Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Size: px
Start display at page:

Download "Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:"

Transcription

1 IPv6 Initial motivation: 3-bit address space soon to be completel allocated. Additional motivation: Header format helps speed processing/forwarding Header changes to facilitate QoS (service classes) Reduction of routing table sie Multicast support Support for mobile hosts Support coeistence with other protos, e.g., IPv4 IPv6 datagram format: Fied-length 40 bte 7 element header No fragmentation allowed IPv6 Header Version: IPv4 or IPv6 Priorit: Identif priorit among datagrams in flow Flow Label: Identif datagrams in same flow. (concept of flow not well defined). Net header: Identif upper laer protocol for data

2 Other Changes From IPv4 Checksum: Removed entirel to reduce processing time at each hop Options: Allowed, but outside of header, indicated b Net Header field ICMPv6: New version of ICMP Additional message tpes, e.g. Packet Too Big Multicast group management functions Etension header eamples: Routing, fragmentation, authentication, encrpted securit paload, destination options 3 Transition From IPv4 To IPv6 Not all routers can be upgraded simultaneous No flag das How will the network operate with mied IPv4 and IPv6 routers? Tunneling: IPv6 carried as paload in IPv4 datagram among IPv4 routers Logical view: A B tunnel E F IPv6 IPv6 IPv6 IPv6 Phsical view: A B E F IPv6 IPv6 IPv4 IPv4 IPv6 IPv6 4

3 Network laer: Status Network laer functions IP Routing and forwarding NAT ARP IPv6 Routing 5 Internet routing Our routing stud thus far idealiation Scale: With 00 million destinations: Can t store all dest s in routing All routers identical tables! Network flat no true in practice Routing table echange would swamp links! Administrative autonom Internet = network of networks Each network admin ma want to control routing in its own network Aggregate routers into regions, autonomous sstems (AS) Routers in same AS run same routing protocol Inter-AS routing protocol Routers in different AS can run different inter-as routing protocol 6 3

4 Interconnected ASes 3c 3a 3b AS3 a c d b Intra-AS Routing algorithm AS Forwarding table Inter-AS Routing algorithm a c AS b Forwarding table is configured b both intraand inter-as routing algorithm Intra-AS sets entries for internal dests Inter-AS & Intra-As sets entries for eternal dests 7 Inter-AS Tasks Suppose router in AS receives datagram for dest outside of AS Router should forward packet towards an ASborder router, but which one? AS needs. to learn which dests are reachable through AS and which through AS3. to propagate this reachabilit info to all routers in AS Job of inter-as routing! 3c 3a 3b AS3 a c d b AS a c AS b 8 4

5 Intra-AS routing Also known as Interior Gatewa Protocols (IGP) Most common Intra-AS routing protocols: RIP: Routing Information Protocol Distance vector protocol (based on Bellman-Ford) Routers periodicall echange reachabilit info with their neighbors Distance metric: hop count Advantage: simple, minimal communication overhead Disadvantage: long convergence times, loop detection 9 Intra-AS routing protocols OSPF: Open Shortest Path First Link state protocol (based on Dijkstra) Routers periodicall flood immediate reachabilit information to all other routers Distance metric: administrative weight Advantage: fast convergence Disadvantage: compleit and communication overhead ISIS: Intermediate-Sstem-to-Intermediate-Sstem (ISO 0589) (link state) IGRP: Interior Gatewa Routing Protocol (Cisco proprietar) (distance vector) EIGRP: Enhanced Interior Gatewa Routing Protocol (Cisco proprietar) (enhanced distance vector) 0 5

6 Interpla between routing and forwarding routing algorithm local forwarding table header value output link value in arriving packet s header 0 3 Graph abstraction 5 u Graph: G = (N,E) N = set of routers = { u, v, w,,, } E = set of links ={ (u,v), (u,), (v,), (v,w), (,w), (,), (w,), (w,), (,) } v 3 3 w 5 Path: Sequence of edges (routers) Remark: Graph abstr. is useful in other network contets Eample: PP, where N is set of peers and E is set of TCP connections 6

7 Graph abstraction: Costs u 5 v 3 3 w 5 c(, ) = cost of link (, ) - e.g., c(w,) = 5 Cost can be alwas, or inversel related to bandwidth, or inversel related to congestion Cost of path (,, 3,, p ) = c(, )+c(, 3 )+ +c( p, p ) Question: What s the least-cost path between u and? Routing algorithm: alg. that finds good path (tpicall: least cost path) 3 Routing algorithm classification Global or decentralied information? Global: All routers have complete topolog, link cost info Link state algorithms Decentralied: Router knows phsicallconnected neighbors, link costs to neighbors Iterative process of computation, echange of info with neighbors Distance vector algorithms Static or dnamic? Static: Routes change slowl over time Dnamic: Routes change more quickl periodic update in response to link cost changes 4 7

8 A link-state routing algorithm Dijkstra s algorithm Net topolog, link costs known to all nodes Accomplished via link state broadcast All nodes have same info Computes least cost paths one node ( source ) to all other nodes Gives routing table for that node Iterative: after k iterations, know least cost path to k dest. s Notation: c(i,j): Link cost node i to j. Cost infinite if not direct neighbors D(v): Current value of cost of path source to dest. v p(v): Predecessor node along path source to v N : Set of nodes whose least cost path definitivel known 5 Dijsktra s algorithm Initialiation for A: N = {A} 3 for all nodes v 4 if v adjacent to A 5 then D(v) = c(a,v) 6 else D(v) = 7 8 Loop 9 find w not in N such that D(w) is a minimum 0 add w to N update D(v) for all v adjacent to w and not in N : D(v) = min( D(v), D(w) + c(w,v) ) 3 /* new v is either old v or known 4 shortest path w plus cost w to v */ 5 until all nodes in N 6 8

9 Dijkstra s algorithm: Eample Step start N A AD ADE ADEB ADEBC ADEBCF D(B),p(B),A,A,A D(C),p(C) 5,A 4,D 3,E 3,E D(D),p(D),A D(E),p(E) infinit,d D(F),p(F) infinit infinit 4,E 4,E 4,E 5 A B D 3 3 C E 5 F 7 Dijkstra s algorithm: Eample () Resulting shortest-path tree u: B C A F D E Resulting forwarding table in u: destination B D E C F link (A,B) (A,D) (A,D) (A,D) (A,D) 8 9

10 Dijkstra s algorithm: Discussion Algorithm compleit: n nodes Each iteration: need to check all nodes, w, not in N n (n+)/ comparisons: O(n ) More efficient implementations possible: O(n log n) Oscillations possible: E.g., link cost = amount of carried traffic A +e D 0 0 B 0 e C e initiall A +e 0 D B 0 +e 0 C recompute routing 0 A +e D 0 B 0 +e C recompute +e A 0 D B 0 +e e C recompute 9 Distance vector algorithm Bellman-Ford Equation (dnamic programming) Define d () := cost of least-cost path to Then d () = min {c (,v) + d v () } v where min is taken over all neighbors v of 0 0

11 Bellman-Ford: Eample u 5 v 3 3 w 5 Clearl, d v () = 5, d () = 3, d w () = 3 Bellman-Ford equation sas: d u () = min { c(u,v) + d v (), c(u,) + d (), c(u,w) + d w () } = min { + 5, + 3, 5 + 3} = 4 Node that ields minimum is net hop in shortest path forwarding table Distance vector algorithm () D () = estimate of least cost to Distance vector: D = [D (): є N ] Node knows each neighbor v: c(,v) Node maintains D = [D (): є N ] Node also maintains its neighbors distance vectors For each neighbor v, maintains D v = [D v (): є N ]

12 Distance vector algorithm (3) Basic idea: Each node periodicall sends its own distance vector estimate to neighbors When a node receives new DV estimate neighbor, it updates its own DV using B-F equation: D () min v {c(,v) + D v ()} for each node N Under natural conditions the estimates of D () converge to the actual least cost d () 3 Distance vector algorithm (4) Iterative, asnchronous: Each local iteration caused b: Local link cost change DV update message neighbor Distributed: Each node notifies neighbors onl when its Distance Vector changes Neighbors then notif their neighbors if necessar Each node: wait for (change in local link cost of msg neighbor) recompute estimates if Distance Vector to an dest has changed, notif neighbors 4

13 node table 0 7 node table 0 node table 7 0 D () = min{c(,) + D (), c(,) + D ()} = min{+0, 7+} = time D () = min{c(,) + D (), c(,) + D ()} = min{+, 7+0} = Distance vector routing: Overview Iterative, asnchronous: each local iteration caused b: Local link cost change Message neighbor: its least cost path change neighbor Distributed: Each node notifies neighbors onl when its least cost path to an destination changes Neighbors then notif their neighbors if necessar Each node: wait for (change in local link cost of msg neighbor) recompute distance table if least cost path to an dest has changed, notif neighbors 6 3

14 Distance vector algorithm At each node, : Initialiation: for all destinations in N: 3 D () = if is not a neighbor 4 D () = c(,) if is a neighbor 5 for each neighbor w 6 D w () = for all destinations in N 7 for each neighbor w 8 send distance vector D = [D (): in N] to w 7 Distance vector algorithm (.): 9 loop 0 wait (until I see a link cost change to neighbor w or until I receive update neighbor w) 3 for each in N: 4 D () = min v {c(, v) + D v ()} 5 6 if D () changed for an destination 7 send DV D = [D ()]: in N] to all neighbors 8 9 forever 8 4

15 Distance vector (DV): Link cost changes Link cost changes: Node detects local link cost change Updates routing info, recalculates distance vector If DV changes, notif neighbors Good news travels fast At time t 0, detects the link-cost change, updates its DV, and informs its neighbors. At time t, receives the update and updates its table. It computes a new least and sends its neighbors its DV. At time t, receives s update and updates its distance table. s least costs do not change and hence does not send an message to node table node table time 30 5

16 Distance vector: Link cost changes (.) Link cost changes: Good news travels fast Bad news travels slow D () = min{c(,) + D (), c(,) + D ()} = min{60 + 0, + 5} = 6 D () = min{c(,) + D (), c(,) + D ()} = min{60 + 0, + 7} = 8 node table node table time 3 6

17 Distance vector: Link cost changes (3.) Link cost changes: Good news travels fast Bad news travels slow - count to infinit problem! 44 iterations before algorithm stabilies: see tet What happens here? Poissoned reverse: If Z routes through Y to get to X : Z tells Y its (Z s) distance to X is infinite (so Y won t route to X via Z) Will this completel solve count to infinit problem? a Comparison of LS and DV algorithms Message compleit LS: with n nodes, E links, O(nE) msgs sent each DV: O(d) messages, man times d is node degree Speed of Convergence LS: O(n log n) algorithm requires O(nE) msgs Ma have oscillations DV: Convergence time varies Ma be routing loops Count-to-infinit problem Robustness: What happens if router malfunctions? LS: Node can advertise incorrect link cost Each node computes onl its own table DV: Node can advertise incorrect path cost Each node s table used b others: error propagate through network 34 7

18 Internet Inter-AS routing: BGP The de facto standard: Border Gatewa Protocol (BGP) BGP provides each AS a means to:. Obtain subnet reachabilit information neighboring ASs. Propagate reachabilit information to all routers in the AS 3. Determine good routes to subnets based on reachabilit information and routing polic. Allows a subnet to advertise its eistence to rest of the Internet: I am here Issues: Which routing algorithm? How are routes advertised? How to implement routing policies? 35 BGP Basics Pairs of routers (BGP peers) echange routing info over semi-permanent TCP connections: BGP sessions Note that BGP sessions do not correspond to phsical links. When AS advertises a prefi to AS, AS is promising it will forward an datagrams destined to that prefi towards the prefi. AS can aggregate prefies in its advertisement 3c 3a 3b AS3 a AS c d b a c b AS ebgp session ibgp session 36 8

19 BGP is a path vector protocol Distance vector algorithm with etra information Two important attributes: AS-PATH: contains all ASs along the wa: AS 67 AS 7 NEXT-HOP: Indicates the specific internal-as router to net-hop AS. Path can be used to make routing decisions, e.g., to avoid loops Pure distance vector does not enable policies Link state does not scale and eposes policies When advertising a prefi, advert includes BGP attributes Prefi + other attributes = route When gatewa router receives route advertisement, uses ingress filters to accept/decline Can make decision based on ASes on path, e.g., to avoid loops 37 BGP messages Peers echange BGP messages using TCP OPEN: Opens TCP conn. to peer Authenticates sender UPDATE: Advertises new routes (or withdraws old) KEEPALIVE: Keeps conn alive in absence of UPDATES, ACKs OPEN request NOTIFICATION: Reports errors in previous msg; closes a connection Process: Initialiation: Open Updates for all routes Ongoing: Updates for changed routes 38 9

20 BGP route processing Receive BGP Updates Appl Polic = filter routes & tweak attributes Based on Attribute Values Best and Alternate Routes Appl policies to Best Routes! Transmit BGP Updates Appl Import Policies (ingress filter) Best Route Selection BGP Route Table Appl Eport Policies (egress filter) Install Best Routes IP Forwarding Table 39 Routing polic Reflects goals of network provider Which routes to accept other ASes How to manipulate the accepted routes How to propagate routes through network How to manipulate routes before the leave the AS Which routes to send to another AS 40 0

21 Routing polic: Eamples Honor business relationships (E.g., customers get full-table; peers onl customer prefies) (E.g., prefer customer routes over peer routes over upstream routes) Allow customers a choice of route (E.g., on customer request do not eport prefi to AS, etc.) Enable customer traffic engineering (E.g., prepend times to all peers or to specified AS) Enable DDoS defense for customers (E.g., blackholing b rewriting the net hop) 4 BGP routing polic W A B C X legend: provider network customer network: Y A,B,C are provider networks X,W,Y are customer (of provider networks) X is dual-homed: attached to two networks X does not want to route B via X to C.. so X will not advertise to B a route to C 4

22 BGP routing polic (.) W A B C X legend: provider network customer network: Y A advertises to B the path AW B advertises to X the path BAW Should B advertise to C the path BAW? No wa! B gets no revenue for routing CBAW since neither W nor C are B s customers B wants to force C to route to w via A B wants to route onl to/ its customers! 43 Local preference attribute AS /6 AS 00 AS 300 D E /6 500 > /6 800 A AS 400 B Path with highest local preference wins Allows providers to prefer routes C

23 BGP route selection Router learn > route to some prefi Router must select best route. Elimination rules:. Local preference value attribute: polic decision. Shortest AS-PATH 3. Best MED (multi-eit-discriminator) 4. Closest NEXT-HOP router: hot potato routing 5. Additional criteria 6. IP address of peer 45 Different tpes of ASes Providers: Offer connectivit to direct customer offer transit to other ISPs Customers: Bu connectivit providers Peers: Echange customers traffic at no cost Siblings: others Eporting to a Provider Eporting to a Customer Eporting to a Peer Own Routes Customer s Routes Sibling s Route Provider s Route Peer s Route 46 3

24 OSPF (Open Shortest Path First) Open : Specification publicl available Uses the Link State algorithm State: per router info about itself and attached networks OSPF advertisements: propagates state Link state database: state of all routers Topolog map: derived link state database 47 OSPFv: Components Who is m neighbor? Hello Protocol With whom I want to talk? (LAN!!!) Designated router/backup designated router concept What info am I missing? Database snchroniation How do I distribute info? Advertisements disseminated to entire Autonomous Sstem (via reliable flooding) OSPF messages directl over IP (rather than TCP or UDP) Route computation From link state database with Dijkstra s algorithm Supports equal-cost path routing 48 4

25 OSPF advanced features Securit: All OSPF messages are authenticated (to prevent malicious intrusion) Multiple same-cost paths allowed For each link, multiple cost metrics for different TOS (eg, satellite link cost set low for best effort; high for real time) Integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topolog data base as OSPF Hierarchical OSPF in large domains 49 Hierarchical OSPF 50 5

26 Hierarchical OSPF (.) Two-level hierarch: Local area and backbone. Link-state advertisements onl in respective areas. Nodes in each area have detailed area topolog; onl know direction (shortest path) to networks in other areas. Area Border routers summarie distances to networks in the area and advertise them to other Area Border routers. Backbone routers: Run an OSPF routing algorithm limited to the backbone. Boundar routers: Connect to other ASs. 5 Wh different Intra- and Inter-AS routing? Polic: Inter-AS: Admin wants control over how its traffic routed, who routes through its net. Intra-AS: Single admin, so no polic decisions needed Scale: Hierarchical routing saves table sie, reduced update traffic Performance: Intra-AS: Can focus on performance Inter-AS: Polic ma dominate over performance We need BOTH! 5 6

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

Network Layer: Routing

Network Layer: Routing Network Laer: Routing Instructor: Anirban Mahanti Office: ICT 74 Email: mahanti@cpsc.ucalgar.ca Class Location: ICT Lectures: MWF :00 :0 hours Notes derived Computer Networking: A Top Down Approach Featuring

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Laer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4. Routing algorithms Link

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived Computer Networking: A Top Down Approach, b Jim Kurose and Keith Ross, Addison-Wesle. The slides are adapted and

More information

Chapter 4: Network Layer: Part II

Chapter 4: Network Layer: Part II 4: Network Laer Chapter 4: Network Laer: Part II (last revision 9/04/05. v3) 4. Introduction 4. Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format

More information

Network Layer: Control Plane 5-2

Network Layer: Control Plane 5-2 Network Laer: Control Plane EECS34 8-03-05 4- Chapter 5: network laer control plane chapter goals: understand principles behind network control plane traditional routing algorithms SDN controlllers Internet

More information

Routing Algorithm Classification. A Link-State Routing Algorithm

Routing Algorithm Classification. A Link-State Routing Algorithm Routing Algorithm lassification Global or decentralied information? Global: All routers have complete topolog, link cost info Link state algorithms Decentralied: Router knows phsicallconnected neighbors,

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 1 Two notes on routing algorithm Do not believe ou can understand an routing protocol, e.g.,

More information

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions:

11/13/2017 Network Layer (SSL) Network-layer functions. Recall the two network-layer functions: Chapter 5: outline 5. introduction 5.2 routing protocols link state distance vector 5.3 intra-as routing in the Internet 5.4 inter-as routing: BGP 5.5 The SDN control 5.6 ICMP: The Internet Control Message

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

Chapter 4: Network Layer, partb

Chapter 4: Network Layer, partb Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross Network Layer 4-1 Interplay between routing, forwarding routing algorithm local

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 1996-2007 Computer

More information

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding 1 Network Layer Functions Transport packet from sending to receiving hosts (processes) Network layer protocols in every host, router

More information

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding

Graph abstraction: costs. Graph abstraction 10/26/2018. Interplay between routing and forwarding 0/6/08 Interpla between routing and forwarding Routing Algorithms Link State Distance Vector BGP routing routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Hierarchical routing our routing study thus far - idealization

More information

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm Computer Networking Interpla between roung, forwarding routing algorithm local forwarding table header alue output link 000 00 0 00 alue in arriing packet s header 0 Graph abstracon Graph: G = (N,E) u

More information

Chapter 4: outline. Network Layer 4-1

Chapter 4: outline. Network Layer 4-1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 6 Network Architecture and Protocols Lecture 8 Godmar Back Project A due Apr 8 (toda) Project B due in parts: Apr 9 and Ma 6 See link to NY Times article on RFC Project B Project B Highlevel

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4. introduction 4. irtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state

More information

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services:

Chapter 4: Network Layer. Lecture 12 Internet Routing Protocols. Chapter goals: understand principles behind network layer services: NET 331 Computer Networks Lecture 12 Internet Routing Protocols Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition by Kurose and Ross, (c) Pearson Education

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Inter-AS routing and BGP. Network Layer 4-1

Inter-AS routing and BGP. Network Layer 4-1 Inter-AS routing and BGP Network Layer 4-1 Review: intra-as routing v Also known as interior gateway protocols (IGP) v Most common intra-as routing protocols: RIP: Routing Information Protocol, distance

More information

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms Agenda v DNS assignment Q&A v Routing Algorithms distance-vector (what ou invented last Frida) hierarchical routing routing in the Internet Network Laer 4- Chapter 4 Network Laer A note on the use of these

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan Internet Protocol: Routing Algorithms Srinidhi Varadarajan Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction for routing algorithms:

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Network Layer Derek Leonard Hendrix College November 17, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 4: Roadmap 4.1 Introduction

More information

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Internet rou)ng V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Slide material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Graph abstraction 5 graph: G

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms

Chapter 5: Network Layer Control Plane. understand principles behind network control plane : traditional routing algorithms Introduction to Computer Networking Gu Leduc Chapter 5 Network Laer: The Control Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesle, April 06. From Computer

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes.

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes. Announcements CS 6 Network Architecture and Protocols Lecture 20 Project 2B Part/ due Wed Apr 27 :9pm Part/2 due Wed Ma :9pm Current reading assignment: Chapter.6.7, Chapter Final Ma 0, 3:2pm, MCB 26 Godmar

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

CSC 4900 Computer Networks: Routing Protocols

CSC 4900 Computer Networks: Routing Protocols CSC 4900 Computer Networks: Routing Protocols Professor Henry Carter Fall 2017 Last Time Link State (LS) versus Distance Vector (DV) algorithms: What are some of the differences? What is an AS? Why do

More information

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Inter-AS routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Inter-AS routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Chapter 4:

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals:

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network Layer. Chapter goals: Chapter 4 Network Laer A note on the use of these ppt slides: The notes used in this course are substantiall based on powerpoint slides developed and coprighted b J.F. Kurose and K.W. Ross, 996-7 Computer

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 16, 2017 1 Hierarchical routing Our routing study thus far - idealization all routers identical network flat not true in

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 14, 2013 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 14, 2013 1 Reading Quiz Hierarchical routing Our routing study thus far - idealization all routers identical network flat

More information

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture Network Routing Packet Routing, Routing Algorithms, Routers, Router Architecture Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 5565 Network Architecture and Protocols Lecture 20 Godmar Back Project 2B due in 2 parts: Apr 29 and May 6 Extra Credit Opportunities: Expand simulator (and your implementation) to introduce

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 06 A-term Some slides are originall from the course materials of the tetbook Computer

More information

CS 43: Computer Networks. 24: Internet Routing November 19, 2018

CS 43: Computer Networks. 24: Internet Routing November 19, 2018 CS 43: Computer Networks 24: Internet Routing November 19, 2018 Last Class Link State + Fast convergence (reacts to events quickly) + Small window of inconsistency Distance Vector + + Distributed (small

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

CSc 450/550 Computer Networks Internet Routing

CSc 450/550 Computer Networks Internet Routing CSc 450/550 Computer Networks Internet Routing Jianping Pan Summer 2007 7/12/07 CSc 450/550 1 Review Internet Protocol (IP) IP header addressing class-based, classless, hierarchical, NAT routing algorithms

More information

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. Intra-AS Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle http://xkcd.com/85/ Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 07 A-term Some slides are originall the course materials of the tetbook Computer Networking:

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

CS555, Spring /5/2005. April 12, 2005 No classes attend Senior Design Projects conference. Chapter 4 roadmap. Internet AS Hierarchy

CS555, Spring /5/2005. April 12, 2005 No classes attend Senior Design Projects conference. Chapter 4 roadmap. Internet AS Hierarchy CS555, Spring 2005 April 12, 2005 No classes attend Senior Design Projects conference Network Layer 4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 VC and Datagram Networks 4.3 What

More information

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet Chapter 5: outline 5.1 introduction 5.5 The SDN control 5.2 routing protocols plane link state 5.6 ICMP: The Internet distance vector Control Message 5.3 intra-as routing in Protocol the Internet t 5.7

More information

CSC 4900 Computer Networks: Routing Algorithms

CSC 4900 Computer Networks: Routing Algorithms CSC 4900 Computer Networks: Routing Algorithms Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

CSC 8560 Computer Networks: Control Plane

CSC 8560 Computer Networks: Control Plane CSC 8560 Computer Networks: Control Plane Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

Interplay tra routing e forwarding

Interplay tra routing e forwarding Interpla tra routing e forwarding routing algorithm local forwarding table header value output link 000 00 0 00 value in arriving packet s header 0 Network Laer 4- Grafi Grafo: G = (N,E) u v w N = insieme

More information

Dynamic Routing. The Protocols

Dynamic Routing. The Protocols Dynamic Routing The Protocols Desirable Characteristics of Dynamic Routing Automatically detect and adapt to topology changes Provide optimal routing Scalability Robustness Simplicity Rapid convergence

More information

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links Network Layer: Routing A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University

BGP. Daniel Zappala. CS 460 Computer Networking Brigham Young University Daniel Zappala CS 460 Computer Networking Brigham Young University 2/20 Scaling Routing for the Internet scale 200 million destinations - can t store all destinations or all prefixes in routing tables

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Mecanismes d Echange d Informations Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint

More information

UNIT III THE NETWORK LAYER

UNIT III THE NETWORK LAYER UNIT III THE NETWORK LAYER Introduction-Virtual Circuit and Datagram Networks- Inside a Router- The Internet Protocol (IP): Forwarding and Addressing in the Internet-Routing Algorithms Routing in the Internet-Broadcast

More information

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20 CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 0 Announcements Final exam: June 7 th at 4pm. Comprehensive. Photo id required.

More information

Internet inter-as routing: BGP

Internet inter-as routing: BGP Internet inter-as routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate the reachability

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter 5: Network Layer Control Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter 5: Network Layer Control Plane EC441 Fall 2018 Introduction to Computer Networking Chapter 5: Network Layer Control Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

PART III. Implementing Inter-Network Relationships with BGP

PART III. Implementing Inter-Network Relationships with BGP PART III Implementing Inter-Network Relationships with BGP ICNP 2002 Routing Protocols Autonomous System BGP-4 BGP = Border Gateway Protocol Is a Policy-Based routing protocol Is the de facto EGP of today

More information

Introduction to Communication Networks Spring Unit 16 Global Internetworking

Introduction to Communication Networks Spring Unit 16 Global Internetworking Introduction to Communication Networks Spring 2007 Unit 16 Global Internetworking Acknowledgements slides coming from: Based almost completely on slides from the earlier issues of the EECS 122 taught recently

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Dr. Nils

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction hapter 4: Network Layer TDTS06 omputer s Lecture 6: Network layer III Routing in the Internet Jose M. Peña, jospe@ida.liu.se ID/DIT, LiU 2009-09-16 4. 1 Introduction 4.2 Virtual circuit and datagram s

More information

Course on Computer Communication and Networks. Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5)

Course on Computer Communication and Networks. Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5) Course on Computer Communication and Networks Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5) EDA344/DIT 420, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose,

More information

CS 204: BGP. Jiasi Chen Lectures: MWF 12:10-1pm Humanities and Social Sciences

CS 204: BGP. Jiasi Chen Lectures: MWF 12:10-1pm Humanities and Social Sciences CS 204: BGP Jiasi Chen Lectures: MWF 12:10-1pm Humanities and Social Sciences 1403 http://www.cs.ucr.edu/~jiasi/teaching/cs204_spring17/ 1 Overview AS relationships Inter-AS routing BGP Example Paper discussion

More information

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Announcement Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Outline Introduction and Network Service Models Routing Principles Link

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley

Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Intra- AS Rou-ng h0p://kcd.com/85/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Module 3 Network Layer CS755! 3-1!

Module 3 Network Layer CS755! 3-1! Module 3 Network Layer CS755 3-1 Please note: Most of these slides come from this book. Note their copyright notice below A note on the use of these ppt slides: We re making these slides freely available

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer Chapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, mobility instantiation and implementation

More information

Inter-Domain Routing: BGP

Inter-Domain Routing: BGP Inter-Domain Routing: BGP Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Inter-Domain Routing Internet is a network of networks Hierarchy

More information

Network layer functions. Chapter 4 Network Layer. Network layer functions. Network layer functions

Network layer functions. Chapter 4 Network Layer. Network layer functions. Network layer functions Network layer functions Chapter 4 Network Layer transport packet from sending to receiving hosts layer entity in every host, router functions: path determination: route taken by packets from source to

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Chapter goals:

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Chapter goals: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 004. Chapter 4: Network Layer Chapter goals: understand principles

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer Chapter 4 Network Laer A note on the use of these ppt slides: We re making these slides freel available to all (facult, students, readers). The re in PowerPoint form so ou can add, modif, and delete slides

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

Protocoles et Interconnexions

Protocoles et Interconnexions Protocoles et Interconneions Course Overview and Introduction Dario Vieira Department of Computer Science EFREI Routing Protocol BGP TCP Computer Networking Preliminaries Transport Laer Network Laer Introduction

More information

Lecture 9. Network Layer (cont d) Network Layer 1-1

Lecture 9. Network Layer (cont d) Network Layer 1-1 Lecture 9 Network Layer (cont d) Network Layer 1-1 Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

Routing. Outline. Algorithms Scalability

Routing. Outline. Algorithms Scalability Routing Outline Algorithms Scalability 1 Internetworking What is internetwork An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service A simple internetwork

More information

Department of Computer Science Southern Illinois University Carbondale

Department of Computer Science Southern Illinois University Carbondale Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Overview of Computer Networking Network Layer of TCP/IP Model Data and Computer Communications 7

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

Routing Unicast routing protocols

Routing Unicast routing protocols Routing Unicast routing protocols Jens A Andersson Electrical and Information Technology R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 10 R5 1 Router A router is a type

More information

Data Communications & Networks. Session 7 Main Theme Networks: Part II Circuit Switching, Packet Switching, The Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part II Circuit Switching, Packet Switching, The Network Layer Data Communications & Networks Session 7 Main Theme Networks: Part II Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 01 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Homework #4 Due Thursday, Nov 1 st Project # Due Tuesday, Nov 6 th Later this semester: Homework #5 Due Thursday,

More information

Routing. Jens A Andersson Communication Systems

Routing. Jens A Andersson Communication Systems Routing Jens A Andersson Communication Systems R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 R5 10 Router A router is a type of internetworking device that passes data

More information

CS118 Discussion 1A, Week 7. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m.

CS118 Discussion 1A, Week 7. Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. CS118 Discussion 1A, Week 7 Zengwen Yuan Dodd Hall 78, Friday 10:00 11:50 a.m. 1 Outline Network control plane Routing Link state routing (OSPF) Distance vector routing (RIP) BGP ICMP Midterm/Project 2

More information

Interplay Between Routing, Forwarding

Interplay Between Routing, Forwarding Internet Routing 1 Interplay Between Routing, Forwarding routing algorithm local forwarding table header value output link 0100 0101 0111 1001 3 1 value in arriving packet s header 0111 3 1 Graph Abstraction

More information