Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Size: px
Start display at page:

Download "Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012"

Transcription

1 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors.

2 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs addressing, ARP Ethernet switches VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request Link Layer 5-2

3 MAC addresses and ARP v MAC (or LAN or physical or Ethernet) address: function: used locally to get frame from one interface to another physically-connected interface (same network, in IPaddressing sense) 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable v ARP: mapping IP to MAC A broadcasts ARP query packet, containing B's IP address B replies to A with its MAC address A caches IP-to-MAC address pair in its ARP table Link Layer 5-3

4 Addressing: routing to another LAN walkthrough: send datagram from A to B via R focus on addressing at IP (datagram) and MAC layer (frame) assume A knows B s IP address assume A knows IP address of first hop router, R (how?) assume A knows R s MAC address (how?) A C-E8-FF CC-49-DE-D0-AB-7D R E6-E BB-4B A-23-F9-CD-06-9B B BD-D2-C7-56-2A B2-2F-54-1A-0F Link Layer 5-4

5 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs addressing, ARP Ethernet switches VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request Link Layer 5-5

6 Ethernet: physical topology v bus: popular through mid 90s all nodes in same collision domain (can collide with each other) v star: prevails today active switch in center each spoke runs a (separate) Ethernet protocol (nodes do not collide with each other) bus: coaxial cable star switch Link Layer 5-6

7 Ethernet v frame structure: sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame type preamble dest. address source address data (payload) CRC v features: Connectionless Unreliable MAC protocol: unslotted CSMA/CD wth binary backoff Link Layer 5-7

8 Ethernet CSMA/CD algorithm 1. NIC receives datagram from network layer, creates frame 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits. 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame! 4. If NIC detects another transmission while transmitting, aborts and sends jam signal 5. After aborting, NIC enters binary (exponential) backoff: after mth collision, NIC chooses K at random from {0,1,2,, 2 m -1}. NIC waits K 512 bit times, returns to Step 2 longer backoff interval with more collisions Link Layer 5-8

9 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs addressing, ARP Ethernet switches VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request Link Layer 5-9

10 Ethernet switch v link-layer device: takes an active role store, forward Ethernet frames examine incoming frame s MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment v transparent hosts are unaware of presence of switches v plug-and-play, self-learning switches do not need to be configured Link Layer 5-10

11 Switch: self-learning v switch learns which hosts can be reached through which interfaces when frame received, switch learns location of sender records sender/location pair in switch table v forwarding packet frame destination unknown: flood destination location known: selectively send Link Layer 5-11

12 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs addressing, ARP Ethernet switches VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request Link Layer 5-12

13 VLANs: motivation v Motivation Lack of traffic isolation Inefficient use of switches Managing users v Virtual Local Area Switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure. trunk port: carries frames between VLANS defined over multiple physical switches via the 802.1q protocol Link Layer 5-13

14 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs addressing, ARP Ethernet switches VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request Link Layer 5-14

15 Multiprotocol label switching (MPLS) v initial goal: high-speed IP forwarding using fixed length label (instead of IP address) fast lookup using fixed length identifier (rather than shortest prefix matching) borrowing ideas from Virtual Circuit (VC) approach but IP datagram still keeps IP address! PPP or Ethernet header MPLS header IP header remainder of link-layer frame label Exp S TTL Link Layer 5-15

16 MPLS versus IP paths R6 R5 R4 entry router (R4) can use different MPLS routes to A based, e.g., on source address R2 R3 v IP routing: path to destination determined by destination address alone v MPLS routing: path to destination can be based on source and dest. address fast reroute: precompute backup routes in case of link failure D A IP-only router MPLS and IP router Link Layer 5-16

17 Chapter 7 Multimedia Networking Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Multimedia Networking 7-17

18 Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications 7.5 network support for multimedia Multmedia Networking 7-18

19 Multimedia: audio v v analog audio signal sampled at constant rate telephone: 8,000 samples/sec CD music: 44,100 samples/sec each sample quantized, i.e., rounded e.g., 2 8 =256 possible quantized values each quantized value represented by bits, e.g., 8 bits for 256 values audio signal amplitude quantization error sampling rate (N sample/sec) quantized value of analog value analog signal time Multmedia Networking 7-19

20 Multimedia: audio v v example: 8,000 samples/sec, 256 quantized values: 64,000 bps receiver converts bits back to analog signal: some quality reduction example rates v v v CD: Mbps MP3: 96, 128, 160 kbps Internet telephony: 5.3 kbps and up audio signal amplitude quantization error sampling rate (N sample/sec) quantized value of analog value analog signal time Multmedia Networking 7-20

21 v v v Multimedia: video video: sequence of images displayed at constant rate e.g. 24 images/sec digital image: array of pixels each pixel represented by bits coding: use redundancy within and between images to decrease # bits used to encode image spatial (within image) temporal (from one image to next) spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N) frame i temporal coding example: instead of sending complete frame at i+1, send only differences from frame i frame i+1 Multmedia Networking 7-21

22 v v v Multimedia: video CBR: (constant bit rate): video encoding rate fixed VBR: (variable bit rate): video encoding rate changes as amount of spatial, temporal coding changes examples: MPEG 1 (CD-ROM) 1.5 Mbps MPEG2 (DVD) 3-6 Mbps MPEG4 (often used in Internet, < 1 Mbps) spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N) frame i temporal coding example: instead of sending complete frame at i+1, send only differences from frame i frame i+1 Multmedia Networking 7-22

23 Multimedia networking: 3 application types v streaming, stored audio, video streaming: can begin playout before downloading entire file stored (at server): can transmit faster than audio/video will be rendered (implies storing/buffering at client) e.g., YouTube, Netflix, Hulu v conversational voice/video over IP interactive nature of human-to-human conversation limits delay tolerance e.g., Skype v streaming live audio, video real-time e.g., live sporting event Multmedia Networking 7-23

24 Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications 7.5 network support for multimedia Multmedia Networking 7-24

25 Streaming stored video: challenges v continuous playout constraint: once client playout begins, playback must match original timing but network delays are variable (jitter), so will need client-side buffer to match playout requirements v other challenges: client interactivity: pause, fast-forward, rewind, jump through video video packets may be lost, retransmitted Multmedia Networking 7-25

26 Streaming stored video: revisted constant bit rate video transmission variable network delay client video reception buffered video constant bit rate video playout at client client playout delay time v client-side buffering and playout delay: compensate for network-added delay, delay jitter Multmedia Networking 7-26

27 Client-side buffering, playout variable fill rate, x(t) buffer fill level, Q(t) playout rate, e.g., CBR r video server client application buffer, size B client Multmedia Networking 7-27

28 Client-side buffering, playout variable fill rate, x(t) buffer fill level, Q(t) playout rate, e.g., CBR r video server client application buffer, size B client 1. Initial fill of buffer until playout begins at t p 2. playout begins at t p, 3. buffer fill level varies over time as fill rate x(t) varies and playout rate r is constant Multmedia Networking 7-28

29 Streaming multimedia: UDP v server sends at rate appropriate for client often: send rate = encoding rate = constant rate transmission rate can be oblivious to congestion levels v short playout delay (2-5 seconds) to remove network jitter v error recovery: application-level, time-permitting v RTP [RFC 2326]: multimedia payload types v UDP may not go through firewalls Multmedia Networking 7-29

30 Streaming multimedia: HTTP v multimedia file retrieved via HTTP GET v send at maximum possible rate under TCP variable rate, x(t) video file TCP send buffer server TCP receive buffer client application playout buffer v fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery) v larger playout delay: smooth TCP delivery rate v HTTP/TCP passes more easily through firewalls Multmedia Networking 7-30

31 Streaming multimedia: DASH v DASH: Dynamic, Adaptive Streaming over HTTP v server: divides video file into multiple chunks each chunk stored, encoded at different rates manifest file: provides URLs for different chunks v client: periodically measures server-to-client bandwidth consulting manifest, requests one chunk at a time chooses maximum coding rate sustainable given current bandwidth can choose different coding rates at different points in time (depending on available bandwidth at time) Multmedia Networking 7-31

32 Content distribution networks v challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users? v option 1: single, large mega-server single point of failure point of network congestion long path to distant clients multiple copies of video sent over outgoing link.quite simply: this solution doesn t scale Multmedia Networking 7-32

33 Content distribution networks v challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users? v option 2: store/serve multiple copies of videos at multiple geographically distributed sites (CDN) enter deep: push CDN servers deep into many access networks close to users used by Akamai, 1700 locations bring home: smaller number (10 s) of larger clusters in POPs near (but not within) access networks used by Limelight Multmedia Networking 7-33

34 CDN: simple content access scenario Bob (client) requests video video stored in CDN at 1. Bob gets URL for for video from netcinema.com web page request video from 5 KINGCDN server, streamed via HTTP netcinema.com 3. netcinema s DNS returns URL resolve via Bob s local DNS 4 4&5. Resolve via KingCDN s authoritative DNS, which returns IP address of KIingCDN server with video netcinema s authorative DNS KingCDN.com KingCDN authoritative DNS Multmedia Networking 7-34

35 Case study: Netflix v 30% downstream US traffic in 2011 v owns very little infrastructure, uses 3 rd party services: own registration, payment servers Amazon (3 rd party) cloud services: Netflix uploads studio master to Amazon cloud create multiple version of movie (different endodings) in cloud upload versions from cloud to CDNs Cloud hosts Netflix web pages for user browsing three 3 rd party CDNs host/stream Netflix content: Akamai, Limelight, Level-3 Multmedia Networking 7-35

36 Case study: Netflix Amazon cloud upload copies of multiple versions of video to CDNs Akamai CDN Netflix registration, accounting servers 1 1. Bob manages Netflix account 2. Bob browses Netflix video Manifest file returned for requested video 4. DASH streaming Limelight CDN Level-3 CDN Multmedia Networking 7-36

37 Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications 7.5 network support for multimedia Multmedia Networking 7-37

38 Voice-over-IP (VoIP) v VoIP end-end-delay requirement: needed to maintain conversational aspect higher delays noticeable, impair interactivity < 150 msec: good > 400 msec bad includes application-level (packetization,playout), network delays Multmedia Networking 7-38

39 VoIP characteristics v speaker s audio: alternating talk spurts, silent periods. 64 kbps during talk spurt pkts generated only during talk spurts 20 msec chunks at 8 Kbytes/sec: 160 bytes of data v application-layer header added to each chunk v chunk+header encapsulated into UDP or TCP segment v application sends segment into socket every 20 msec during talkspurt Multmedia Networking 7-39

40 VoIP: packet loss, delay v network loss: IP datagram lost due to network congestion (router buffer overflow) v delay loss: IP datagram arrives too late for playout at receiver delays: processing, queueing in network; end-system (sender, receiver) delays typical maximum tolerable delay: 400 ms v loss tolerance: depending on voice encoding, loss concealment, packet loss rates between 1% and 10% can be tolerated Multmedia Networking 7-40

41 Delay jitter constant bit rate transmission variable network delay (jitter) client reception buffered data constant bit rate playout at client client playout delay time v end-to-end delays of two consecutive packets: difference can be more or less than 20 msec (transmission time difference) Multmedia Networking 7-41

42 VoIP: fixed playout delay v receiver attempts to playout each chunk exactly q msecs after chunk was generated. chunk has time stamp t: play out chunk at t+q chunk arrives after t+q: data arrives too late for playout: data lost v tradeoff in choosing q: large q: less packet loss small q: better interactive experience Multmedia Networking 7-42

43 VoIP: fixed playout delay sender generates packets every 20 msec during talk spurt. first packet received at time r first playout schedule: begins at p second playout schedule: begins at p packets packets generated packets received loss playout schedule p' - r playout schedule p - r time r p p' Multmedia Networking 5-43

44 Adaptive playout delay v goal: low playout delay, low late loss rate v approach: adaptive playout delay adjustment: estimate network delay, adjust playout delay at beginning of each talk spurt silent periods compressed and elongated chunks still played out every 20 msec during talk spurt v adaptively estimate packet delay: (EWMA - exponentially weighted moving average, recall TCP RTT estimate): d i = (1 α)d i-1 + α (r i t i ) delay estimate after ith packet small constant, e.g. 0.1 time received - time sent (timestamp) measured delay of ith packet Multmedia Networking 7-44

45 VoiP: recovery from packet loss (1) Challenge: recover from packet loss given small tolerable delay between original transmission and v v playout each ACK/NAK takes ~ one RTT alternative: Forward Error Correction (FEC) send enough bits to allow recovery without retransmission (recall two-dimensional parity in Ch. 5) simple FEC v for every group of n chunks, create redundant chunk by exclusive OR-ing n original chunks v send n+1 chunks, increasing bandwidth by factor 1/n v can reconstruct original n chunks if at most one lost chunk from n+1 chunks, with playout delay Multmedia Networking 7-45

46 VoiP: recovery from packet loss (2) another FEC scheme: v piggyback lower quality stream v send lower resolution audio stream as redundant information v e.g., nominal stream PCM at 64 kbps and redundant stream GSM at 13 kbps v non-consecutive loss: receiver can conceal loss v generalization: can also append (n-1)st and (n-2)nd low-bit rate chunk Multmedia Networking 7-46

47 VoiP: recovery from packet loss (3) interleaving to conceal loss: v v audio chunks divided into smaller units, e.g. four 5 msec units per 20 msec audio chunk packet contains small units from different chunks v v if packet lost, still have most of every original chunk no redundancy overhead, but increases playout delay Multmedia Networking 7-47

48 Example v Suppose the first scheme generates a redundant chunk for every four original chunks. Suppose the second scheme uses a low-bit rate encoding whose transmission rate is 25% of the transmission rate of the nominal stream. a. How much additional bandwidth does each scheme require? How much play back delay does each scheme add? b. How do the two schemes perform if the first packet is lost in every group of five packets? Which scheme will have better audio quality? c. How do the two schemes perform if the first packet is lost in every group of two packets? Which scheme will have better audio quality? Multimedia Networking 7-48

49 Voice-over-IP: Skype v v proprietary applicationlayer protocol (inferred via reverse engineering) encrypted msgs P2P components: clients: skype peers connect directly to each other for VoIP call super nodes (SN): skype peers with special functions Skype login server Skype clients (SC) supernode (SN) supernode overlay network overlay network: among SNs to locate SCs login server Application Layer 2-49

50 Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications: RTP, SIP 7.5 network support for multimedia Multimedia Networking 7-50

51 Multimedia protocols v Real-Time Protocol (RTP): specifies packet structure for packets carrying audio, video data v Real-Time Control Protocol (RTCP): provides statistics (# packets sent, # packets lost, interarrival jitter, etc.) and control information for an RTP session. v Session Initiation Protocol (SIP): signaling protocol to control multimedia communication sessions. Multimedia Networking 7-51

52 Example: setting up call to known IP address Alice Bob INVITE c=in IP m=audio RTP/AVP 0 port 5060 port OK c=in IP m=audio RTP/AVP 3 ACK port Bob's terminal rings v Alice s SIP invite message indicates her port number, IP address, encoding she prefers to receive (PCM µlaw) v Bob s 200 OK message indicates his port number, IP address, preferred encoding (GSM) port GSM µ Law audio port v SIP messages can be sent over TCP or UDP; here sent over UDP time time v default SIP port number is 5060 Multimedia Networking 7-52

53 Example of SIP message INVITE SIP/2.0 Via: SIP/2.0/UDP From: To: Call-ID: Content-Type: application/sdp Content-Length: 885 c=in IP m=audio RTP/AVP 0 Notes: v HTTP message syntax v sdp = session description protocol v Call-ID is unique for every call v Here we don t know Bob s IP address intermediate SIP servers needed v Alice sends, receives SIP messages using SIP default port 5060 v Alice specifies in header that SIP client sends, receives SIP messages over UDP Multimedia Networking 7-53

54 Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications 7.5 network support for multimedia Multimedia Networking 7-54

55 Network support for multimedia Multimedia Networking 7-55

56 Dimensioning best effort networks v approach: deploy enough link capacity so that congestion doesn t occur, multimedia traffic flows without delay or loss low complexity of network mechanisms (use current best effort network) high bandwidth costs v challenges: network dimensioning: how much bandwidth is enough? estimating network traffic demand: needed to determine how much bandwidth is enough (for that much traffic) Multimedia Networking 7-56

57 Fluctuating traffic patterns v Weekly and daily peaks Multimedia Networking 7-57

58 Providing multiple classes of service v thus far: making the best of best effort service one-size fits all service model v alternative: multiple classes of service partition traffic into classes network treats different classes of traffic differently (analogy: VIP service versus regular service) v granularity: differential service among multiple classes, not among individual connections v history: ToS bits 0111 Multimedia Networking 7-58

59 Multiple classes of service: scenario H1 R1 R2 H3 H2 R1 output interface queue 1.5 Mbps link H4 Multimedia Networking 7-59

60 Scenario 1: mixed HTTP and VoIP v example: 1Mbps VoIP, HTTP share 1.5 Mbps link. HTTP bursts can congest router, cause audio loss want to give priority to audio over HTTP R1 R2 Principle 1 packet marking needed for router to distinguish between different classes;; and new router policy to treat packets accordingly Multimedia Networking 7-60

61 Principles for QOS guarantees (more) v what if applications misbehave (VoIP sends higher than declared rate) policing: force source adherence to bandwidth allocations v marking, policing at network edge 1 Mbps phone R1 R2 1.5 Mbps link packet marking and policing Principle 2 provide protection (isolation) for one class from others Multimedia Networking 7-61

62 Principles for QOS guarantees (more) v allocating fixed (non-sharable) bandwidth to flow: inefficient use of bandwidth if flows doesn t use its allocation 1 Mbps phone R1 1 Mbps logical link R2 1.5 Mbps link 0.5 Mbps logical link Principle 3 while providing isolation, it is desirable to use resources as efficiently as possible Multimedia Networking 7-62

63 Scheduling and policing mechanisms v scheduling: choose next packet to send on link v FIFO (first in first out) scheduling: send in order of arrival to queue real-world example? discard policy: if packet arrives to full queue: who to discard? tail drop: drop arriving packet priority: drop/remove on priority basis random: drop/remove randomly packet arrivals queue (waiting area) link (server) packet departures Multimedia Networking 7-63

64 Scheduling policies: priority priority scheduling: send highest priority queued packet v multiple classes, with different priorities class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc. real world example? arrivals arrivals packet in service classify high priority queue (waiting area) departures low priority queue (waiting area) link (server) departures 5 Multimedia Networking 7-64

65 Scheduling policies: still more Round Robin (RR) scheduling: v multiple classes v cyclically scan class queues, sending one complete packet from each class (if available) v real world example? arrivals packet in service departures Multimedia Networking 7-65

66 Scheduling policies: still more Weighted Fair Queuing (WFQ): v generalized Round Robin v each class gets weighted amount of service in each cycle v real-world example? Multimedia Networking 7-66

67 Example v Consider the following figure. v a. Assuming FIFO service, indicate the time that packet 2 through 12 each leave the queue. For each packet, what is the delay between its arrival and the beginning of the slot in which it is transmitted? What is the average of this delay over 12 packets? Multimedia Networking 7-67

68 Example v b. Now assume a priority service, and assume that odd-numbered packets are high priority, and even numbered packets are low priority. Indicate v c. Now assume round robin service. Assume that packets 1,2,3,6,11, and 12 are from class 1, and packets 4,5,7,8,9, and 10 are from class 2. Indicate v d. Now assume weighted fair queueing (WFQ) service. Assume that odd-numbered packets are from class 1, and even-numbered packets are from class 2. Class 1 has a WFQ weight of 2, while class 2 has a WFQ weight of 1. Indicate Multimedia Networking 7-68

69 Policing mechanisms goal: limit traffic to not exceed declared parameters Three common-used criteria: v (long term) average rate: how many pkts can be sent per unit time (in the long run) crucial question: what is the interval length: 100 packets per sec or 6000 packets per min have same average! v (max.) burst size: max number of pkts sent consecutively (with no intervening idle) Multimedia Networking 7-69

70 Policing mechanisms: implementation token bucket: limit input to specified burst size and average rate v bucket can hold b tokens v tokens generated at rate r token/sec unless bucket full v over interval of length t: number of packets admitted less than or equal to (r t + b) Multimedia Networking 7-70

71 Example v Consider the following leaky bucket. The token buffer can hold at most two tokens, and is initially full at t=0. New tokens arrive at rate of one token per slot. The output link speed is such that if two packets obtain tokens at the beginning of a time slot, they can both go to the output link in the same time slot. The timing details are as follows: packet arrival -> packet departure -> add tokens - > next time slot Multimedia Networking 7-71

72 Example a. For each time slot, identify the packets that are in the queue and the number of tokens in the bucket, immediately after the arrivals have been processed but before any of the packets have passed through the queue and removed a token. b. For each time slot, indicate which packets appear on the output after the token(s) have been removed from the queue. Multimedia Networking 7-72

73 Policing and QoS guarantees v token bucket, WFQ combine to provide guaranteed upper bound on delay, i.e., QoS guarantee! arriving traffic token rate, r bucket size, b WFQ per-flow rate, R arriving traffic D = b/r max Multimedia Networking 7-73

74 Differentiated services v want qualitative service classes behaves like a wire relative service distinction: Platinum, Gold, Silver v scalability: simple functions in network core, relatively complex functions at edge routers (or hosts) signaling, maintaining per-flow router state difficult with large number of flows v don t define service classes, provide functional components to build service classes Multimedia Networking 7-74

75 Diffserv architecture edge router: v per-flow traffic management v marks packets as in-profile and out-profile marking b r scheduling... core router: v per class traffic management v buffering and scheduling based on marking at edge v preference given to in-profile packets over out-of-profile packets Multimedia Networking 7-75

76 Per-connection QOS guarantees v basic fact of life: can not support traffic demands beyond link capacity 1 Mbps phone R1 R2 1 Mbps phone 1.5 Mbps link Principle 4 call admission: flow declares its needs, network may block call (e.g., busy signal) if it cannot meet needs Multimedia Networking 7-76

77 QoS guarantee scenario v resource reservation call setup, signaling (RSVP allows applications to reserve bandwidth for their data flows.) traffic, QoS declaration per-element admission control QoS-sensitive scheduling (e.g., WFQ) request/ reply Multimedia Networking 7-77

Content distribution networks

Content distribution networks Content distribution networks v challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users? v option 2: store/serve multiple copies of videos at

More information

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach Chapter 9 Multimedia Networking A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

CSC 4900 Computer Networks: Multimedia Applications

CSC 4900 Computer Networks: Multimedia Applications CSC 4900 Computer Networks: Multimedia Applications Professor Henry Carter Fall 2017 Last Time What is a VPN? What technology/protocol suite is generally used to implement them? How much protection does

More information

Multimedia: video ... frame i+1

Multimedia: video ... frame i+1 Multimedia: video video: sequence of images displayed at constant rate e.g. 24 images/sec digital image: array of pixels each pixel represented by bits coding: use redundancy within and between images

More information

Week-12 (Multimedia Networking)

Week-12 (Multimedia Networking) Computer Networks and Applications COMP 3331/COMP 9331 Week-12 (Multimedia Networking) 1 Multimedia: audio analog audio signal sampled at constant rate telephone: 8,000 samples/sec CD music: 44,100 samples/sec

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 multimedia applications:

More information

Multimedia Networking

Multimedia Networking Multimedia Networking #2 Multimedia Networking Semester Ganjil 2012 PTIIK Universitas Brawijaya #2 Multimedia Applications 1 Schedule of Class Meeting 1. Introduction 2. Applications of MN 3. Requirements

More information

Real-Time Control Protocol (RTCP)

Real-Time Control Protocol (RTCP) Real-Time Control Protocol (RTCP) works in conjunction with RTP each participant in RTP session periodically sends RTCP control packets to all other participants each RTCP packet contains sender and/or

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications 7.5 network support for multimedia

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 9.1 multimedia networking applications 9.2 streaming stored video 9.3 voice-over-ip 9.4 protocols for real-time conversational applications: SIP Skip RTP, RTCP 9.5 network

More information

Multimedia networking: outline

Multimedia networking: outline Multimedia networking: outline 7.1 multimedia networking applications 7.2 streaming stored video 7.3 voice-over-ip 7.4 protocols for real-time conversational applications: RTP, SIP 7.5 network support

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

MULTIMEDIA I CSC 249 APRIL 26, Multimedia Classes of Applications Services Evolution of protocols

MULTIMEDIA I CSC 249 APRIL 26, Multimedia Classes of Applications Services Evolution of protocols MULTIMEDIA I CSC 249 APRIL 26, 2018 Multimedia Classes of Applications Services Evolution of protocols Streaming from web server Content distribution networks VoIP Real time streaming protocol 1 video

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Application Layer Video Streaming, CDN and Sockets Sec 2.6 2.7 Prof. Lina Battestilli Fall 2017 Outline Application Layer (ch 2) 2.1 principles of network

More information

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach Chapter 9 Multimedia Networking A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Chapter 5 VoIP. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March Multmedia Networking

Chapter 5 VoIP. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March Multmedia Networking Chapter 5 VoIP Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Multmedia Networking audio signal amplitude Multimedia: audio analog audio signal sampled

More information

Multimedia Networking

Multimedia Networking Multimedia Networking 1 Multimedia, Quality of Service (QoS): What is it? Multimedia applications: Network audio and video ( continuous media ) QoS Network provides application with level of performance

More information

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach Topic 4b: QoS Principles Chapter 9 Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 9-1 Providing multiple classes of service thus far: making

More information

Multimedia

Multimedia Multimedia Communications @CS.NCTU Lecture 11: Multimedia Networking Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 2 Why Multimedia Networking Matters? Watching video over Internet Uploading user-generated content

More information

Chapter 2 Application Layer

Chapter 2 Application Layer Chapter 2 Application Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Network

More information

Improving QOS in IP Networks. Principles for QOS Guarantees

Improving QOS in IP Networks. Principles for QOS Guarantees Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Quality of Service. Qos Mechanisms. EECS 122: Lecture 15

Quality of Service. Qos Mechanisms. EECS 122: Lecture 15 Quality of Service EECS 122: Lecture 15 Department of Electrical Engineering and Computer Sciences University of California Berkeley Qos Mechanisms Policing at the edge of the network controls the amount

More information

Today. March 7, 2006 EECS122 Lecture 15 (AKP) 4. D(t) Scheduling Discipline. March 7, 2006 EECS122 Lecture 15 (AKP) 5

Today. March 7, 2006 EECS122 Lecture 15 (AKP) 4. D(t) Scheduling Discipline. March 7, 2006 EECS122 Lecture 15 (AKP) 5 Today Quality of Service EECS 122: Lecture 15 Department of Electrical Engineering and Computer Sciences University of California Berkeley End to End QoS Network Layer: Multiple routers Intserv Diffserv

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 5. End-to-End Protocols Transport Services and Mechanisms User Datagram Protocol (UDP) Transmission Control Protocol (TCP) TCP Congestion Control

More information

Network Layer Enhancements

Network Layer Enhancements Network Layer Enhancements EECS 122: Lecture 14 Department of Electrical Engineering and Computer Sciences University of California Berkeley Today We have studied the network layer mechanisms that enable

More information

Digital Asset Management 5. Streaming multimedia

Digital Asset Management 5. Streaming multimedia Digital Asset Management 5. Streaming multimedia 2015-10-29 Keys of Streaming Media Algorithms (**) Standards (*****) Complete End-to-End systems (***) Research Frontiers(*) Streaming... Progressive streaming

More information

Mul$media Networking. #10 QoS Semester Ganjil 2012 PTIIK Universitas Brawijaya

Mul$media Networking. #10 QoS Semester Ganjil 2012 PTIIK Universitas Brawijaya Mul$media Networking #10 QoS Semester Ganjil 2012 PTIIK Universitas Brawijaya Schedule of Class Mee$ng 1. Introduc$on 2. Applica$ons of MN 3. Requirements of MN 4. Coding and Compression 5. RTP 6. IP Mul$cast

More information

Application-Layer Protocols Peer-to-Peer Systems, Media Streaming & Content Delivery Networks

Application-Layer Protocols Peer-to-Peer Systems, Media Streaming & Content Delivery Networks COMP 431 Internet Services & Protocols Application-Layer Protocols Peer-to-Peer Systems, Media Streaming & Content Delivery Networks Jasleen Kaur February 14, 2019 Application-Layer Protocols Outline Example

More information

55:054 Communication Networks 12/11/2008

55:054 Communication Networks 12/11/2008 Chapter 7 Multimedia Networking Multimedia and Quality of Service: What is it? multimedia applications: network audio and video ( continuous media ) All material copyright 1996-2007 J.F Kurose and K.W.

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking Principles Classify multimedia applications Identify the network services and the requirements the apps need Making the best of best effort service Mechanisms for providing

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

Chapter 5 Link Layer. Down Approach. Computer Networking: A Top. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer. Down Approach. Computer Networking: A Top. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Link layer,

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

The Diffie-Hellman Key Exchange

The Diffie-Hellman Key Exchange ISC: SECURITY AND QOS The Diffie-Hellman Key Exchange A mechanism to establish secret keys without the need for CAs Based on the difficulty of computing discrete logarithms of large numbers Public (or

More information

of-service Support on the Internet

of-service Support on the Internet Quality-of of-service Support on the Internet Dept. of Computer Science, University of Rochester 2008-11-24 CSC 257/457 - Fall 2008 1 Quality of Service Support Some Internet applications (i.e. multimedia)

More information

Video Streaming and Media Session Protocols

Video Streaming and Media Session Protocols Video Streaming and Media Session Protocols 1 Streaming Stored Multimedia Stored media streaming File containing digitized audio / video Stored at source Transmitted to client Streaming Client playout

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Internet Services & Protocols. Quality of Service Architecture

Internet Services & Protocols. Quality of Service Architecture Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:

More information

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017 CS 43: Computer Networks Switches and LANs Kevin Webb Swarthmore College December 5, 2017 Ethernet Metcalfe s Ethernet sketch Dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology

More information

CS 457 Multimedia Applications. Fall 2014

CS 457 Multimedia Applications. Fall 2014 CS 457 Multimedia Applications Fall 2014 Topics Digital audio and video Sampling, quantizing, and compressing Multimedia applications Streaming audio and video for playback Live, interactive audio and

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 18 1 Final project demo Please do the demo THIS week to the TAs. Or you are allowed to use

More information

Lecture 9: Media over IP

Lecture 9: Media over IP Lecture 9: Media over IP These slides are adapted from the slides provided by the authors of the book (to the right), available from the publisher s website. Computer Networking: A Top Down Approach 5

More information

Multimedia Networking

Multimedia Networking CE443 Computer Networks Multimedia Networking Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by

More information

Multimedia Applications. Classification of Applications. Transport and Network Layer

Multimedia Applications. Classification of Applications. Transport and Network Layer Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Protocols Quality of Service and Resource Management

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Tema 0: Transmisión de Datos Multimedia

Tema 0: Transmisión de Datos Multimedia Tema 0: Transmisión de Datos Multimedia Clases de aplicaciones multimedia Redes basadas en IP y QoS Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,

More information

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs Chapter 6 The Link Layer and LANs A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the

More information

Chapter 4. DataLink Layer. Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.

Chapter 4. DataLink Layer. Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. Chapter 4 DataLink Layer Reference: Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. DataLink Layer Link Layer 4.1 Link-Layer Addressing 4.2 Ethernet

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Link Layer, Switches, VLANS, MPLS, Data Centers Sec 6.4 to 6.7 Prof. Lina Battestilli Fall 2017 Chapter 6 Outline Link layer and LANs: 6.1 introduction,

More information

Lecture 9 Ethernet and other Link Layer protocols

Lecture 9 Ethernet and other Link Layer protocols Lecture 9 Ethernet and other Link Layer protocols From Kurose & Ross Book slightly modified by Romaric Duvignau duvignau@chalmers.se Thanks and enjoy! JFK/KWR All material copyright 1996-2016 J.F Kurose

More information

The Link Layer and LANs: Ethernet and Swiches

The Link Layer and LANs: Ethernet and Swiches The Link Layer and LNs: Ethernet and Swiches EECS3214 2018-03-21 Link layer, LNs: outline 6.1 introduction, services 6.2 error detection, correction 6.3 multiple access protocols 6.4 LNs addressing, RP

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Multimedia networking: outline

Multimedia networking: outline Computer Network Architectures and Multimedia Guy Leduc Chapter 4 Multimedia Applications & Transport Sections 9.1 to 9.4 from Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith

More information

Multimedia Networking

Multimedia Networking Multimedia Networking Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-09/

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

COMP6218: Content Caches. Prof Leslie Carr

COMP6218: Content Caches. Prof Leslie Carr COMP6218: Content Caches Prof Leslie Carr 1 Slashdot.org The Slashdot effect, also known as slashdotting, occurs when a popular website links to a smaller site, causing a massive increase in traffic 2

More information

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 5 Link Layer. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

Data Communications & Networks. Session 10 Main Theme Multimedia Networking. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 10 Main Theme Multimedia Networking. Dr. Jean-Claude Franchitti Data Communications & Networks Session 10 Main Theme Multimedia Networking Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted

More information

Lec 17 Multimedia Transport: RTP, TCP/HTTP and QUIC

Lec 17 Multimedia Transport: RTP, TCP/HTTP and QUIC Multimedia Communication Lec 17 Multimedia Transport: RTP, TCP/HTTP and QUIC Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/2016sp.video-communication/main.html Z. Li, Multimedia Communciation,

More information

CSC 4900 Computer Networks: Link Layer (2)

CSC 4900 Computer Networks: Link Layer (2) CSC 4900 Computer Networks: Link Layer (2) Professor Henry Carter Fall 2017 Link Layer 6.1 Introduction and services 6.2 Error detection and correction 6.3 Multiple access protocols 6.4 LANs addressing,

More information

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach Topic 4a Router Operation and Scheduling Ch4: Network Layer: The Data Plane Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 4-1 Chapter 4:

More information

Network Support for Multimedia

Network Support for Multimedia Network Support for Multimedia Daniel Zappala CS 460 Computer Networking Brigham Young University Network Support for Multimedia 2/33 make the best of best effort use application-level techniques use CDNs

More information

Multimedia Networking. Protocols for Real-Time Interactive Applications

Multimedia Networking. Protocols for Real-Time Interactive Applications Multimedia Networking Protocols for Real-Time Interactive Applications Real Time Protocol Real Time Control Protocol Session Initiation Protocol H.323 Real-Time Protocol (RTP) RTP is companion protocol

More information

Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices

Outline. QoS routing in ad-hoc networks. Real-time traffic support. Classification of QoS approaches. QoS design choices Outline QoS routing in ad-hoc networks QoS in ad-hoc networks Classifiction of QoS approaches Instantiation in IEEE 802.11 The MAC protocol (recap) DCF, PCF and QoS support IEEE 802.11e: EDCF, HCF Streaming

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

Principles behind data link layer services

Principles behind data link layer services Data link layer Goals: Principles behind data link layer services Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control: Done!

More information

Multimedia Networking. Network Support for Multimedia Applications

Multimedia Networking. Network Support for Multimedia Applications Multimedia Networking Network Support for Multimedia Applications Protocols for Real Time Interactive Applications Differentiated Services (DiffServ) Per Connection Quality of Services Guarantees (IntServ)

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Telematics 2. Chapter 3 Quality of Service in the Internet. (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources)

Telematics 2. Chapter 3 Quality of Service in the Internet. (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources) Telematics 2 Chapter 3 Quality of Service in the Internet (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources) Telematics 2 (WS 14/15): 03 Internet QoS 1 Improving QOS

More information

Streaming (Multi)media

Streaming (Multi)media Streaming (Multi)media Overview POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks 1 POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks Circuit Switching Connection-oriented

More information

Multimedia! 23/03/18. Part 3: Lecture 3! Content and multimedia! Internet traffic!

Multimedia! 23/03/18. Part 3: Lecture 3! Content and multimedia! Internet traffic! Part 3: Lecture 3 Content and multimedia Internet traffic Multimedia How can multimedia be transmitted? Interactive/real-time Streaming 1 Voice over IP Interactive multimedia Voice and multimedia sessions

More information

Part 3: Lecture 3! Content and multimedia!

Part 3: Lecture 3! Content and multimedia! Part 3: Lecture 3! Content and multimedia! Internet traffic! Multimedia! How can multimedia be transmitted?! Interactive/real-time! Streaming! Interactive multimedia! Voice over IP! Voice and multimedia

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 7: Multimedia Networking 7-1 Multimedia,

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs A note on the use of these ppt slides: All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 4 th edition.

More information

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure.

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure. hapter 5 Link Layer and LNs omputer Networking: Top Down pproach 5 th edition. Jim Kurose, Keith Ross ddison-wesley, pril 2009. hapter 5: The Data Link Layer Our goals: understand principles behind data

More information

Summary of MAC protocols

Summary of MAC protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division, Code Division, Frequency Division Random partitioning (dynamic) ALOHA, S-ALOHA,

More information

Chapter 7 Multimedia Networking. Chapter 7 outline. Chapter 7: goals. Multimedia and Quality of Service: What is it? QoS

Chapter 7 Multimedia Networking. Chapter 7 outline. Chapter 7: goals. Multimedia and Quality of Service: What is it? QoS Chapter 7 Multimedia Networking Multimedia and Quality of Service: What is it? multimedia applications: network audio and video ( continuous media ) A note on the use of these ppt slides: We re making

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Common network/protocol functions

Common network/protocol functions Common network/protocol functions Goals: Identify, study common architectural components, protocol mechanisms Synthesis: big picture Depth: important topics not covered in introductory courses Overview:

More information

Multimedia Applications over Packet Networks

Multimedia Applications over Packet Networks Multimedia Networking and Quality of Service Mario Baldi Technical Univeristy of Torino Computer Engineering Department mario.baldi@polito.it +39 011 564 7067 staff.polito.it/mario.baldi Nota di Copyright

More information

Chapter 7 Multimedia Networking

Chapter 7 Multimedia Networking Chapter 7 Multimedia Networking A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify,

More information

Principles behind data link layer services:

Principles behind data link layer services: Data link layer Goals: Principles behind data link layer services: Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control Example

More information

Principles behind data link layer services:

Principles behind data link layer services: Data link layer Goals: Principles behind data link layer services: Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control Example

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

Multicast and Quality of Service. Internet Technologies and Applications

Multicast and Quality of Service. Internet Technologies and Applications Multicast and Quality of Service Internet Technologies and Applications Aims and Contents Aims Introduce the multicast and the benefits it offers Explain quality of service and basic techniques for delivering

More information

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request

CS 455/555 Intro to Networks and Communications. Link Layer Addressing, Ethernet, and a Day in the Life of a Web Request CS 455/555 Intro to Networks and Communications Link Layer Addressing, ernet, and a Day in the Life of a Web Request Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu

More information

Part1: Lecture 4 QoS

Part1: Lecture 4 QoS Part1: Lecture 4 QoS Last time Multi stream TCP: SCTP Multi path TCP RTP and RTCP SIP H.323 VoIP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP)

More information

Multimedia Networking and Quality of Service

Multimedia Networking and Quality of Service Multimedia Networking and Quality of Service Mario Baldi Politecnico di Torino (Technical Univeristy of Torino) Department of Computer Engineering mario.baldi [at] polito.it +39 011 564 7067 staff.polito.it/mario.baldi

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information