mobile Communications System: 5G Next-generation Mobile Communications System: 5G Evolution of Mobile Technology Steady evolution toward higher capacity and data rates 1G Analog 2G Digital 3G IMT-2000 LTE 4G IMT-Advanced IMT-Advanced

More information

John E. Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. May QUALCOMM Technologies, Inc. and/or its affiliates.

John E. Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. May QUALCOMM Technologies, Inc. and/or its affiliates. John E. Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. May 2015 This presentation addresses potential use cases and views on characteristics of 5G technology and is not intended to reflect

More information

DESIGN AND IMPLEMENTATION OF IEEE MAC LAYER SIMULATOR

DESIGN AND IMPLEMENTATION OF IEEE MAC LAYER SIMULATOR DESIGN AND IMPLEMENTATION OF IEEE 802.16 MAC LAYER SIMULATOR H. M. Shamitha 1, H. M. Guruprasad 1, Kishore. M 2, Ramesh. K 3 Department of Electronics and Communication 1 Proudadhevaraya Institute of Technology,

More information

Alternate PHYs

Alternate PHYs A whitepaper by Ayman Mukaddam 2018, LLC Page 1 of 12 Contents Modern 802.11 Amendments... 3 Traditional PHYs Review (2.4 GHz and 5 GHz PHYs)... 3 802.11ad Directional Multi-Gigabit - DMG PHY... 4 Frequency

More information

MAC Protocol Proposal for Fixed BWA Networks Based on DOCSIS. Re: Medium Access Control Task Group Call for Contributions Session #4

MAC Protocol Proposal for Fixed BWA Networks Based on DOCSIS. Re: Medium Access Control Task Group Call for Contributions Session #4 Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group MAC Protocol Proposal for Fixed BWA Networks Based on DOCSIS 1999-10-29 Source Phil Guillemette SpaceBridge Networks Corporation

More information

WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes

WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes WiMAX Capacity Enhancement: Capacity Improvement of WiMAX Networks by Dynamic Allocation of Subframes Syed R. Zaidi, Shahab Hussain, M. A. Ali Department of Electrical Engineering The City College of The

More information

Future Wireless access. Erik Dahlman Ericsson Research

Future Wireless access. Erik Dahlman Ericsson Research Future Wireless access 5G Erik Dahlman Ericsson Research Future wireless access 5G A Heterogeneous Network Use cases Technology High-quality mobile broadband for everyone Billions of sensors Critical communication

More information

Wireless access. Dr. Christian Hoymann Principal Researcher, Ericsson Research

Wireless access. Dr. Christian Hoymann Principal Researcher, Ericsson Research 5G Wireless access Dr. Christian Hoymann Principal Researcher, Ericsson Research outline When does it happen? What can it do? How is it working? Commercial in confidence 2014-05-06 Page 2 Proposed 3GPP

More information

Wireless# Guide to Wireless Communications. Objectives

Wireless# Guide to Wireless Communications. Objectives Wireless# Guide to Wireless Communications Chapter 8 High-Speed WLANs and WLAN Security Objectives Describe how IEEE 802.11a networks function and how they differ from 802.11 networks Outline how 802.11g

More information

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering by wilgengebroed IEEE 802.11ah sub 1GHz WLAN for IoT What lies beneath Wi-Fi HaLow Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering eduardg@entel.upc.edu elopez@entel.upc.edu Contents

More information

4G Mobile Communications

4G Mobile Communications 4G Mobile Communications Welcome to 4G The term 4G is used broadly to include several types of broadband wireless access communication systems, not only cellular telephone systems. One of the terms to

More information

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA in Third-Generation Systems

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA in Third-Generation Systems 1 Introduction Harri Holma and Antti Toskala 1.1 WCDMA in Third-Generation Systems Analog cellular systems are commonly referred to as first-generation systems. The digital systems, such as Global System

More information

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator Introduction- What is WiMAX WiMAX -Worldwide Interoperability

More information

Effect Change of Speed on Delay and Throughput for Handover Types in Mobile WI-Max Network

Effect Change of Speed on Delay and Throughput for Handover Types in Mobile WI-Max Network International Journal of Modern Communication Technologies & Research (IJMCTR) Effect Change of Speed on Delay and Throughput for Handover Types in Mobile WI-Max Network Sana Mahmoud Eltayeb Almansour,

More information

Hetergeneous Networks HETNET IMPROVE DENSIFY ADD

Hetergeneous Networks HETNET IMPROVE DENSIFY ADD Hetergeneous Networks HETNET IMPROVE DENSIFY ADD Why and what HetNet is About End User Experience Coverage Coverage is taken for granted But is bitrate dependent Capacity Data and voice volume capacity

More information

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets)

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets) Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets) The Alcatel-Lucent 9500 Microwave Packet Radio (MPR) provides cost-effective IP transformation for seamless microwave transport of TDM, ATM, IP

More information

Human history is a history of connections. Embracing mobile networks in the 5G era. Three challenges. Perspectives

Human history is a history of connections. Embracing mobile networks in the 5G era. Three challenges. Perspectives Perspectives Embracing mobile networks in the 5G era By Edward Deng, President of Huawei Wireless Solution Human history is a history of connections. The pursuit of communication promotes the development

More information

Wireless Communication and Networking CMPT 371

Wireless Communication and Networking CMPT 371 Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop

More information

IEEE Broadband Wireless Access Working Group < Proposal for IEEE m System and Protocol Architecture

IEEE Broadband Wireless Access Working Group <  Proposal for IEEE m System and Protocol Architecture Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal for IEEE 802.16m System and Protocol Architecture 2008-01-16 Source(s) Keiichi Nakatsugawa

More information

Wireless LANs. The Protocol Stack The Physical Layer The MAC Sublayer Protocol The Frame Structure Services 802.

Wireless LANs. The Protocol Stack The Physical Layer The MAC Sublayer Protocol The Frame Structure Services 802. Wireless LANs The 802.11 Protocol Stack The 802.11 Physical Layer The 802.11 MAC Sublayer Protocol The 802.11 Frame Structure Services 56 802.11 The 802.11 Working Group The IEEE 802.11 was formed in July

More information

7/27/2010 LTE-WIMAX BLOG HARISHVADADA.WORDPRESS.COM. QOS over 4G networks Harish Vadada

7/27/2010 LTE-WIMAX BLOG HARISHVADADA.WORDPRESS.COM. QOS over 4G networks Harish Vadada 7/27/2010 HARISHVADADA.WORDPRESS.COM LTE-WIMAX BLOG QOS over 4G networks Harish Vadada Cellular network operators across the world have seen an explosive growth of mobile broadband usage. Traffic volume

More information

Questions about LAA deployment scenarios

Questions about LAA deployment scenarios Questions about LAA deployment scenarios Document IEEE 802.19-15-0060-00-0000 Submitted 2015-07-14 Source Roger B. Marks BaiCells r.b.marks@ieee.org +1-802-capable Abstract Purpose This document discusses

More information

DOCSIS FOR LTE SMALL CELL BACKHAUL ADDRESSING PERFORMANCE AND THROUGHPUT REQUIREMENTS FOR MOBILE BACKHAUL

DOCSIS FOR LTE SMALL CELL BACKHAUL ADDRESSING PERFORMANCE AND THROUGHPUT REQUIREMENTS FOR MOBILE BACKHAUL DOCSIS FOR LTE SMALL CELL BACKHAUL ADDRESSING PERFORMANCE AND THROUGHPUT REQUIREMENTS FOR MOBILE BACKHAUL WHITE PAPER Small cells can be used to increase wireless network capacity, provide coverage in

More information

On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE based WiMAX Network

On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE based WiMAX Network On Performance Evaluation of Different QoS Mechanisms and AMC scheme for an IEEE 802.16 based WiMAX Network Vinit Grewal Department of Electronics and Communication Engineering National Institute of Technology

More information