High-Performance Broadcast for Streaming and Deep Learning

Size: px
Start display at page:

Download "High-Performance Broadcast for Streaming and Deep Learning"

Transcription

1 High-Performance Broadcast for Streaming and Deep Learning Ching-Hsiang Chu Department of Computer Science and Engineering The Ohio State University

2 OSU Booth - SC17 2 Outline Introduction Proposed Designs in MVAPICH2-GDR Performance Evaluation Concluding Remarks

3 Trends in Modern HPC Architecture Multi-core Processors High Performance Interconnects InfiniBand (), Omni-Path < 1 μsec latency, 100 Gbps Bandwidth> Multi-core/many-core technologies High Performance Interconnects Accelerators / Coprocessors high compute density, high performance/watt > 1 Tflop/s DP on a chip SSD, NVMe-SSD, NVRAM Accelerators/Coprocessors are becoming common in high-end systems High Performance Storage and Compute devices Sunway TaihuLight K - Computer Tianhe 2 Titan OSU Booth - SC17 3

4 Architectures for Deep Learning (DL) Past and Current Trend Multi-core s within a node Multi-core s across nodes Near-future Multi-core s + Multi- within a node Multi-core s + Single across nodes Multi-core s + Multi- across nodes Networks Networks Networks E.g., NVIDIA DGX-1 systems OSU Booth - SC17 4

5 Streaming Applications Streaming applications on HPC systems Source Real-time streaming 1. Communication (MPI) Broadcast-type operations 2. Computation (CUDA) HPC resources for real-time analytics Sender streaming-like broadcast operations Multiple nodes as workers Worker Worker Worker Worker Worker OSU Booth - SC17 5

6 OSU Booth - SC17 6 High-performance Deep Learning Computation using Communication using MPI Exchanging partial gradients after each minibatch All-to-all (Multi-Source) communications Ø E.g., MPI_Bcast Challenges Node 1 Node 3 Node 2 Node 4 High computation-communication overlap Good scalability for upcoming large-scale clusters No application-level modification

7 OSU Booth - SC17 7 Outline Introduction Proposed Designs in MVAPICH2-GDR Performance Evaluation Concluding Remarks

8 Hardware Multicast-based Broadcast For -resident data, using Direct RDMA (GDR) InfiniBand Hardware Multicast (-MCAST) Overhead UD limit GDR limit A. Venkatesh, H. Subramoni, K. Hamidouche, and D. K. Panda, A High Performance Broadcast Design with Hardware Multicast and Direct RDMA for Streaming Applications on InfiniBand Clusters, in HiPC 2014, Dec Source Header HCA Switch 1. Gather + GDR Read 2. Hardware Multicast 3. Scatter + GDR Write Destination 1 HCA HCA Header Destination N Header OSU Booth - SC17 8

9 Hardware Multicast-based Broadcast (con t) Heterogeneous Broadcast for streaming applications Ø Free-up PCIe resources C Source C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters, " SBAC-PAD'16, Oct , HCA Switch Multicast steps SL step HCA HCA Node 1 C Node N OSU Booth - SC17 9 C

10 Optimized Broadcast Send Preparing Intermediate buffer (im_buf) Page-locked (pinned) host buffer Ø Fast Device-Host data movement Allocated at initialization phase Ø Low overhead Streaming data through host Fine-tuned chunked data Asynchronous copy operations Ø Three-stage pipeline MPI_Bcast(d_out, ) Source Header im_buf d_out HCA 1. Preparation 2. Gather 3. Hardware Multicast Switch C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton and D. K. Panda., "Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning, " ICPP 2017, Aug 14-17, OSU Booth - SC17 10

11 Optimized Broadcast Receive Zero-copy broadcast receive Pre-posted user buffer (d_in) Avoids additional data movement Leverages Scatter and GDR features Ø Low-latency Ø Free-up PCIe resources for applications C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton and D. K. Panda., "Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning, " ICPP 2017, Aug 14-17, Switch Hardware Multicast Scatter (GDR Write) MPI_Bcast(d_in, ) Destination 1 HCA HCA Header d_in Destination N Header d_in OSU Booth - SC17 11

12 Broadcast on Multi- systems Proposed Intra-node Topology-Aware Broadcast CUDA InterProcess Communication (IPC) Source Multicast steps Switch Node 1 Node N C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters, " SBAC-PAD'16, Oct , cudamemcpy (Device Device) 0 1 N OSU Booth - SC17 12

13 Efficient Reliability Support for -MCAST When a receiver experiences timeout (lost MCAST packet) Performs the RMA Get operation to the sender s backup buffer to retrieve lost MCAST packets Sender is not interrupted Broadcast sender Broadcast receiver Time MPI HCA HCA MPI Timeout C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Efficient Reliability Support for Hardware Multicast-based Broadcast in -enabled Streaming Applications, " COMHPC Workshop, OSU Booth - SC17 13

14 OSU Booth - SC17 14 Outline Introduction Proposed Designs in MVAPICH2-GDR Performance Evaluation Concluding Remarks

15 Experimental Environments Ohio State University (OSU) Micro-Benchmark (OMB) osu_bcast - MPI_Bcast Latency Test osu_bcast_streaming MPI_Bcast streaming Test Deep learning framework: CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK)* AlexNet and VGG models with ImageNet dataset *D. S. Banerjee, K. Hamidouche and D. K. Panda, "Re-Designing CNTK Deep Learning Framework on Modern Enabled Clusters," IEEE CloudCom, Luxembourg City, 2016, pp OSU Booth - SC17 15

16 Benchmark RI2 cluster, 16 s, 1 /node Lower is better Latency (μs) K MV2-GDR-Knomial MCAST-GDR 8K 16K 32K 64K 128K Hit GDR read limit 256K 512K 1M Message Size (bytes) MV2-GDR-Ring MCAST-GDR-Opt 2M 65% 4M 8M 16M Latency (μs) Provide near-constant latency over the system sizes Reduces up to 65% of latency for large messages MB Message Near-Constant MV2-GDR-Knomial MCAST-GDR MV2-GDR-Ring MCAST-GDR-Opt Number of nodes C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton and D. K. Panda., "Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning, " ICPP 2017, Aug 14-17, OSU Booth - SC17 16

17 Streaming CSCS (88 s) MCAST-GDR-OPT MCAST-GDR MCAST-GDR-OPT MCAST-GDR Latency (μs) % Latency (μs) % K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M Message Size (Bytes) Message Size (Bytes) -MCAST + GDR + Topology-aware IPC-based schemes Up to 58% and 79% reduction for small and large messages C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters, " SBAC-PAD'16, Oct , OSU Booth - SC17 17

18 Deep Learning Frameworks Training Time RI2 cluster, 16 s, 1 /node: CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK) without modification AlexNet model MV2-GDR-Knomial MV2-GDR-Ring MCAST-GDR-Opt Number of nodes VGG model Lower is better MV2-GDR-Knomial MV2-GDR-Ring MCAST-GDR-Opt % 24% 6% OSU Booth - SC17 18 Training Time (s) Reduces up to 24% and 15% of latency for AlexNet and VGG models Higher improvement is expected for larger system sizes 8 16 Number of nodes 15%

19 OSU Booth - SC17 19 Concluding Remarks High-performance broadcast schemes to leverage GDR and - MCAST features for streaming and deep learning applications Optimized streaming design for large messages transfers High-performance reliability support for -MCAST Ø These features are included in MVAPICH2-GDR 2.3a Ø Ø

20 OSU Booth - SC17 20 Thank You! Ching-Hsiang Chu chu.368@osu.edu The MVAPICH2 Project Network-Based Computing Laboratory [1] C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters, " SBAC-PAD'16, Oct , [2] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton and D. K. Panda., "Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning, " ICPP 2017, Aug 14-17, [3] C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Efficient Reliability Support for Hardware Multicast-based Broadcast in -enabled Streaming Applications, " COMHPC Workshop, [4] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, B. Elton and D. K. Panda, "Exploiting Hardware Multicast and Direct RDMA for Efficient Broadcast, submitted to IEEE TPDS. (Under review)

21 OSU Booth - SC17 21 Thank You! Join us for more tech talks from MVAPICH2 team The MVAPICH2 Project Network-Based Computing Laboratory

22 OSU Booth - SC17 22 Evaluation Parameters Notation Meaning Unit n Number of processes N/A m Number of broadcast sources N/A t s Set up time for sending data sec t o (n) Overhead for issuing an -MCAST packet sec M Original message size bytes C Size of a data chunk bytes U Maximum Transmission Unit for -MCAST, provided by hardware manufacturer bytes B H Bandwidth of reading Host memory bytes/sec B G B PCIe Bandwidth of reading memory (NVIDIA Direct RDMA) PCIe Bandwidth between Host and memory bytes/sec bytes/sec U C B PCIe Message M Bandwidth B H B G HCA B G

23 OSU Booth - SC17 23 Ring-based Broadcast Direct Pipeline Staging (n 1) t 7 + M B ; M C + (n 2) t 7 + C B ; M B >?@A + (n 1) t 7 + M B B GDR Read GDR Write Network Transfer Source HCA Destination 1 HCA Poor Scalability Destination 2 HCA Destination 3 HCA

24 K-nomial-based Broadcast Direct Pipeline Staging log F n t 7 + M B ; M C log F n t 7 + C B ; M B >?@A + log F n t 7 + M B B Source HCA GDR Read GDR Write Network Transfer Destination 1 HCA HCA Destination 3 Non-optimized Scalability Destination 2 HCA OSU Booth - SC17 24

25 Overlap Opportunities Overlap within a node : cudamemcpyasync : Hardware Multicast : cudastreamsynchronize : GDR Write Broadcast from Node A Node A HCA Node B HCA Node C HCA Timeline Broadcast from Node B Broadcast from Node C Overlap Across Nodes OSU Booth - SC17 25

26 MCAST-based Broadcast NVIDIA Direct [1] Remote direct memory access (RDMA) transfers between s and other PCIe devices GDR and more InfiniBand () hardware multicast ( MCAST) [2] Enables efficient designs of broadcast operations Host-based [3] -based [4] [1] [2] Pfister GF., An Introduction to the InfiniBand Architecture. High Performance Mass Storage and Parallel I/O, Chapter 42, pp , Jun [3] J. Liu, A. R. Mamidala, and D. K. Panda, Fast and Scalable MPI-level Broadcast using InfiniBand s Hardware Multicast Support, in IPDPS 2004, p. 10, April [4] A. Venkatesh, H. Subramoni, K. Hamidouche, and D. K. Panda, A High Performance Broadcast Design with Hardware Multicast and Direct RDMA for Streaming Applications on InfiniBand Clusters, in HiPC 2014, Dec OSU Booth - SC17 26

27 OSU Booth - SC17 27 Future Work Extend the design for other broadcast-based collective algorithms as well as non-blocking operations Allreduce, Allgather,, and so on

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters

Exploiting InfiniBand and GPUDirect Technology for High Performance Collectives on GPU Clusters Exploiting InfiniBand and Direct Technology for High Performance Collectives on Clusters Ching-Hsiang Chu chu.368@osu.edu Department of Computer Science and Engineering The Ohio State University OSU Booth

More information

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning

Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning Efficient and Scalable Multi-Source Streaming Broadcast on Clusters for Deep Learning Ching-Hsiang Chu 1, Xiaoyi Lu 1, Ammar A. Awan 1, Hari Subramoni 1, Jahanzeb Hashmi 1, Bracy Elton 2 and Dhabaleswar

More information

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters

Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters Designing High Performance Heterogeneous Broadcast for Streaming Applications on Clusters 1 Ching-Hsiang Chu, 1 Khaled Hamidouche, 1 Hari Subramoni, 1 Akshay Venkatesh, 2 Bracy Elton and 1 Dhabaleswar

More information

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning

Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, and Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters

CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters CUDA Kernel based Collective Reduction Operations on Large-scale GPU Clusters Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan and Dhabaleswar K. (DK) Panda Speaker: Sourav Chakraborty

More information

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning

Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning 5th ANNUAL WORKSHOP 209 Designing High-Performance MPI Collectives in MVAPICH2 for HPC and Deep Learning Hari Subramoni Dhabaleswar K. (DK) Panda The Ohio State University The Ohio State University E-mail:

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K.

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Mohammadreza Bayatpour, Hari Subramoni, D. K. Panda Department of Computer Science and Engineering The Ohio

More information

Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications

Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications Coupling GPUDirect RDMA and InfiniBand Hardware Multicast Technologies for Streaming Applications GPU Technology Conference GTC 2016 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High-Performance Training for Deep Learning and Computer Vision HPC

High-Performance Training for Deep Learning and Computer Vision HPC High-Performance Training for Deep Learning and Computer Vision HPC Panel at CVPR-ECV 18 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning Talk at Mellanox booth (SC 218) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning Talk at Mellanox Theater (SC 16) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks

GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks GPU- Aware Design, Implementation, and Evaluation of Non- blocking Collective Benchmarks Presented By : Esthela Gallardo Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh, Jonathan Perkins, Hari Subramoni,

More information

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth

Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth Support for GPUs with GPUDirect RDMA in MVAPICH2 SC 13 NVIDIA Booth by D.K. Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline Overview of MVAPICH2-GPU

More information

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR

Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Exploiting Full Potential of GPU Clusters with InfiniBand using MVAPICH2-GDR Presentation at Mellanox Theater () Dhabaleswar K. (DK) Panda - The Ohio State University panda@cse.ohio-state.edu Outline Communication

More information

MVAPICH2 MPI Libraries to Exploit Latest Networking and Accelerator Technologies

MVAPICH2 MPI Libraries to Exploit Latest Networking and Accelerator Technologies MVAPICH2 MPI Libraries to Exploit Latest Networking and Accelerator Technologies Talk at NRL booth (SC 216) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Optimizing MPI Communication on Multi-GPU Systems using CUDA Inter-Process Communication

Optimizing MPI Communication on Multi-GPU Systems using CUDA Inter-Process Communication Optimizing MPI Communication on Multi-GPU Systems using CUDA Inter-Process Communication Sreeram Potluri* Hao Wang* Devendar Bureddy* Ashish Kumar Singh* Carlos Rosales + Dhabaleswar K. Panda* *Network-Based

More information

Accelerating HPL on Heterogeneous GPU Clusters

Accelerating HPL on Heterogeneous GPU Clusters Accelerating HPL on Heterogeneous GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda Outline

More information

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand

Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures

Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures Accelerating MPI Message Matching and Reduction Collectives For Multi-/Many-core Architectures M. Bayatpour, S. Chakraborty, H. Subramoni, X. Lu, and D. K. Panda Department of Computer Science and Engineering

More information

Intra-MIC MPI Communication using MVAPICH2: Early Experience

Intra-MIC MPI Communication using MVAPICH2: Early Experience Intra-MIC MPI Communication using MVAPICH: Early Experience Sreeram Potluri, Karen Tomko, Devendar Bureddy, and Dhabaleswar K. Panda Department of Computer Science and Engineering Ohio State University

More information

Job Startup at Exascale:

Job Startup at Exascale: Job Startup at Exascale: Challenges and Solutions Hari Subramoni The Ohio State University http://nowlab.cse.ohio-state.edu/ Current Trends in HPC Supercomputing systems scaling rapidly Multi-/Many-core

More information

MVAPICH2-GDR: Pushing the Frontier of MPI Libraries Enabling GPUDirect Technologies

MVAPICH2-GDR: Pushing the Frontier of MPI Libraries Enabling GPUDirect Technologies MVAPICH2-GDR: Pushing the Frontier of MPI Libraries Enabling GPUDirect Technologies GPU Technology Conference (GTC 218) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters

Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Improving Application Performance and Predictability using Multiple Virtual Lanes in Modern Multi-Core InfiniBand Clusters Hari Subramoni, Ping Lai, Sayantan Sur and Dhabhaleswar. K. Panda Department of

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters

Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Enabling Efficient Use of UPC and OpenSHMEM PGAS models on GPU Clusters Presentation at GTC 2014 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems?

Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Can Memory-Less Network Adapters Benefit Next-Generation InfiniBand Systems? Sayantan Sur, Abhinav Vishnu, Hyun-Wook Jin, Wei Huang and D. K. Panda {surs, vishnu, jinhy, huanwei, panda}@cse.ohio-state.edu

More information

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09

Study. Dhabaleswar. K. Panda. The Ohio State University HPIDC '09 RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Introduction Problem Statement

More information

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X

Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Performance of PGAS Models on KNL: A Comprehensive Study with MVAPICH2-X Intel Nerve Center (SC 7) Presentation Dhabaleswar K (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu Parallel

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2

Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2 Optimized Non-contiguous MPI Datatype Communication for GPU Clusters: Design, Implementation and Evaluation with MVAPICH2 H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, D. K. Panda Network-Based

More information

Designing High Performance Communication Middleware with Emerging Multi-core Architectures

Designing High Performance Communication Middleware with Emerging Multi-core Architectures Designing High Performance Communication Middleware with Emerging Multi-core Architectures Dhabaleswar K. (DK) Panda Department of Computer Science and Engg. The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters

Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters 2015 IEEE International Conference on Cluster Computing Exploiting GPUDirect RDMA in Designing High Performance OpenSHMEM for NVIDIA GPU Clusters Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan,

More information

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries

How to Boost the Performance of Your MPI and PGAS Applications with MVAPICH2 Libraries How to Boost the Performance of Your MPI and PGAS s with MVAPICH2 Libraries A Tutorial at the MVAPICH User Group (MUG) Meeting 18 by The MVAPICH Team The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Designing Shared Address Space MPI libraries in the Many-core Era

Designing Shared Address Space MPI libraries in the Many-core Era Designing Shared Address Space MPI libraries in the Many-core Era Jahanzeb Hashmi hashmi.29@osu.edu (NBCL) The Ohio State University Outline Introduction and Motivation Background Shared-memory Communication

More information

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning GPU Technology Conference GTC 217 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits

MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits MPI Alltoall Personalized Exchange on GPGPU Clusters: Design Alternatives and Benefits Ashish Kumar Singh, Sreeram Potluri, Hao Wang, Krishna Kandalla, Sayantan Sur, and Dhabaleswar K. Panda Network-Based

More information

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Talk at Bench 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

More information

GPU-Aware Intranode MPI_Allreduce

GPU-Aware Intranode MPI_Allreduce GPU-Aware Intranode MPI_Allreduce Iman Faraji ECE Dept, Queen s University Kingston, ON, Canada KL 3N6 ifaraji@queensuca Ahmad Afsahi ECE Dept, Queen s University Kingston, ON, Canada KL 3N6 ahmadafsahi@queensuca

More information

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand

Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Multi-Threaded UPC Runtime for GPU to GPU communication over InfiniBand Miao Luo, Hao Wang, & D. K. Panda Network- Based Compu2ng Laboratory Department of Computer Science and Engineering The Ohio State

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

High-performance and Scalable MPI+X Library for Emerging HPC Clusters & Cloud Platforms

High-performance and Scalable MPI+X Library for Emerging HPC Clusters & Cloud Platforms High-performance and Scalable MPI+X Library for Emerging HPC Clusters & Cloud Platforms Talk at Intel HPC Developer Conference (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K.

In the multi-core age, How do larger, faster and cheaper and more responsive memory sub-systems affect data management? Dhabaleswar K. In the multi-core age, How do larger, faster and cheaper and more responsive sub-systems affect data management? Panel at ADMS 211 Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory Department

More information

Comparing Ethernet and Soft RoCE for MPI Communication

Comparing Ethernet and Soft RoCE for MPI Communication IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 7-66, p- ISSN: 7-77Volume, Issue, Ver. I (Jul-Aug. ), PP 5-5 Gurkirat Kaur, Manoj Kumar, Manju Bala Department of Computer Science & Engineering,

More information

Comparing Ethernet & Soft RoCE over 1 Gigabit Ethernet

Comparing Ethernet & Soft RoCE over 1 Gigabit Ethernet Comparing Ethernet & Soft RoCE over 1 Gigabit Ethernet Gurkirat Kaur, Manoj Kumar 1, Manju Bala 2 1 Department of Computer Science & Engineering, CTIEMT Jalandhar, Punjab, India 2 Department of Electronics

More information

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics

Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics 1 Efficient and Truly Passive MPI-3 RMA Synchronization Using InfiniBand Atomics Mingzhe Li Sreeram Potluri Khaled Hamidouche Jithin Jose Dhabaleswar K. Panda Network-Based Computing Laboratory Department

More information

GPU-centric communication for improved efficiency

GPU-centric communication for improved efficiency GPU-centric communication for improved efficiency Benjamin Klenk *, Lena Oden, Holger Fröning * * Heidelberg University, Germany Fraunhofer Institute for Industrial Mathematics, Germany GPCDP Workshop

More information

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand

Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Implementing Efficient and Scalable Flow Control Schemes in MPI over InfiniBand Jiuxing Liu and Dhabaleswar K. Panda Computer Science and Engineering The Ohio State University Presentation Outline Introduction

More information

Job Startup at Exascale: Challenges and Solutions

Job Startup at Exascale: Challenges and Solutions Job Startup at Exascale: Challenges and Solutions Sourav Chakraborty Advisor: Dhabaleswar K (DK) Panda The Ohio State University http://nowlab.cse.ohio-state.edu/ Current Trends in HPC Tremendous increase

More information

Building the Most Efficient Machine Learning System

Building the Most Efficient Machine Learning System Building the Most Efficient Machine Learning System Mellanox The Artificial Intelligence Interconnect Company June 2017 Mellanox Overview Company Headquarters Yokneam, Israel Sunnyvale, California Worldwide

More information

Designing and Building Efficient HPC Cloud with Modern Networking Technologies on Heterogeneous HPC Clusters

Designing and Building Efficient HPC Cloud with Modern Networking Technologies on Heterogeneous HPC Clusters Designing and Building Efficient HPC Cloud with Modern Networking Technologies on Heterogeneous HPC Clusters Jie Zhang Dr. Dhabaleswar K. Panda (Advisor) Department of Computer Science & Engineering The

More information

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits

RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits RDMA Read Based Rendezvous Protocol for MPI over InfiniBand: Design Alternatives and Benefits Sayantan Sur Hyun-Wook Jin Lei Chai D. K. Panda Network Based Computing Lab, The Ohio State University Presentation

More information

Unifying UPC and MPI Runtimes: Experience with MVAPICH

Unifying UPC and MPI Runtimes: Experience with MVAPICH Unifying UPC and MPI Runtimes: Experience with MVAPICH Jithin Jose Miao Luo Sayantan Sur D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University,

More information

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms

Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Performance Analysis and Evaluation of Mellanox ConnectX InfiniBand Architecture with Multi-Core Platforms Sayantan Sur, Matt Koop, Lei Chai Dhabaleswar K. Panda Network Based Computing Lab, The Ohio State

More information

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters

Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters Design Alternatives for Implementing Fence Synchronization in MPI-2 One-Sided Communication for InfiniBand Clusters G.Santhanaraman, T. Gangadharappa, S.Narravula, A.Mamidala and D.K.Panda Presented by:

More information

Operational Robustness of Accelerator Aware MPI

Operational Robustness of Accelerator Aware MPI Operational Robustness of Accelerator Aware MPI Sadaf Alam Swiss National Supercomputing Centre (CSSC) Switzerland 2nd Annual MVAPICH User Group (MUG) Meeting, 2014 Computing Systems @ CSCS http://www.cscs.ch/computers

More information

MVAPICH2: A High Performance MPI Library for NVIDIA GPU Clusters with InfiniBand

MVAPICH2: A High Performance MPI Library for NVIDIA GPU Clusters with InfiniBand MVAPICH2: A High Performance MPI Library for NVIDIA GPU Clusters with InfiniBand Presentation at GTC 213 by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

High Performance File System and I/O Middleware Design for Big Data on HPC Clusters

High Performance File System and I/O Middleware Design for Big Data on HPC Clusters High Performance File System and I/O Middleware Design for Big Data on HPC Clusters by Nusrat Sharmin Islam Advisor: Dhabaleswar K. (DK) Panda Department of Computer Science and Engineering The Ohio State

More information

Overview of the MVAPICH Project: Latest Status and Future Roadmap

Overview of the MVAPICH Project: Latest Status and Future Roadmap Overview of the MVAPICH Project: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) Meeting by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters. Presented at GTC 15

Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters. Presented at GTC 15 Enabling Efficient Use of UPC and OpenSHMEM PGAS Models on GPU Clusters Presented at Presented by Dhabaleswar K. (DK) Panda The Ohio State University E- mail: panda@cse.ohio- state.edu hcp://www.cse.ohio-

More information

Advantages to Using MVAPICH2 on TACC HPC Clusters

Advantages to Using MVAPICH2 on TACC HPC Clusters Advantages to Using MVAPICH2 on TACC HPC Clusters Jérôme VIENNE viennej@tacc.utexas.edu Texas Advanced Computing Center (TACC) University of Texas at Austin Wednesday 27 th August, 2014 1 / 20 Stampede

More information

Overview of the MVAPICH Project: Latest Status and Future Roadmap

Overview of the MVAPICH Project: Latest Status and Future Roadmap Overview of the MVAPICH Project: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) Meeting by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

Enhancing Checkpoint Performance with Staging IO & SSD

Enhancing Checkpoint Performance with Staging IO & SSD Enhancing Checkpoint Performance with Staging IO & SSD Xiangyong Ouyang Sonya Marcarelli Dhabaleswar K. Panda Department of Computer Science & Engineering The Ohio State University Outline Motivation and

More information

High Performance MPI Support in MVAPICH2 for InfiniBand Clusters

High Performance MPI Support in MVAPICH2 for InfiniBand Clusters High Performance MPI Support in MVAPICH2 for InfiniBand Clusters A Talk at NVIDIA Booth (SC 11) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience

SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience SR-IOV Support for Virtualization on InfiniBand Clusters: Early Experience Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Kandalla, Mark Arnold and Dhabaleswar K. (DK) Panda Network-Based Computing Laboratory

More information

High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters

High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters High-Performance MPI Library with SR-IOV and SLURM for Virtualized InfiniBand Clusters Talk at OpenFabrics Workshop (April 2016) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT

High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT High-Performance and Scalable Non-Blocking All-to-All with Collective Offload on InfiniBand Clusters: A study with Parallel 3DFFT Krishna Kandalla (1), Hari Subramoni (1), Karen Tomko (2), Dmitry Pekurovsky

More information

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management

Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management SigHPC BigData BoF (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations

High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations High Performance Distributed Lock Management Services using Network-based Remote Atomic Operations S. Narravula, A. Mamidala, A. Vishnu, K. Vaidyanathan, and D. K. Panda Presented by Lei Chai Network Based

More information

Unified Runtime for PGAS and MPI over OFED

Unified Runtime for PGAS and MPI over OFED Unified Runtime for PGAS and MPI over OFED D. K. Panda and Sayantan Sur Network-Based Computing Laboratory Department of Computer Science and Engineering The Ohio State University, USA Outline Introduction

More information

Efficient SMP-Aware MPI-Level Broadcast over InfiniBand s Hardware Multicast

Efficient SMP-Aware MPI-Level Broadcast over InfiniBand s Hardware Multicast Efficient SMP-Aware MPI-Level Broadcast over InfiniBand s Hardware Multicast Amith R. Mamidala Lei Chai Hyun-Wook Jin Dhabaleswar K. Panda Department of Computer Science and Engineering The Ohio State

More information

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster

LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster LiMIC: Support for High-Performance MPI Intra-Node Communication on Linux Cluster H. W. Jin, S. Sur, L. Chai, and D. K. Panda Network-Based Computing Laboratory Department of Computer Science and Engineering

More information

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS

A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS A Plugin-based Approach to Exploit RDMA Benefits for Apache and Enterprise HDFS Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Md. Wasi- ur- Rahman, Dip: Shankar, and Dhabaleswar K. (DK) Panda Network- Based Compu2ng

More information

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani

Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani Bridging Neuroscience and HPC with MPI-LiFE Shashank Gugnani The Ohio State University E-mail: gugnani.2@osu.edu http://web.cse.ohio-state.edu/~gugnani/ Network Based Computing Laboratory SC 17 2 Neuroscience:

More information

High Performance Migration Framework for MPI Applications on HPC Cloud

High Performance Migration Framework for MPI Applications on HPC Cloud High Performance Migration Framework for MPI Applications on HPC Cloud Jie Zhang, Xiaoyi Lu and Dhabaleswar K. Panda {zhanjie, luxi, panda}@cse.ohio-state.edu Computer Science & Engineering Department,

More information

Op#miza#on and Tuning Collec#ves in MVAPICH2

Op#miza#on and Tuning Collec#ves in MVAPICH2 Op#miza#on and Tuning Collec#ves in MVAPICH2 MVAPICH2 User Group (MUG) Mee#ng by Hari Subramoni The Ohio State University E- mail: subramon@cse.ohio- state.edu h

More information

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand

Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Memory Scalability Evaluation of the Next-Generation Intel Bensley Platform with InfiniBand Matthew Koop, Wei Huang, Ahbinav Vishnu, Dhabaleswar K. Panda Network-Based Computing Laboratory Department of

More information

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services

Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services Designing Next Generation Data-Centers with Advanced Communication Protocols and Systems Services P. Balaji, K. Vaidyanathan, S. Narravula, H. W. Jin and D. K. Panda Network Based Computing Laboratory

More information

CafeGPI. Single-Sided Communication for Scalable Deep Learning

CafeGPI. Single-Sided Communication for Scalable Deep Learning CafeGPI Single-Sided Communication for Scalable Deep Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Deep Neural Networks

More information

Evaluating On-Node GPU Interconnects for Deep Learning Workloads

Evaluating On-Node GPU Interconnects for Deep Learning Workloads Evaluating On-Node GPU Interconnects for Deep Learning Workloads NATHAN TALLENT, NITIN GAWANDE, CHARLES SIEGEL ABHINAV VISHNU, ADOLFY HOISIE Pacific Northwest National Lab PMBS 217 (@ SC) November 13,

More information

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand

MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand MVAPICH-Aptus: Scalable High-Performance Multi-Transport MPI over InfiniBand Matthew Koop 1,2 Terry Jones 2 D. K. Panda 1 {koop, panda}@cse.ohio-state.edu trj@llnl.gov 1 Network-Based Computing Lab, The

More information

Hardware Acceleration of Barrier Communication for Large Scale Parallel Computer

Hardware Acceleration of Barrier Communication for Large Scale Parallel Computer 013 8th International Conference on Communications and Networking in China (CHINACOM) Hardware Acceleration of Barrier Communication for Large Scale Parallel Computer Pang Zhengbin, Wang Shaogang, Wu Dan,

More information

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures

EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures EC-Bench: Benchmarking Onload and Offload Erasure Coders on Modern Hardware Architectures Haiyang Shi, Xiaoyi Lu, and Dhabaleswar K. (DK) Panda {shi.876, lu.932, panda.2}@osu.edu The Ohio State University

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

High-Performance Heterogeneity/ Energy-Aware Communication for Multi-Petaflop HPC Systems

High-Performance Heterogeneity/ Energy-Aware Communication for Multi-Petaflop HPC Systems High-Performance Heterogeneity/ Energy-Aware Communication for Multi-Petaflop HPC Systems Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate

More information

Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach

Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach Designing MPI and PGAS Libraries for Exascale Systems: The MVAPICH2 Approach Talk at OpenFabrics Workshop (March 217) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters

Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Reducing Network Contention with Mixed Workloads on Modern Multicore Clusters Matthew Koop 1 Miao Luo D. K. Panda matthew.koop@nasa.gov {luom, panda}@cse.ohio-state.edu 1 NASA Center for Computational

More information

Advanced RDMA-based Admission Control for Modern Data-Centers

Advanced RDMA-based Admission Control for Modern Data-Centers Advanced RDMA-based Admission Control for Modern Data-Centers Ping Lai Sundeep Narravula Karthikeyan Vaidyanathan Dhabaleswar. K. Panda Computer Science & Engineering Department Ohio State University Outline

More information

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects?

Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? N. S. Islam, X. Lu, M. W. Rahman, and D. K. Panda Network- Based Compu2ng Laboratory Department of Computer

More information

Scalable Cluster Computing with NVIDIA GPUs Axel Koehler NVIDIA. NVIDIA Corporation 2012

Scalable Cluster Computing with NVIDIA GPUs Axel Koehler NVIDIA. NVIDIA Corporation 2012 Scalable Cluster Computing with NVIDIA GPUs Axel Koehler NVIDIA Outline Introduction to Multi-GPU Programming Communication for Single Host, Multiple GPUs Communication for Multiple Hosts, Multiple GPUs

More information

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart

CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart CRFS: A Lightweight User-Level Filesystem for Generic Checkpoint/Restart Xiangyong Ouyang, Raghunath Rajachandrasekar, Xavier Besseron, Hao Wang, Jian Huang, Dhabaleswar K. Panda Department of Computer

More information

Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing

Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing Talk at Storage Developer Conference SNIA 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu

More information

Overview of the MVAPICH Project: Latest Status and Future Roadmap

Overview of the MVAPICH Project: Latest Status and Future Roadmap Overview of the MVAPICH Project: Latest Status and Future Roadmap MVAPICH2 User Group (MUG) Meeting by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu http://www.cse.ohio-state.edu/~panda

More information

S8688 : INSIDE DGX-2. Glenn Dearth, Vyas Venkataraman Mar 28, 2018

S8688 : INSIDE DGX-2. Glenn Dearth, Vyas Venkataraman Mar 28, 2018 S8688 : INSIDE DGX-2 Glenn Dearth, Vyas Venkataraman Mar 28, 2018 Why was DGX-2 created Agenda DGX-2 internal architecture Software programming model Simple application Results 2 DEEP LEARNING TRENDS Application

More information

The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing

The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing The MVAPICH2 Project: Latest Developments and Plans Towards Exascale Computing Presentation at Mellanox Theatre (SC 16) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters

High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters High Performance Big Data (HiBD): Accelerating Hadoop, Spark and Memcached on Modern Clusters Presentation at Mellanox Theatre (SC 17) by Dhabaleswar K. (DK) Panda The Ohio State University E-mail: panda@cse.ohio-state.edu

More information

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters *

Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Designing Multi-Leader-Based Allgather Algorithms for Multi-Core Clusters * Krishna Kandalla, Hari Subramoni, Gopal Santhanaraman, Matthew Koop and Dhabaleswar K. Panda Department of Computer Science and

More information

Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2

Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2 Op#miza#on and Tuning of Hybrid, Mul#rail, 3D Torus Support and QoS in MVAPICH2 MVAPICH2 User Group (MUG) Mee#ng by Hari Subramoni The Ohio State University E- mail: subramon@cse.ohio- state.edu h

More information

INAM 2 : InfiniBand Network Analysis and Monitoring with MPI

INAM 2 : InfiniBand Network Analysis and Monitoring with MPI INAM 2 : InfiniBand Network Analysis and Monitoring with MPI H. Subramoni, A. A. Mathews, M. Arnold, J. Perkins, X. Lu, K. Hamidouche, and D. K. Panda Department of Computer Science and Engineering The

More information

Future Routing Schemes in Petascale clusters

Future Routing Schemes in Petascale clusters Future Routing Schemes in Petascale clusters Gilad Shainer, Mellanox, USA Ola Torudbakken, Sun Microsystems, Norway Richard Graham, Oak Ridge National Laboratory, USA Birds of a Feather Presentation Abstract

More information