An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network 1"

Transcription

1 An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network 1 Bo Xie, Peng Han, Fan Yang, Ruimin Shen Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai , China {Bxie, phan, fyang, Abstract. Distributed Collaborative Filtering (DCF) has gained more and more attention as an alternative implementation scheme of CF based recommender system, because of its advantage in scalability and privacy protection. However, as there is no central user database in DCF systems, the task of neighbor searching becomes much more difficult. In this paper, we first propose an efficient distributed user profile management scheme based on distributed hash table (DHT) method, which is one of the most popular and effective routing algorithm in Peer-to-Peer (P2P) overlay network. Then, we present a heuristic neighbor searching algorithm to locate potential neighbors of the active users in order to reduce the network traffic and executive cost. The experimental data show that our DCF algorithm with the neighbor searching scheme has much better scalability than traditional centralized ones with comparable prediction efficiency and accuracy. 1 Introduction While the rapid development of network and information technology provides people with unprecedented abundant information resources, it also brings the problem of information overload. So how to help people find their interested resources attracted much attention from both the researchers and the vendors. Among the technologies proposed, Collaborative Filtering (CF) has proved to be one of the most effective for its simplicity both in theory and implementation. Since Goldberg et al [1] published the first account of using it for information filtering, CF has achieved great success both in the research [2, 3] and application [4, 5, 6] area. The key idea of CF is that users will prefer those items that people with similar interests prefer. Due to different techniques used to describe and calculate the similarities between users, CF algorithms have often been divided into two general classes [3]: memory-based algorithm and model-based algorithm. Memory-based algorithms directly calculate the similarities between the active users and other users, and then use the K most similar users (K nearest neighbors) to make prediction. In contrast, model-based algorithms first construct a predictive model from the user database, and then use it to make prediction. As the calculation complexity of both the 1 Supported by the National Natural Science Foundation of China under Grant No

2 2 Bo Xie, Peng Han, Fan Yang, Ruimin Shen calculation of similarities and the construction of model increased quickly both in time and space as the record in the database increases, the two kinds of algorithms both suffered from their shortage in efficiency and scalability. So recent years, Distributed CF (DCF) has gained more and more attention as an alternative implementation scheme of CF based recommender system [8, 9] because of its advantage in scalability. However, as there is no central user database in DCF systems, the task of neighbor searching becomes much more difficult. In [8], Tviet uses a routing algorithm similar to Gnutella [15] to forward the neighbor query information. As it is a broadcasting routing algorithm, when the user number is large it will cause unimaginable heavy traffic in the network. In [9], Olsson improves this by only exchanging information between neighbors, however it also reduces the efficiency of finding similar users. Still, as they all used a totally different mechanism to make prediction, their performance is hard to analyze and the existing improvement on CF algorithms cannot be used any more. In this paper, we first propose an efficient distributed user profile management scheme based on distributed hash table (DHT) method, which is one of the most popular and effective routing algorithm in Peer-to-Peer (P2P) overlay network. Then, we present a heuristic neighbor searching algorithm to locate potential neighbors of the active users. The main advantages of our algorithm include: 1. Both the user database management and prediction computation task can be done in a decentralized way which increases the algorithm s scalability dramatically. 2. The implementation of our neighbor searching algorithm on a DHT-based P2P overlay network is quite straightforward which can obtain efficient retrieval time and excellent performance at the same time. 3. It keeps all the other features of traditional memory-based CF algorithm so that the system s performance can be analyzed both empirically and theoretically and the improvement on traditional memory-based algorithm can also be applied here. The rest of this paper is organized as follows. In Section 2, several related works are presented and discussed. In Section 3, we give the architecture and key features of our algorithm, and describe the implementation of it on a DHT-based P2P overlay network in Section 4. In Section 5 the experimental results of our system are presented and analyzed. Finally we make a brief concluding remark in Section 6. 2 Related Works 2.1 Memory-Based CF Algorithm Generally, the task of CF is to predict the votes of active users from the user database which consists of a set of votes corresponding to the vote of user i on item j. The memory-based CF algorithm calculates this prediction as a weighted average of other users votes on that item through the following formula:

3 An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network 3 P n a, j = va + κ ϖ ( a, j)( vi, j vi ) i = 1 (1) Where P a, j denotes the prediction of the vote for active user a on item j and n is the number of users in user database. v i is the mean vote for user i as: 1 (2) v i = vi j Ii, j I i Where Ii is the set of items on which user i has voted. The weights ϖ ( a, j) reflect the similarity between active user and users in the user database. κ is a normalizing factor to make the absolute values of the weights sum to unity. 2.2 P2P System and DHT Routing Algorithm The term Peer-to-Peer refers to a class of systems and applications that employ distributed resources to perform a critical function in a decentralized manner. With the pervasive deployment of computers, P2P is increasingly receiving attention in research and more and more P2P systems have been deployed on the Internet. Some of the benefits of a P2P approach include: improving scalability by avoiding dependency on centralized points; eliminating the need for costly infrastructure by enabling direct communication among clients; and enabling resource aggregation. As the main purpose of P2P systems are to share resources among a group of computers called peers in a distributed way, efficient and robust routing algorithms for locating wanted resource is critical to the performance of P2P systems. Among these algorithms, distributed hash table (DHT) algorithm is one of the most popular and effective and supported by many P2P systems such as CAN [10], Chord [11], Pastry [12], and Tapestry [13]. A DHT overlay network is composed of several DHT nodes and each node keeps a set of resources (e.g., files, rating of items). Each resource is associated with a key (produced, for instance, by hashing the file name) and each node in the system is responsible for storing a certain range of keys. There are two basic operations: (1) put(key, value); (2)lookup(key), and two layers: (1)route(key, message); (2)key/value storage in the DHT overlay network. Peers in the DHT overlay network can announce what resource they have by issue a put(key, value) message, or locate their wanted resource by issue a lookup(key) request which returns the identity (e.g., the IP address) of the node that stores the resource with the certain key. The primary goals of DHT are to provide an efficient, scalable, and robust routing algorithm which aims at reducing the number of P2P hops, which are involved when we locate a certain resource, and to reduce the amount of routing state that should be preserved at each peer. In Chord [11], each peer keeps track information of logn other peers where N is the total number of peers in the community. When a peer joins and leaves the overlay

4 4 Bo Xie, Peng Han, Fan Yang, Ruimin Shen network, this highly optimized version of DHT algorithm will only require notifying logn peers about that change. 3 Our Neighbor Searching Algorithm 3.1 Distributed User Profile Management Scheme Distributed user profile management has two key points: Division and Location. In our scheme, we wish to divide the original centralized user database into fractions (For concision, we will call such fractions by the term bucket in the following of this paper) in such a manner that potential neighbors can be put into the same bucket. So later we can access only several buckets to fetch the useful user profiles for the active users since retrieve all the buckets will cause unimaginable traffic in the network and often unnecessary. Here, we solve the first problem by proposing a division strategy which makes each bucket hold a group of users record who has a particular <ITEM_ID, VOTE> tuple. It means that users in the same bucket at least voted one item with the same rating. Figure1 illustrate our division strategy: Fig. 1. User Database Division Strategy Later when we want to make prediction for a particular user, we only need to retrieve those buckets which the active user s record is in. This strategy is based on the heuristic that people with similar interests will at least rate one item with similar votes. As we can see in Figure 3 of section 5.3.1, this strategy has a very high hitting ratio. Still, we can see that through this strategy we reduce about 50% calculation than traditional CF algorithm and obtain comparable prediction as shown in Figure 4 in section 5. After we make the proper division and choosing strategy of buckets, we still need an efficient way to locate and retrieve the needed buckets from the distributed network. As we mentioned in section 2.2, DHT has provided an efficient infrastructure to accomplish this task. We will discuss this in detail in section 4.

5 An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network Neighbor Searching in DCF Return All vs. Return K In the buckets choosing strategy mentioned in section 3.1, we return all users which are in the at least one same bucket with the active user. As we can see in Figure 5 in section 5.3.2, this strategy has an O(N) fetched user number where N is the total user number. In fact, as Breese presented in [3] by the term inverse user frequency, universally liked items are not as useful as less common items in capturing similarity. So we introduce a new concept significance refinement (SR) which reduces the returned user number of the original strategy by limiting the number of returned users for each bucket. We term this strategy improved by SR as Return K which means for every rated item, we return no more than K users for each bucket and call the original strategy as Return All. The experimental result in Figure 5 and 6 of Section shows that this method reduces the returned user number dramatically and also improves the prediction accuracy Improved Return K Strategy Although the Return K strategy proved to increase the scalability of our DCF algorithm, it has the shortage of unstable when the number of users in each bucket increases because the chosen of the K users is random. As we can see in Figure 7, when the total number of users is above 40,000, the average bucket size is more than 60. So the randomization of neighbor choosing will cause much uncertainty in prediction. There are two natural ways to solve this problem: increase the value of K or do some filtering at the node holding the bucket. However, the first method will increase the traffic dramatically while the second will cause much more calculation. In our method, we add a mergence procedure in our neighbor choosing strategy, which we called Improved Return K strategy. In this new strategy, before we retrieve the user record back, we first get the user ID list from each bucket which will cause little traffic. Then we merge the same user ID locally and generate a ranked list of user ID according to their occurrence. The user ID with the most occurrences, which mean those users who have the most same voting as the active user, will appear at the top of the list. After that, we only fetch the top K users record in the ranked list and made prediction based on them. We can see from Figure 5 and 6 in Section 5, the improved return K strategy has a better scalability and prediction strategy. 4 Implementation of Our Neighbor Searching Algorithm on a DHT-based P2P Overlay Network 4.1 System Architecture Figure 2 gives the system architecture of our implementation of DCF on the DHT-based P2P overlay network. Here, we view the users rating as resources and the

6 6 Bo Xie, Peng Han, Fan Yang, Ruimin Shen system generate a unique key for each particular <ITEM_ID, VOTE> tuple through the hash algorithm, where the ITEM_ID denotes identity of the item user votes on and VOTE is the user s rating on that item. As different users may vote particular item with same rating, each key will correspond to a set of users who have the same <ITEM_ID, VOTE> tuple corresponding to the key in their rating vector. As we stated in section 3, we call such set of users record as bucket. As we can see in Figure 2, each peer in the distributed CF system is responsible for storing one or several buckets using the distributed storage strategy described in Figure 1. Peers are connected through a DHT-based P2P overlay network. Peers can find their wanted buckets by their keys efficiently through the DHT-based routing algorithm which is the foundation of our implementation. As we can see from Figure 1 and Figure 2, the implementation of our PipeCF on DHT-based P2P overlay network is quite straightforward. DHT has provided a basic infrastructure to do the following things: 1. Define IDs, Vote ID to Node ID assignment 2. Define per-node routing table contents 3. Lookup algorithm that uses routing tables 4. Join procedure to reflect new nodes in tables 5. Failure recovery For our DHT-based CF scenario, IDs are 128-bit numbers. Vote IDs are chosen by MD5 hash of user s <ITEM_ID,VOTE> tuple, and Node IDs are chosen by MD5 hash of user s <IP address, MAC address>. Key is stored on node with numerically closest ID. If node and key IDs are uniform, we get reasonable load balance. There are already two basic operations in DHT overlay network: put(key, value) and lookup(key). And for our special DHT-based CF scenario, we present two new operations: getuserid(votekey) and getuservalue(votekey,userkey). The first operation returns many userids which have the same <ITEM_ID,VOTE> tuple with the active user, and the second operation returns the candidate user s real rating vectors.

7 An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network 7 Local vote vector Cached vote vectors Item_ID_1 1.0 Item_ID_2 5.0 Item_ID_1 3.0 USER_5 Item_ID_n 9.0 Item_ID_1 3.0 USER_K USER_5 Local vote vector Item_ID_1 5.0 Item_ID_2 9.0 Item_ID_n 2.0 Cached vote vectors Item_ID_4 4.0 USER_3 Item_ID_4 4.0 USER_K Local vote vector Item_ID_1 9.5 Item_ID_2 3.0 Item_ID_n 7.5 Cached vote vectors Item_ID_2 4.0 USER_3 Item_ID_2 4.0 USER_T USER_4 USER_3 Local vote vector Item_ID_1 5.0 Item_ID_2 7.5 Item_ID_n 6.0 Cached Vote Vectors Local vote vector Item_ID_1 5.5 Item_ID_2 2.5 Item_ID_n 9.0 Cached vote vectors Item_ID_3 4.0 USER_3 Item_ID_3 4.0 USER_K Fig. 2. System Architecture of Distributed CF Recommender System 5 Experimental Results 5.1 Data Set We use EachMovie data set [7] to evaluate the performance of improved algorithm. The EachMovie data set is provided by the Compaq System Research Center, which ran the EachMovie recommendation service for 18 months to experiment with a collaborative filtering algorithm. The information they gathered during that period consists of 72,916 users, 1,628 movies, and 2,811,983 numeric ratings ranging from 0 to Metrics and Methodology The metrics for evaluating the accuracy of we used here is statistical accuracy metrics which evaluate the accuracy of a predictor by comparing predicted values with userprovided values. More specifically, we use Mean Absolute Error (MAE), a statistical accuracy metrics, to report prediction experiments for it is most commonly used and easy to understand: MAE = a T a, j va, j p T (3)

8 8 Bo Xie, Peng Han, Fan Yang, Ruimin Shen Where v a, j is the rating given to item j by user a, is the predicted value of user a on item j, T is the test set, T is the size of the test set. We select 2000 users and choose one user as active user per time and the remainder users as his candidate neighbors, because every user only make self s recommendation locally. We use ALL-BUT-ONE strategy [3] and the mean prediction accuracy of all the 2000 users as the system's prediction accuracy. 5.3 Experimental Result We design several experiments for evaluating our algorithm and analyze the effect of various factors by comparison. All our experiments are run on a Windows 2000 based PC with Intel Pentium 4 processor having a speed of 1.8 GHz and 512 MB of RAM The Efficiency of Neighbor Choosing We used a data set of 2000 users and show among the users chosen by Return-All neighbor searching scheme, how many are in the top-100 users who have the most similarities with active users calculated by the traditional memory-based CF algorithms in Figure 3. We can see from the data that when the user number rises above 1000, more than 80 users who have the most similarities with the active users are chosen by our Neighbor choosing scheme Performance Comparison We compare the prediction accuracy of traditional CF algorithm and our Return-All algorithm and the results are shown as Figure 4. We can see that our algorithm has better prediction accuracy than the traditional CF algorithm. This result looks surprising at the first sight as the traditional CF selecting similar users from the whole user database while we use only a fraction. However, as we look in depth into our strategy, we find that we may filter out those users who have high-correlations with the active users but no same ratings. We have found that these users are bad predictors in [16] which provide explanation to our result. We then compared the performance of Return K and Return All by setting the K as 5. From the result Figure 6 we can see that by eliminating those users who have same ratings on popular items, the prediction accuracy can be increased further. DHT-based bucket distribution is illustrated in Figure 7, we can see that the more users, the larger bucket size, and when the total number of users is above 40,000, the average bucket size is more than 60. At last, we compare the performance of Improved Return K strategy. We can see In Figure 6 that we can obtain better performance while retrieving only 30 user records. Size of Users in Top 100(Predict 20%) Vector Similarity Pearson Similarity Total Size of Train Set(# of users) Fig. 3. How Many Users Chosen by DHT-based CF Fall in Traditional CF s Top 100 Mean Absolute Error Traditional CF DHT-based CF(Return All) Total Size of Train Set(# of users) Fig. 4. DHT-based CF vs. Traditional CF

9 An Efficient Neighbor Searching Scheme of Distributed Collaborative Filtering on P2P Overlay Network 9 Size of Fetched DHT Users DHT-based CF Return All DHT-based CF Return K(K=5) DHT-based CF Inproved Return K(K=30) Mean Absolute Error DHT-based CF Return All DHT-based CF Return K(K=5) DHT-based CF improved Return K(K=30) Total Size of Train Set(# of users) Fig. 5. The Effect on Scalability of Our Neighbor Searching Strategy Total Size of Train Set(# of users) Fig. 6. The Effect on Prediction Accuracy of Our Neighbor Searching Strategy users of eachmovie users of eachmovie 5000 Bucket Number User Number per Bucket(# of users) Fig. 7. The DHT Buckets Size Distribution 6 Conclusion In this paper, we first propose an efficient distributed user profile management scheme based on distributed hash table (DHT) method in order to solve the scalability problem of centralized KNN-based CF algorithm. Then, we present a heuristic neighbor searching algorithm to locate potential neighbors of the active users in order to reduce the network traffic and executive cost. The experimental data show that our DCF algorithm with the neighbor searching scheme has much better scalability than traditional centralized ones with comparable prediction efficiency and accuracy.

10 10 Bo Xie, Peng Han, Fan Yang, Ruimin Shen References 1. David Goldberg, David Nichols, Brian M. Oki, Douglas Terry.: Using collaborative filtering to weave an information tapestry, Communications of the ACM, v.35 n.12, p.61-70, Dec J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl.: An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages , Breese, J., Heckerman, D., and Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 1998 (43-52). 4. Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, John Riedl.: GroupLens: an open architecture for collaborative filtering of netnews, Proceedings of the 1994 ACM conference on Computer supported cooperative work, p , October 22-26, 1994, Chapel Hill, North Carolina, United States. 5. Upendra Shardanand, Pattie Maes.: Social information filtering: algorithms for automating word of mouth, Proceedings of the SIGCHI conference on Human factors in computing systems, p , May 07-11, 1995, Denver, Colorado, United States. 6. G. Linden, B. Smith, and J. York, Amazon.com Recommendations Item-to-item collaborative filtering, IEEE Internet Computing, Vo. 7, No. 1, pp. 7680, Jan Eachmovie collaborative filtering data set.: 8. Amund Tveit.: Peer-to-peer based Recommendations for Mobile Commerce. Proceedings of the First International Mobile Commerce Workshop, ACM Press, Rome, Italy, July 2001, pp Tomas Olsson.: "Bootstrapping and Decentralizing Recommender Systems", Licentiate Thesis , Department of Information Technology, Uppsala University and SICS, J. Canny.: Collaborative filtering with privacy. In Proceedings of the IEEE Symposium on Research in Security and Privacy, pages , Oakland, CA, May IEEE Computer Society, Technical Committee on Security and Privacy, IEEE Computer Society Press. 11. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.: A scalable contentaddressable network. In SIGCOMM, Aug Stocal I et al.: Chord: A scalable peer-to-peer lookup service for Internet applications (2001). In ACM SIGCOMM, San Diego, CA, USA, 2001, pp Rowstron A. Druschel P.: Pastry: Scalable, distributed object location and routing for large scale peer-to-peer systems. In IFIP/ACM Middleware, Hedelberg, Germany, Zhao B Y et al.: Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Tech.Rep.UCB/CSB-0-114,UC Berkeley,EECS, M.Ripeanu, "Peer-to-peer Architecture Case Study: Gnutella Network", Technical Report, University of Chicago, Han Peng,Xie Bo,Yang Fan,Shen Ruimin, A Scalable P2P Recommender System Based on Distributed Collaborative Filtering, Expert systems with applications,27(2) Elsevier Sep 2004 (To appear)

Athens University of Economics and Business. Dept. of Informatics

Athens University of Economics and Business. Dept. of Informatics Athens University of Economics and Business Athens University of Economics and Business Dept. of Informatics B.Sc. Thesis Project report: Implementation of the PASTRY Distributed Hash Table lookup service

More information

Privacy-Preserving Collaborative Filtering using Randomized Perturbation Techniques

Privacy-Preserving Collaborative Filtering using Randomized Perturbation Techniques Privacy-Preserving Collaborative Filtering using Randomized Perturbation Techniques Huseyin Polat and Wenliang Du Systems Assurance Institute Department of Electrical Engineering and Computer Science Syracuse

More information

Building a low-latency, proximity-aware DHT-based P2P network

Building a low-latency, proximity-aware DHT-based P2P network Building a low-latency, proximity-aware DHT-based P2P network Ngoc Ben DANG, Son Tung VU, Hoai Son NGUYEN Department of Computer network College of Technology, Vietnam National University, Hanoi 144 Xuan

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems

A Recursive Prediction Algorithm for Collaborative Filtering Recommender Systems A Recursive rediction Algorithm for Collaborative Filtering Recommender Systems ABSTRACT Jiyong Zhang Human Computer Interaction Group, Swiss Federal Institute of Technology (EFL), CH-1015, Lausanne, Switzerland

More information

Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem

Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem Comparison of Recommender System Algorithms focusing on the New-Item and User-Bias Problem Stefan Hauger 1, Karen H. L. Tso 2, and Lars Schmidt-Thieme 2 1 Department of Computer Science, University of

More information

Collaborative Filtering based on User Trends

Collaborative Filtering based on User Trends Collaborative Filtering based on User Trends Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and Yannis Manolopoulos Aristotle University, Department of Informatics, Thessalonii 54124,

More information

Should we build Gnutella on a structured overlay? We believe

Should we build Gnutella on a structured overlay? We believe Should we build on a structured overlay? Miguel Castro, Manuel Costa and Antony Rowstron Microsoft Research, Cambridge, CB3 FB, UK Abstract There has been much interest in both unstructured and structured

More information

amount of available information and the number of visitors to Web sites in recent years

amount of available information and the number of visitors to Web sites in recent years Collaboration Filtering using K-Mean Algorithm Smrity Gupta Smrity_0501@yahoo.co.in Department of computer Science and Engineering University of RAJIV GANDHI PROUDYOGIKI SHWAVIDYALAYA, BHOPAL Abstract:

More information

A Scalable Content- Addressable Network

A Scalable Content- Addressable Network A Scalable Content- Addressable Network In Proceedings of ACM SIGCOMM 2001 S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker Presented by L.G. Alex Sung 9th March 2005 for CS856 1 Outline CAN basics

More information

Effect of Links on DHT Routing Algorithms 1

Effect of Links on DHT Routing Algorithms 1 Effect of Links on DHT Routing Algorithms 1 Futai Zou, Liang Zhang, Yin Li, Fanyuan Ma Department of Computer Science and Engineering Shanghai Jiao Tong University, 200030 Shanghai, China zoufutai@cs.sjtu.edu.cn

More information

IN recent years, the amount of traffic has rapidly increased

IN recent years, the amount of traffic has rapidly increased , March 15-17, 2017, Hong Kong Content Download Method with Distributed Cache Management Masamitsu Iio, Kouji Hirata, and Miki Yamamoto Abstract This paper proposes a content download method with distributed

More information

A Directed-multicast Routing Approach with Path Replication in Content Addressable Network

A Directed-multicast Routing Approach with Path Replication in Content Addressable Network 2010 Second International Conference on Communication Software and Networks A Directed-multicast Routing Approach with Path Replication in Content Addressable Network Wenbo Shen, Weizhe Zhang, Hongli Zhang,

More information

A Framework for Peer-To-Peer Lookup Services based on k-ary search

A Framework for Peer-To-Peer Lookup Services based on k-ary search A Framework for Peer-To-Peer Lookup Services based on k-ary search Sameh El-Ansary Swedish Institute of Computer Science Kista, Sweden Luc Onana Alima Department of Microelectronics and Information Technology

More information

DYNAMIC TREE-LIKE STRUCTURES IN P2P-NETWORKS

DYNAMIC TREE-LIKE STRUCTURES IN P2P-NETWORKS DYNAMIC TREE-LIKE STRUCTURES IN P2P-NETWORKS Herwig Unger Markus Wulff Department of Computer Science University of Rostock D-1851 Rostock, Germany {hunger,mwulff}@informatik.uni-rostock.de KEYWORDS P2P,

More information

Extension Study on Item-Based P-Tree Collaborative Filtering Algorithm for Netflix Prize

Extension Study on Item-Based P-Tree Collaborative Filtering Algorithm for Netflix Prize Extension Study on Item-Based P-Tree Collaborative Filtering Algorithm for Netflix Prize Tingda Lu, Yan Wang, William Perrizo, Amal Perera, Gregory Wettstein Computer Science Department North Dakota State

More information

Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem

Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem Design of a New Hierarchical Structured Peer-to-Peer Network Based On Chinese Remainder Theorem Bidyut Gupta, Nick Rahimi, Henry Hexmoor, and Koushik Maddali Department of Computer Science Southern Illinois

More information

Application of Dimensionality Reduction in Recommender System -- A Case Study

Application of Dimensionality Reduction in Recommender System -- A Case Study Application of Dimensionality Reduction in Recommender System -- A Case Study Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John T. Riedl Department of Computer Science and Engineering / Army HPC

More information

Load Balancing in Structured P2P Systems

Load Balancing in Structured P2P Systems 1 Load Balancing in Structured P2P Systems Ananth Rao Karthik Lakshminarayanan Sonesh Surana Richard Karp Ion Stoica fananthar, karthik, sonesh, karp, istoicag@cs.berkeley.edu Abstract Most P2P systems

More information

Peer Clustering and Firework Query Model

Peer Clustering and Firework Query Model Peer Clustering and Firework Query Model Cheuk Hang Ng, Ka Cheung Sia Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin, N.T., Hong Kong SAR {chng,kcsia}@cse.cuhk.edu.hk

More information

Scalability In Peer-to-Peer Systems. Presented by Stavros Nikolaou

Scalability In Peer-to-Peer Systems. Presented by Stavros Nikolaou Scalability In Peer-to-Peer Systems Presented by Stavros Nikolaou Background on Peer-to-Peer Systems Definition: Distributed systems/applications featuring: No centralized control, no hierarchical organization

More information

Peer-to-peer computing research a fad?

Peer-to-peer computing research a fad? Peer-to-peer computing research a fad? Frans Kaashoek kaashoek@lcs.mit.edu NSF Project IRIS http://www.project-iris.net Berkeley, ICSI, MIT, NYU, Rice What is a P2P system? Node Node Node Internet Node

More information

PChord: Improvement on Chord to Achieve Better Routing Efficiency by Exploiting Proximity

PChord: Improvement on Chord to Achieve Better Routing Efficiency by Exploiting Proximity 546 PAPER Special Section on Parallel/Distributed Computing and Networking PChord: Improvement on Chord to Achieve Better Routing Efficiency by Exploiting Proximity Feng HONG a),mingluli,minyouwu, and

More information

P2P Overlay Networks of Constant Degree

P2P Overlay Networks of Constant Degree P2P Overlay Networks of Constant Degree Guihai Chen,2, Chengzhong Xu 2, Haiying Shen 2, and Daoxu Chen State Key Lab of Novel Software Technology, Nanjing University, China 2 Department of Electrical and

More information

Evolution of Peer-to-peer algorithms: Past, present and future.

Evolution of Peer-to-peer algorithms: Past, present and future. Evolution of Peer-to-peer algorithms: Past, present and future. Alexei Semenov Helsinki University of Technology alexei.semenov@hut.fi Abstract Today peer-to-peer applications are widely used for different

More information

Comparing Chord, CAN, and Pastry Overlay Networks for Resistance to DoS Attacks

Comparing Chord, CAN, and Pastry Overlay Networks for Resistance to DoS Attacks Comparing Chord, CAN, and Pastry Overlay Networks for Resistance to DoS Attacks Hakem Beitollahi Hakem.Beitollahi@esat.kuleuven.be Geert Deconinck Geert.Deconinck@esat.kuleuven.be Katholieke Universiteit

More information

DATA. The main challenge in P2P computing is to design and implement LOOKING UP. in P2P Systems

DATA. The main challenge in P2P computing is to design and implement LOOKING UP. in P2P Systems LOOKING UP DATA in P2P Systems By Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica The main challenge in P2P computing is to design and implement a robust and scalable

More information

LessLog: A Logless File Replication Algorithm for Peer-to-Peer Distributed Systems

LessLog: A Logless File Replication Algorithm for Peer-to-Peer Distributed Systems LessLog: A Logless File Replication Algorithm for Peer-to-Peer Distributed Systems Kuang-Li Huang, Tai-Yi Huang and Jerry C. Y. Chou Department of Computer Science National Tsing Hua University Hsinchu,

More information

Dynamic Load Sharing in Peer-to-Peer Systems: When some Peers are more Equal than Others

Dynamic Load Sharing in Peer-to-Peer Systems: When some Peers are more Equal than Others Dynamic Load Sharing in Peer-to-Peer Systems: When some Peers are more Equal than Others Sabina Serbu, Silvia Bianchi, Peter Kropf and Pascal Felber Computer Science Department, University of Neuchâtel

More information

CIS 700/005 Networking Meets Databases

CIS 700/005 Networking Meets Databases Announcements CIS / Networking Meets Databases Boon Thau Loo Spring Lecture Paper summaries due at noon today. Office hours: Wed - pm ( Levine) Project proposal: due Feb. Student presenter: rd Jan: A Scalable

More information

Relaxing Routing Table to Alleviate Dynamism in P2P Systems

Relaxing Routing Table to Alleviate Dynamism in P2P Systems Relaxing Routing Table to Alleviate Dynamism in P2P Systems Hui FANG 1, Wen Jing HSU 2, and Larry RUDOLPH 3 1 Singapore-MIT Alliance, National University of Singapore 2 Nanyang Technological University,

More information

EECS 426. Multimedia Streaming with Caching on Pure P2P-based Distributed e-learning System using Mobile Agent Technologies

EECS 426. Multimedia Streaming with Caching on Pure P2P-based Distributed e-learning System using Mobile Agent Technologies EECS 426 Multimedia Streaming with Caching on Pure P2P-based Distributed e-learning System using Mobile Agent Technologies Masayuki Higashino Tadafumi Hayakawa Kenichi Takahashi Takao Kawamura Kazunori

More information

A Peer-to-Peer Architecture to Enable Versatile Lookup System Design

A Peer-to-Peer Architecture to Enable Versatile Lookup System Design A Peer-to-Peer Architecture to Enable Versatile Lookup System Design Vivek Sawant Jasleen Kaur University of North Carolina at Chapel Hill, Chapel Hill, NC, USA vivek, jasleen @cs.unc.edu Abstract The

More information

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations.

Goals. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Solution. Overlay Networks: Motivations. Goals CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University of California, Berkeley

More information

BordaRank: A Ranking Aggregation Based Approach to Collaborative Filtering

BordaRank: A Ranking Aggregation Based Approach to Collaborative Filtering BordaRank: A Ranking Aggregation Based Approach to Collaborative Filtering Yeming TANG Department of Computer Science and Technology Tsinghua University Beijing, China tym13@mails.tsinghua.edu.cn Qiuli

More information

ReCord: A Distributed Hash Table with Recursive Structure

ReCord: A Distributed Hash Table with Recursive Structure ReCord: A Distributed Hash Table with Recursive Structure Jianyang Zeng and Wen-Jing Hsu Abstract We propose a simple distributed hash table called ReCord, which is a generalized version of Randomized-

More information

Multi-level Hashing for Peer-to-Peer System in Wireless Ad Hoc Environment

Multi-level Hashing for Peer-to-Peer System in Wireless Ad Hoc Environment Multi-level Hashing for Peer-to-Peer System in Wireless Ad Hoc Environment Dewan Tanvir Ahmed, Shervin Shirmohammadi Distributed & Collaborative Virtual Environments Research Laboratory School of Information

More information

Distributed Hash Tables

Distributed Hash Tables Distributed Hash Tables CS6450: Distributed Systems Lecture 11 Ryan Stutsman Material taken/derived from Princeton COS-418 materials created by Michael Freedman and Kyle Jamieson at Princeton University.

More information

A DHT-Based Grid Resource Indexing and Discovery Scheme

A DHT-Based Grid Resource Indexing and Discovery Scheme SINGAPORE-MIT ALLIANCE SYMPOSIUM 2005 1 A DHT-Based Grid Resource Indexing and Discovery Scheme Yong Meng TEO 1,2, Verdi March 2 and Xianbing Wang 1 1 Singapore-MIT Alliance, 2 Department of Computer Science,

More information

08 Distributed Hash Tables

08 Distributed Hash Tables 08 Distributed Hash Tables 2/59 Chord Lookup Algorithm Properties Interface: lookup(key) IP address Efficient: O(log N) messages per lookup N is the total number of servers Scalable: O(log N) state per

More information

Slope One Predictors for Online Rating-Based Collaborative Filtering

Slope One Predictors for Online Rating-Based Collaborative Filtering Slope One Predictors for Online Rating-Based Collaborative Filtering Daniel Lemire Anna Maclachlan February 7, 2005 Abstract Rating-based collaborative filtering is the process of predicting how a user

More information

A Time-based Recommender System using Implicit Feedback

A Time-based Recommender System using Implicit Feedback A Time-based Recommender System using Implicit Feedback T. Q. Lee Department of Mobile Internet Dongyang Technical College Seoul, Korea Abstract - Recommender systems provide personalized recommendations

More information

Badri Nath Rutgers University

Badri Nath Rutgers University lookup services Badri Nath Rutgers University badri@cs.rutgers.edu 1. CAN: A scalable content addressable network, Sylvia Ratnasamy et.al. SIGCOMM 2001 2. Chord: A scalable peer-to-peer lookup protocol

More information

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 17. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2016 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Explaining Recommendations: Satisfaction vs. Promotion

Explaining Recommendations: Satisfaction vs. Promotion Explaining Recommendations: Satisfaction vs. Promotion Mustafa Bilgic Computer Science Dept. University of Maryland at College Park College Park, MD 20742 mbilgic@cs.umd.edu Raymond J. Mooney Computer

More information

Performance Comparison of Algorithms for Movie Rating Estimation

Performance Comparison of Algorithms for Movie Rating Estimation Performance Comparison of Algorithms for Movie Rating Estimation Alper Köse, Can Kanbak, Noyan Evirgen Research Laboratory of Electronics, Massachusetts Institute of Technology Department of Electrical

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Recommender Systems. Collaborative Filtering & Content-Based Recommending

Recommender Systems. Collaborative Filtering & Content-Based Recommending Recommender Systems Collaborative Filtering & Content-Based Recommending 1 Recommender Systems Systems for recommending items (e.g. books, movies, CD s, web pages, newsgroup messages) to users based on

More information

Brocade: Landmark Routing on Overlay Networks

Brocade: Landmark Routing on Overlay Networks Abstract Brocade: Landmark Routing on Overlay Networks CS262A Fall 2001 Yitao Duan, Ling Huang University of California, Berkeley duan@cs.berkeley.edu, hlion@newton.berkeley.edu Peer-to-peer networks offer

More information

Module SDS: Scalable Distributed Systems. Gabriel Antoniu, KERDATA & Davide Frey, ASAP INRIA

Module SDS: Scalable Distributed Systems. Gabriel Antoniu, KERDATA & Davide Frey, ASAP INRIA Module SDS: Scalable Distributed Systems Gabriel Antoniu, KERDATA & Davide Frey, ASAP INRIA Staff Gabriel Antoniu, DR INRIA, KERDATA Team gabriel.antoniu@inria.fr Davide Frey, CR INRIA, ASAP Team davide.frey@inria.fr

More information

Web Data mining-a Research area in Web usage mining

Web Data mining-a Research area in Web usage mining IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661, p- ISSN: 2278-8727Volume 13, Issue 1 (Jul. - Aug. 2013), PP 22-26 Web Data mining-a Research area in Web usage mining 1 V.S.Thiyagarajan,

More information

BAKE: A Balanced Kautz Tree Structure for Peer-to-Peer Networks

BAKE: A Balanced Kautz Tree Structure for Peer-to-Peer Networks : A Balanced Kautz Tree Structure for Peer-to-Peer Networks Deke Guo, Honghui Chen, Yunhao Liu, and Xiangyang Li College of Information Systems and Management, National University of Defense Technology,

More information

Structured Peer-to-Peer Networks

Structured Peer-to-Peer Networks Structured Peer-to-Peer Networks The P2P Scaling Problem Unstructured P2P Revisited Distributed Indexing Fundamentals of Distributed Hash Tables DHT Algorithms Chord Pastry Can Programming a DHT Graphics

More information

Experimental Study on Neighbor Selection Policy for Phoenix Network Coordinate System

Experimental Study on Neighbor Selection Policy for Phoenix Network Coordinate System Experimental Study on Neighbor Selection Policy for Phoenix Network Coordinate System Gang Wang, Shining Wu, Guodong Wang, Beixing Deng, Xing Li Tsinghua National Laboratory for Information Science and

More information

Exploiting Semantic Clustering in the edonkey P2P Network

Exploiting Semantic Clustering in the edonkey P2P Network Exploiting Semantic Clustering in the edonkey P2P Network S. Handurukande, A.-M. Kermarrec, F. Le Fessant & L. Massoulié Distributed Programming Laboratory, EPFL, Switzerland INRIA, Rennes, France INRIA-Futurs

More information

Survey on Collaborative Filtering Technique in Recommendation System

Survey on Collaborative Filtering Technique in Recommendation System Survey on Collaborative Filtering Technique in Recommendation System Omkar S. Revankar, Dr.Mrs. Y.V.Haribhakta Department of Computer Engineering, College of Engineering Pune, Pune, India ABSTRACT This

More information

Defending against Eclipse attacks on overlay networks

Defending against Eclipse attacks on overlay networks Defending against Eclipse attacks on overlay networks Atul Singh 1 Miguel Castro 2 Peter Druschel 1 Antony Rowstron 2 1 Rice University, Houston, TX, USA. 2 Microsoft Research, Cambridge, UK. Abstract

More information

Information Retrieval in Peer to Peer Systems. Sharif University of Technology. Fall Dr Hassan Abolhassani. Author: Seyyed Mohsen Jamali

Information Retrieval in Peer to Peer Systems. Sharif University of Technology. Fall Dr Hassan Abolhassani. Author: Seyyed Mohsen Jamali Information Retrieval in Peer to Peer Systems Sharif University of Technology Fall 2005 Dr Hassan Abolhassani Author: Seyyed Mohsen Jamali [Slide 2] Introduction Peer-to-Peer systems are application layer

More information

Reputation Management in P2P Systems

Reputation Management in P2P Systems Reputation Management in P2P Systems Pradipta Mitra Nov 18, 2003 1 We will look at... Overview of P2P Systems Problems in P2P Systems Reputation Management Limited Reputation Sharing Simulation Results

More information

Security Considerations for Peer-to-Peer Distributed Hash Tables

Security Considerations for Peer-to-Peer Distributed Hash Tables Security Considerations for Peer-to-Peer Distributed Hash Tables Emil Sit and Robert Morris Laboratory for Computer Science, MIT 200 Technology Square, Cambridge, MA 02139, USA {sit,rtm}@lcs.mit.edu Abstract.

More information

The Robustness of Content-Based Search in Hierarchical Peer to Peer Networks

The Robustness of Content-Based Search in Hierarchical Peer to Peer Networks The Robustness of Content-Based Search in Hierarchical Peer to Peer Networks ABSTRACT M. Elena Renda I.S.T.I. C.N.R. and Scuola Superiore Sant Anna I-56100 Pisa, Italy elena.renda@isti.cnr.it Hierarchical

More information

Recommender System for Online Dating Service. KSI MFF UK Malostranské nám. 25, Prague 1, Czech Republic

Recommender System for Online Dating Service. KSI MFF UK Malostranské nám. 25, Prague 1, Czech Republic Recommender System for Online Dating Service Lukáš Brožovský 1 and Václav Petříček 1 KSI MFF UK Malostranské nám. 25, Prague 1, Czech Republic lbrozovsky@centrum.cz, petricek@acm.org arxiv:cs/0703042v1

More information

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011

Lecture 6: Overlay Networks. CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 Lecture 6: Overlay Networks CS 598: Advanced Internetworking Matthew Caesar February 15, 2011 1 Overlay networks: Motivations Protocol changes in the network happen very slowly Why? Internet is shared

More information

Effect of Joining Decisions on Peer Clusters

Effect of Joining Decisions on Peer Clusters Effect of Joining Decisions on Peer Clusters Stéphane Airiau Mathematical & Computer Sciences Department 6 South College avenue Tulsa, OK 744, USA stephane@utulsa.edu Sandip Sen Mathematical & Computer

More information

An Architecture for Peer-to-Peer Information Retrieval

An Architecture for Peer-to-Peer Information Retrieval An Architecture for Peer-to-Peer Information Retrieval Karl Aberer, Fabius Klemm, Martin Rajman, Jie Wu School of Computer and Communication Sciences EPFL, Lausanne, Switzerland July 2, 2004 Abstract Peer-to-Peer

More information

STAR Lab Technical Report

STAR Lab Technical Report VRIJE UNIVERSITEIT BRUSSEL FACULTEIT WETENSCHAPPEN VAKGROEP INFORMATICA EN TOEGEPASTE INFORMATICA SYSTEMS TECHNOLOGY AND APPLICATIONS RESEARCH LAB STAR Lab Technical Report Benefits of explicit profiling

More information

An Agenda for Robust Peer-to-Peer Storage

An Agenda for Robust Peer-to-Peer Storage An Agenda for Robust Peer-to-Peer Storage Rodrigo Rodrigues Massachusetts Institute of Technology rodrigo@lcs.mit.edu Abstract Robust, large-scale storage is one of the main applications of DHTs and a

More information

SIL: Modeling and Measuring Scalable Peer-to-Peer Search Networks

SIL: Modeling and Measuring Scalable Peer-to-Peer Search Networks SIL: Modeling and Measuring Scalable Peer-to-Peer Search Networks Brian F. Cooper and Hector Garcia-Molina Department of Computer Science Stanford University Stanford, CA 94305 USA {cooperb,hector}@db.stanford.edu

More information

AN EFFICIENT SYSTEM FOR COLLABORATIVE CACHING AND MEASURING DELAY

AN EFFICIENT SYSTEM FOR COLLABORATIVE CACHING AND MEASURING DELAY http:// AN EFFICIENT SYSTEM FOR COLLABORATIVE CACHING AND MEASURING DELAY 1 Mohd Husain, 2 Ayushi Prakash, 3 Ravi Kant Yadav 1 Department of C.S.E, MGIMT, Lucknow, (India) 2 Department of C.S.E, Dr. KNMIET,

More information

Recommender Systems: Attack Types and Strategies

Recommender Systems: Attack Types and Strategies Recommender Systems: Attack Types and Strategies Michael P. O Mahony and Neil J. Hurley and Guénolé C.M. Silvestre University College Dublin Belfield, Dublin 4 Ireland michael.p.omahony@ucd.ie Abstract

More information

Reducing Outgoing Traffic of Proxy Cache by Using Client-Cluster

Reducing Outgoing Traffic of Proxy Cache by Using Client-Cluster Reducing Outgoing Traffic of Proxy Cache by Using Client-Cluster Kyungbaek Kim and Daeyeon Park Abstract: Many web cache systems and policies concerning them have been proposed. These studies, however,

More information

PAPER A Proximity-Based Self-Organizing Hierarchical Overlay Framework for Distributed Hash Tables

PAPER A Proximity-Based Self-Organizing Hierarchical Overlay Framework for Distributed Hash Tables IEICE TRANS. COMMUN., VOL.E90 B, NO.7 JULY 2007 1651 PAPER A Proximity-Based Self-Organizing Hierarchical Overlay Framework for Distributed Hash Tables Kwangwook SHIN a), Student Member, Seunghak LEE,

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 12: Distributed Information Retrieval CS 347 Notes 12 2 CS 347 Notes 12 3 CS 347 Notes 12 4 CS 347 Notes 12 5 Web Search Engine Crawling

More information

Michele Gorgoglione Politecnico di Bari Viale Japigia, Bari (Italy)

Michele Gorgoglione Politecnico di Bari Viale Japigia, Bari (Italy) Does the recommendation task affect a CARS performance? Umberto Panniello Politecnico di Bari Viale Japigia, 82 726 Bari (Italy) +3985962765 m.gorgoglione@poliba.it Michele Gorgoglione Politecnico di Bari

More information

Apoidea: A Decentralized Peer-to-Peer Architecture for Crawling the World Wide Web

Apoidea: A Decentralized Peer-to-Peer Architecture for Crawling the World Wide Web Apoidea: A Decentralized Peer-to-Peer Architecture for Crawling the World Wide Web Aameek Singh, Mudhakar Srivatsa, Ling Liu, and Todd Miller College of Computing, Georgia Institute of Technology, Atlanta,

More information

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC

Distributed Meta-data Servers: Architecture and Design. Sarah Sharafkandi David H.C. Du DISC Distributed Meta-data Servers: Architecture and Design Sarah Sharafkandi David H.C. Du DISC 5/22/07 1 Outline Meta-Data Server (MDS) functions Why a distributed and global Architecture? Problem description

More information

STUDYING OF CLASSIFYING CHINESE SMS MESSAGES

STUDYING OF CLASSIFYING CHINESE SMS MESSAGES STUDYING OF CLASSIFYING CHINESE SMS MESSAGES BASED ON BAYESIAN CLASSIFICATION 1 LI FENG, 2 LI JIGANG 1,2 Computer Science Department, DongHua University, Shanghai, China E-mail: 1 Lifeng@dhu.edu.cn, 2

More information

Data-Centric Query in Sensor Networks

Data-Centric Query in Sensor Networks Data-Centric Query in Sensor Networks Jie Gao Computer Science Department Stony Brook University 10/27/05 Jie Gao, CSE590-fall05 1 Papers Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin, Directed

More information

Towards QoS Prediction for Web Services based on Adjusted Euclidean Distances

Towards QoS Prediction for Web Services based on Adjusted Euclidean Distances Appl. Math. Inf. Sci. 7, No. 2, 463-471 (2013) 463 Applied Mathematics & Information Sciences An International Journal Towards QoS Prediction for Web Services based on Adjusted Euclidean Distances Yuyu

More information

Cycloid: A Constant-Degree and Lookup-Efficient P2P Overlay Network

Cycloid: A Constant-Degree and Lookup-Efficient P2P Overlay Network Cycloid: A Constant-Degree and Lookup-Efficient P2P Overlay Network Haiying Shen and Cheng-Zhong Xu, Wayne State University, Detroit, MI 48202 Guihai Chen, Nanjing University, Nanjing, China {shy,czxu,gchen}@ece.eng.wayne.edu

More information

Build One, Get One Free: Leveraging the Coexistence of Multiple P2P Overlay Networks

Build One, Get One Free: Leveraging the Coexistence of Multiple P2P Overlay Networks Build One, Get One Free: Leveraging the Coexistence of Multiple PP Overlay Networks Balasubramaneyam Maniymaran, Dept. of Electrical and Computer Eng., McGill Universiy, Montreal, QC, Canada. bmaniy@cs.mcgill.ca

More information

Backup and Recovery Scheme for Distributed e-learning System

Backup and Recovery Scheme for Distributed e-learning System Notice for the use of this material The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). This material is published on this web site with the agreement of the

More information

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations

EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Overlay Networks: Motivations EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals.

Overlay Networks: Motivations. EECS 122: Introduction to Computer Networks Overlay Networks and P2P Networks. Motivations (cont d) Goals. Overlay Networks: Motivations CS : Introduction to Computer Networks Overlay Networks and PP Networks Ion Stoica Computer Science Division Department of lectrical ngineering and Computer Sciences University

More information

Time-related replication for p2p storage system

Time-related replication for p2p storage system Seventh International Conference on Networking Time-related replication for p2p storage system Kyungbaek Kim E-mail: University of California, Irvine Computer Science-Systems 3204 Donald Bren Hall, Irvine,

More information

Detection of Obfuscated Attacks in Collaborative Recommender Systems 1

Detection of Obfuscated Attacks in Collaborative Recommender Systems 1 Detection of Obfuscated Attacks in Collaborative Recommender Systems 1 Chad Williams and Bamshad Mobasher and Robin Burke and Jeff Sandvig and Runa Bhaumik 2 Abstract. The vulnerability of collaborative

More information

Distributed K-Ary System

Distributed K-Ary System A seminar presentation Arne Vater and Prof. Schindelhauer Professorship for Computer Networks and Telematik Department of Computer Science University of Freiburg 2007-03-01 Outline 1 2 3 4 5 Outline 1

More information

P2P Network Structured Networks (IV) Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili

P2P Network Structured Networks (IV) Distributed Hash Tables. Pedro García López Universitat Rovira I Virgili P2P Network Structured Networks (IV) Distributed Hash Tables Pedro García López Universitat Rovira I Virgili Pedro.garcia@urv.net Index Koorde: Degree optimal DHT Constructing overlay applications and

More information

Tag-Based Contextual Collaborative Filtering

Tag-Based Contextual Collaborative Filtering Tag-Based Contextual Collaborative Filtering Reyn Nakamoto Shinsuke Nakajima Jun Miyazaki Shunsuke Uemura Abstract In this paper, we introduce a new Collaborative Filtering (CF) model which takes into

More information

A Server-mediated Peer-to-peer System

A Server-mediated Peer-to-peer System A Server-mediated Peer-to-peer System Kwok, S. H. California State University, Long Beach Chan, K. Y. and Cheung, Y. M. Hong Kong University of Science and Technology A peer-to-peer (P2P) system is a popular

More information

IntraCache: An Interest group-based P2P Web Caching System

IntraCache: An Interest group-based P2P Web Caching System IntraCache: An Interest group-based P2P Web Caching System Huifang Cheng, Zhimin Gu, Junchang Ma Department of Computer Science and Engineering, Beijing Institute of Technology, Beijing 100081 chenghuifang@126.com,

More information

filtering LETTER An Improved Neighbor Selection Algorithm in Collaborative Taek-Hun KIM a), Student Member and Sung-Bong YANG b), Nonmember

filtering LETTER An Improved Neighbor Selection Algorithm in Collaborative Taek-Hun KIM a), Student Member and Sung-Bong YANG b), Nonmember 107 IEICE TRANS INF & SYST, VOLE88 D, NO5 MAY 005 LETTER An Improve Neighbor Selection Algorithm in Collaborative Filtering Taek-Hun KIM a), Stuent Member an Sung-Bong YANG b), Nonmember SUMMARY Nowaays,

More information

CSE 5306 Distributed Systems. Naming

CSE 5306 Distributed Systems. Naming CSE 5306 Distributed Systems Naming 1 Naming Names play a critical role in all computer systems To access resources, uniquely identify entities, or refer to locations To access an entity, you have resolve

More information

A WebRTC DHT. Andres Ledesma (UCY) in cooperation with Mikael (Peerialism).

A WebRTC DHT. Andres Ledesma (UCY) in cooperation with Mikael (Peerialism). A WebRTC DHT Andres Ledesma (UCY) in cooperation with Mikael (Peerialism). Preface I Existing DHT overlays have been optimized using one criteria (network proximity, social links, content caching or others).

More information

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002

EE 122: Peer-to-Peer (P2P) Networks. Ion Stoica November 27, 2002 EE 122: Peer-to-Peer (P2P) Networks Ion Stoica November 27, 22 How Did it Start? A killer application: Naptser - Free music over the Internet Key idea: share the storage and bandwidth of individual (home)

More information

DHT Based Collaborative Multimedia Streaming and Caching Service *

DHT Based Collaborative Multimedia Streaming and Caching Service * DHT Based Collaborative Multimedia Streaming and Caching Service * Zuoning Yin, Hai Jin Cluster and Grid Computing Lab Huazhong University of Science and Technology, Wuhan, 430074, China hjin@hust.edu.cn

More information

Handling Churn in a DHT

Handling Churn in a DHT Handling Churn in a DHT Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz UC Berkeley and Intel Research Berkeley What s a DHT? Distributed Hash Table Peer-to-peer algorithm to offering put/get

More information

Adaptive Load Balancing for DHT Lookups

Adaptive Load Balancing for DHT Lookups Adaptive Load Balancing for DHT Lookups Silvia Bianchi, Sabina Serbu, Pascal Felber and Peter Kropf University of Neuchâtel, CH-, Neuchâtel, Switzerland {silvia.bianchi, sabina.serbu, pascal.felber, peter.kropf}@unine.ch

More information

A Scalable, Accurate Hybrid Recommender System

A Scalable, Accurate Hybrid Recommender System A Scalable, Accurate Hybrid Recommender System Mustansar Ali Ghazanfar and Adam Prugel-Bennett School of Electronics and Computer Science University of Southampton Highfield Campus, SO17 1BJ, United Kingdom

More information

Data Replication under Latency Constraints Siu Kee Kate Ho

Data Replication under Latency Constraints Siu Kee Kate Ho Data Replication under Latency Constraints Siu Kee Kate Ho (siho@cs.brown.edu) Abstract To maintain good quality of service, data providers have to satisfy requests within some specified amount of time.

More information