Admission Control in Time-Slotted Multihop Mobile Networks

Size: px
Start display at page:

Download "Admission Control in Time-Slotted Multihop Mobile Networks"

Transcription

1 dmission ontrol in Time-Slotted Multihop Mobile Networks Shagun Dusad and nshul Khandelwal Information Networks Laboratory Department of Electrical Engineering Indian Institute of Technology - ombay Mumbai India bstract The emergence of nomadic applications have recently generated a lot of interest in next-generation wireless network infrastructures which provide differentiated service classes. So it is important to study how the quality of service (QoS), such as packet loss and bandwidth, should be guaranteed. To accomplish this, we study an admission control scheme which can guarantee bandwidth for real-time applications in multihop mobile networks. We examine via simulation the system performance in various QoS traffic flows and mobility environments. On-demand of the protocol feature enhances the performance in the mobile environment because the source can keep more connectivity with enough bandwidth to a receiver in the path-finding duration. Simulation experiments show this improvement. Introduction Mobile d-hoc Networks (MNETs) are future wireless networks consisting entirely of mobile nodes that communicate on-the-move without base stations. Nodes in these networks will both generate user and application traffic and carry out network control and routing protocols. Rapidly changing connectivity, network partitions, higher error rates, collision interference, and bandwidth and power constraints together pose new problems in network control, particularly in the design of higher level protocols such as routing and in implementing applications with Quality of Service requirements. Without an inherent infrastructure, the mobiles handle the necessary control and networking tasks by themselves, generally through the use of distributed control algorithms. Multihop connections, whereby intermediate nodes send the packets toward their final destination, are supported to allow for efficient wireless communication between parties that are relatively far apart. d hoc wireless networks are highly appealing for many reasons. They can be rapidly deployed and reconfigured. They can be tailored to specific applications. They are also highly robust due to their distributed nature, node redundancy, and the lack of single points of failure. Personal communications and the mobile computing require a wireless network infrastructure that is fast deployable, possibly multihop, and capable of multimedia service support. The wireless network is often connected to a wired network (e.g., TM or Internet) so that the TM or Internet multimedia connection can be extended to the mobile users. There are several contributions that have already appeared in the wireless extensions of the wired TM networks. Most of them focus on the cellular architecture for wireless personal communication networks (PNs) supported by TM backbone infrastructures. In this architecture, all mobile hosts in a communication cell can reach a base station in one hop. The problem of interconnecting the multihop wireless network to the wired backbone requires a quality-of-service (QoS) guarantee not only over a single hop, but also over an entire wireless multihop path. The key to the support of QoS reporting is QoS routing, which provides path QoS (bandwidth) information at each source. Prior research efforts in multihop mobile networks have not fully addressed this problem.. Problem Formulation We address the problem of supporting realtime communications in a multihop adhoc network using QoS routing, and we study a protocol for QoS routing. We consider different QoS traffic flows in the network to evaluate the performance of our protocol. Multimedia applications such as digital audio and video have much more stringent QoS requirements than traditional datagram applications. For a network to deliver QoS guarantees, it must reserve and control resources. major challenge in multihop, multimedia networks is the ability to account for resources so that bandwidth reservations (in a deterministic or statistical sense) can be placed on them. We note that in cellular (single hop) networks, such accountability is made easily by the fact that all stations learn of each others requirements, either directly or through a con-

2 trol station (e.g., the base station in cellular systems). However, this solution cannot be extended to the multihop environment. To support QoS for real-time applications, we need to know not only the minimal delay path to the destination, but also the available bandwidth on it. V (Virtual onnection) should be accepted only if there is enough available bandwidth. Otherwise, it would disrupt the existing V.s. We only consider bandwidth as the QoS (thus omitting signal-to-interference ratio (SIR), packet loss rate, etc.). This is because bandwidth guarantee is one of the most critical requirements for real-time applications. andwidth in timeslotted network systems is measured in terms of the number of free slots. The goal of the QoS routing algorithm is to find a shortest path such that the available bandwidth on the path is above the minimal requirement. To compute the bandwidth-constrained shortest path, we not only have to know the available bandwidth on each link along the path, but we also have to determine the scheduling of free slots. There are two types of schemes complimented with DM used in mobile adhoc network M protocol : TDM based [] Here we use time slots for data transfer and control information transfer. lso different nodes can use different codes so even adjacent nodes can transfer data in the same slots. The main constraint here is the synchronization of the time slots which still needs overheads (in the form of preamble part of packets). pplying highly synchronized solutions in an ad hoc network becomes expensive and synchronization can fail when the nodes are mobile. The slot allocation algorithm in TDM schemes is also vulnerable to mobility in the network since slot allocations must be reconfigured whenever there are changes in available bandwidth or changes to routes in the network. RTS/TS based SM/ [] Here we use RTS/ TS signals to reserve the bandwidth. The bandwidth depends not only on the node but also the nodes inside the carrier sensing region of the node in view. This is because if one node is transmitting then no node in the sensing region can transmit.. Organization of the Report Section. discusses the bandwidth calculation algorithm giving details of the proposed system model. Section. describes the On-demand nature of the protocol. Section describes the simulation results. Finally, we conclude in Section. System Model The system consits of arbitrary distributed nodes following addmission control based on [].. andwidth alculation Lin and Liu [] proposed a new bandwidth routing scheme which contains bandwidth calculation and reservation for mobile ad hoc networks. In this protocol, the bandwidth information is embedded in the routing table. y exchanging the routing table, the end-to-end bandwidth of the shortest hop-distance path for a given source-destination pair can be calculated. If there is not enough bandwidth over the shortest path, the call request will be blocked. However, not enough bandwidth over the shortest path does not mean that there does not exist any bandwidth route in the network. That is, there may be a route which meets the bandwidth requirement but is not the shortest in hop distance. Therefore, this protocol may miss some feasible bandwidth routes and the blocking probability is high. In this protocol, we would like to route and reserve resources for a connection in a way that: ) minimizes the blocking probability by attempting several routes in parallel; ) always considers the feasible route with the minimal cost (the shortest route); ) selects a route with a cost that is close to the min-cost feasible route; and ) limits the flow of information and the use of computing resources in that process. ontrol Phase Data Phase Slot Figure : TDM time frame structure. ontributions of this work Our main contribution is to simulate the given protocol []. This protocol is based on TDM/DM. We simulate a network where the nodes are following this protocol and measure the effective throughput, average number of calls, average number of incomplete calls against the mobility of nodes and the average arrival rate for various QoS requirements. The admission control protocol [] used here is Ondemand type. Figure : No collision at within DM system s was the network environment discussed in [], the transmission time scale is organized in frames, each containing a fixed number of time slots. The entire network is D

3 synchronized on a frame and slot basis. Namely, time is divided into slots, which are grouped into frames. Propagation delays will cause imprecision in slot synchronization. However, slot guard times (fractions of microsecond) will amply absorb propagation delay effects (in the order of microseconds). Each time a frame is divided into two phases: a control phase and data phase. The size of each slot in the control phase is much smaller than the one in the data phase. The TDM time frame structure is shown in Fig. The control phase is used to perform all the control functions, such as slot and frame synchronization, power measurement, code assignment, V setup, slots request, etc. The amount of data slots per frame assigned to a V is determined according to the bandwidth requirement. We assume a TDM within our network; a code division multiple access (DM) is overlaid on top of the TDM infrastructure. Multiple sessions can share a common TDM slot via DM. In this case, the near-far problem and related power control algorithm become critical to the efficiency of the channel access. n ideal code assignment scheme [] is assumed running in the lower layer of our system, and all spreading codes are completely orthogonal to each other. Thus the hidden terminal problem can be avoided. onsider the example illustrated in Fig.. can use the same slots as to send packets to D encoded by a different code without any collision at. It is notable that this case is assumed only one session through,, and D. If and (different sessions) intend to send packets to in the same slot, then only one packet can be received and another will be lost depending on which code locks on. one hop distance link bandwidth from to One or more hop distance Path bandwidth from to alculation of path bandwidth from to Figure : adwidth calculation overview ecause only adjacent nodes can hear the reservation information, and the network is a multihop, the free slots recorded at every node may be different. We define the set of the common free slots between two adjacent nodes to be the link bandwidth. onsider the example shown in Fig. in which intends to compute the bandwidth to. We assume the next hop is. y using our end-to-end bandwidth calculation scheme, if can compute the available bandwidth to, then can use this information and the link bandwidth to to compute the bandwidth to. We define the path bandwidth (also called end-to-end bandwidth) between two nodes, which are not necessarily adjacent, to be the set of available slots between them. If two nodes are adjacent, the path bandwidth is the link bandwidth. We can observe that link W (P, Q) = freeslot(p ) freeslot(q). freeslot(x)is defined to be the slots, which are not used by any adjacent host of X to receive or to send packets, from the point of view at node X. Next, we can further employ link bandwidth to compute the end-to-end bandwidth. This information can provide us an indication of whether there is enough bandwidth on a given route between a source-destination pair. We consider four different cases which may arise while calculating the end-to-end bandwidth. Figure : The Equal case Figure : The containing case case : In this case, (refer Fig. ) just the floor of the size of anyone one of the bandwidth divided by gives the path bandwidth size of to. ase : In this case, (refer Fig. ) the minimum of the two sets, one obtained by subtracting the subset from superset and the subset itself gives the path bandwidth size from to. ase : In this case, (refer Fig. ) both the bandwidth are mutually exclusive so just the minimum of the two gives the path bandwidth size from to. ase : This is a general case as shown in Fig.. We can successively calculate the effective bandwidth by applying all the three cases listed above as this is the combination of them. The steps for reducing this to the above cases are shown in Fig. and Fig. 9 Figure : The exclusive case

4 9 Figure : The general case 9 Figure : Step 9 Figure : Overview of the On-demand routing Figure 9: Step In general, to compute the available bandwidth for a path in a time-slotted network, one not only needs to know the available bandwidth on the links along the path, but also needs to determine the scheduling of the free slots. Resolving slot scheduling at the same time as available bandwidth is searched on the entire path is a NP-complete problem. We assume a simple heuristic based algorithm to achieve an suboptimal solution.. On Demand Routing In the case of multihop networking, most routing protocols for packet radio networks can be categorized as being before-demand or on-demand protocols. efore-demand protocols compute and maintain routes even if nodes are not actively transmitting packets. Generally, each host needs to maintain a distance vector-based routing table. In contrast, on-demand protocols compute routes only when necessary. n over view of the on-demand routing used here is illustrated in Fig.. In [], the shortest path is the only candidate when searching for a feasible bandwidth route. ecause of before-demand bandwidth calculation, a host can decide either to accept or to reject a new call immediately without any delay. Due to the rapidly changing availability of resources and the processing delay, it is difficult and impractical to use the before-demand routing approach to maintain the pool of candidates for each source-destination pair. On-demand routing can also save the control messages for maintaining inactive routes. ecause it is on-demand, there will be delay for the virtual circuit setup but we ignore this delay for the sake of simplicity in the simulation set up. Simulation Results We simulate the proposed admission control scheme considering the environment which consists of mobile hosts roaming uniformly in meter square area. Each node moves randomly at uniform speed. The transmission range is m. In our model, effect of error caused by the channel variation is ignored. we have paid more attention to the effect of mobility upon the system performance. data slots are assumed to be in data phase. Since the number of data slots is less than the number of nodes, nodes need to compete for these data slots. The source-destination pair of a call is randomly chosen and their distance must be greater than one. Once a call request is accepted on each of the nodes present in the route, only then data-slots are reserved on each of the nodes. The slots are released when either the session is finished or the connection is broken between any two immediate nodes in the route. We have simulated for average number of connections and average throughput against the mobility of users. We observe from Figure and that for both the cases as the arrival rate increases the throughput of the system also increase implying that it has not reached to its capacity. We observe that for the case with QoS requirement of four slots (refer Fig. ) the system reaches its capacity for higher values of arrival rate whereas it could not reach to its full capacity with QoS requirement of slots (Fig. ). lso, we observe that failure rate increases with increase mobility when the system performs near its capacity (refer Fig. ) onclusion In summary, we have simulated an admission control over an on-demand routing protocol which is suitable for use

5 Figure : verage number of incomplete calls versus call arrival rate for mobility m/s and QOS slots 9 9 Figure : verage throughput versus call arrival rate for mobility m/s and QOS slots Figure : verage number of incomplete calls versus call arrival rate for mobility m/s and QOS slots Figure : verage throughput versus call arrival rate for mobility m/s and QOS slots Figure : verage number of calls versus call arrival rate for mobility m/s and QOS slots with multihop mobile networks. Here the route chosen needs not to be the shortest one. ut it must satisfy the QoS Figure : verage number of calls versus call arrival rate for mobility m/s and QOS slots requirement. Therefore we need to find all the paths from source to destination. This admission control can be applied to two important scenarios: multimedia ad-hoc wire-

6 ..... Figure : verage number of incomplete calls versus mobility for mean interarrival time slots and QOS slots Figure : verage number of incomplete calls versus mobility for mean interarrival time slots and QOS slots Figure : verage throughput versus mobility for mean interarrival time slots and QOS slots Figure : verage throughput versus mobility for mean interarrival time slots and QOS slots Figure 9: verage number of calls versus mobility for mean interarrival time slots and QOS slots Figure : verage number of calls versus mobility for mean interarrival time slots and QOS slots less networks and multihop extension wireless TM networks. Specially, the bandwidth information can be used to assist in performing the handoff of a mobile host between two TM base stations. The on-demand routing helps in the

7 networks where the due to the rapidly changing availability of resources and the processing delay, it is difficult and impractical to use the before-demand routing approach to maintain the pool of candidates for each source-destination pair. Therefore, here we consider on-demand routing protocol which not only can search for several routes in parallel for a connection, but also can incorporate our bandwidth calculation scheme. References []. R. Lin, dmission control in timeslotted multihop mobile networks, IEEE Journal on Selected reas in ommunications vol. 9, no. : Oct, pp.9-9. [] Y. Yang and R. Kravets, ontention-aware admission control for adhoc networks, UIU Tech Report,. []. R. Lin and J. S. Liu, QoS routing in ad hoc wireless networks, IEEE J. Select. reas ommun., vol., pp.., ug. 999.

Dynamic Behavior of Bandwidth Control Management in Mobile Ad-Hoc Network

Dynamic Behavior of Bandwidth Control Management in Mobile Ad-Hoc Network Dynamic Behavior of Bandwidth Control Management in Mobile Ad-Hoc Network Kumar Manoj Member, IAENG, S. C. Sharma & S.P. Singh Abstract Quality of Service (QoS) support in Mobile Ad-hoc NETworks (MANETs)

More information

Admission Control in Time-Slotted Multihop Mobile Networks

Admission Control in Time-Slotted Multihop Mobile Networks 1974 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 10, OCTOBER 2001 Admission Control in Time-Slotted Multihop Mobile Networks Chunhung Richard Lin Abstract The emergence of nomadic applications

More information

Subject: Adhoc Networks

Subject: Adhoc Networks ISSUES IN AD HOC WIRELESS NETWORKS The major issues that affect the design, deployment, & performance of an ad hoc wireless network system are: Medium Access Scheme. Transport Layer Protocol. Routing.

More information

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem.

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem. Dynamic Channel Allocation in LANs and MANs Chapter 4 The Medium Access Control Sublayer 1. Station Model. 2. Single Channel Assumption. 3. Collision Assumption. 4. (a) Continuous Time. (b) Slotted Time.

More information

The Basics of Wireless Communication Octav Chipara

The Basics of Wireless Communication Octav Chipara The asics of Wireless ommunication Octav hipara genda hannel model: the protocol model High-level media access TM, SM hidden/exposed terminal problems WLN Fundamentals of routing proactive on-demand 2

More information

SENSOR-MAC CASE STUDY

SENSOR-MAC CASE STUDY SENSOR-MAC CASE STUDY Periodic Listen and Sleep Operations One of the S-MAC design objectives is to reduce energy consumption by avoiding idle listening. This is achieved by establishing low-duty-cycle

More information

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu Chapter 5 Ad Hoc Wireless Network Jang Ping Sheu Introduction Ad Hoc Network is a multi-hop relaying network ALOHAnet developed in 1970 Ethernet developed in 1980 In 1994, Bluetooth proposed by Ericsson

More information

On-Demand QoS Routing in Multihop Mobile Networks

On-Demand QoS Routing in Multihop Mobile Networks On-Demand QoS Routing in Multihop Mobile Networks Chunhung Richard LIN Department of Computer Science and Engineering, National Sun Yat-Sen University, TAIWAN Email: lin@mail.nsysu.edu.tw Abstract The

More information

Enhanced Broadcasting and Code Assignment in Mobile Ad Hoc Networks

Enhanced Broadcasting and Code Assignment in Mobile Ad Hoc Networks Enhanced Broadcasting and Code Assignment in Mobile Ad Hoc Networks Jinfang Zhang, Zbigniew Dziong, Francois Gagnon and Michel Kadoch Department of Electrical Engineering, Ecole de Technologie Superieure

More information

QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered Control Technique

QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered Control Technique 2009 International Conference on Computer Engineering and Applications IPCSIT vol.2 (2011) (2011) IACSIT Press, Singapore QoS and System Capacity Optimization in WiMAX Multi-hop Relay Using Flexible Tiered

More information

COMPUTER NETWORK Model Test Paper

COMPUTER NETWORK Model Test Paper Model Test Paper Question no. 1 is compulsory. Attempt all parts. Q1. Each question carries equal marks. (5*5 marks) A) Difference between Transmission Control Protocol (TCP) and User Datagram Protocol.

More information

Lecture 9. Quality of Service in ad hoc wireless networks

Lecture 9. Quality of Service in ad hoc wireless networks Lecture 9 Quality of Service in ad hoc wireless networks Yevgeni Koucheryavy Department of Communications Engineering Tampere University of Technology yk@cs.tut.fi Lectured by Jakub Jakubiak QoS statement

More information

Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies Volume 2, Issue 4, April 2014 International Journal of Advance Research in Computer Science and Management Studies Research Article / Paper / Case Study Available online at: www.ijarcsms.com Efficient

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

Wireless networks. Wireless Network Taxonomy

Wireless networks. Wireless Network Taxonomy Wireless networks two components to be considered in deploying applications and protocols wireless links ; mobile computing they are NOT the same thing! wireless vs. wired links lower bandwidth; higher

More information

An Efficient Broadcast Algorithm To Transmit Data In Multi-hop Relay MANETs Fathima Sana 1, Dr. M. Sudheep Elayidom 2

An Efficient Broadcast Algorithm To Transmit Data In Multi-hop Relay MANETs Fathima Sana 1, Dr. M. Sudheep Elayidom 2 International Journal of Emerging Trends in Science and Technology Impact Factor: 2.838 INC-BEAT 2016 An Efficient Broadcast Algorithm To Transmit Data In Multi-hop Relay MANETs Fathima Sana 1, Dr. M.

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks First Author A.Sandeep Kumar Narasaraopeta Engineering College, Andhra Pradesh, India. Second Author Dr S.N.Tirumala Rao (Ph.d)

More information

Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1]

Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1] Performance Analysis of Storage-Based Routing for Circuit-Switched Networks [1] Presenter: Yongcheng (Jeremy) Li PhD student, School of Electronic and Information Engineering, Soochow University, China

More information

Survey on Multicast Routing Protocols in MANETs

Survey on Multicast Routing Protocols in MANETs Survey on Multicast Routing Protocols in MANETs A Viswanath, Dept of CSE, Sree Vidyanikethan Engineering College, Tirupati, AP, India. N Papanna, M.Tech, Assistant Professor, Sree Vidyanikethan Engineering

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS SWITCHING A switch is a mechanism that allows us to interconnect links to form a larger network. A switch is a multi-input, multi-output device, which transfers packets

More information

UNIT 1 Questions & Solutions

UNIT 1 Questions & Solutions UNIT 1 Questions & Solutions 1. Give any 5 differences between cellular wireless networks and ADHOC wireless network. Ans: The following table shows the difference between cellular networks and Adhoc wireless

More information

MAC Sublayer(1) Principal service of the Medium Access Control Sublayer: Allocating a single broadcast channel (mostly a LAN) among competing users

MAC Sublayer(1) Principal service of the Medium Access Control Sublayer: Allocating a single broadcast channel (mostly a LAN) among competing users MAC Sublayer(1) Principal service of the Medium Access Control Sublayer: Allocating a single broadcast channel (mostly a LAN) among competing users Static Channel Allocation: Frequency Division Multiplexing

More information

MEGHADOOT: A PACKET RADIO NETWORK ARCHITECTURE FOR RURAL COMMUNITIES

MEGHADOOT: A PACKET RADIO NETWORK ARCHITECTURE FOR RURAL COMMUNITIES MEGHADOOT: A PACKET RADIO NETWORK ARCHITECTURE FOR RURAL COMMUNITIES B. S. Manoj, K. R. Bharath Bhushan, S. S. Doshi, I. Karthigeyan, and C. Siva Ram Murthy High Performance Computing and Networking Laboratory

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

Literature Review on Characteristic Analysis of Efficient and Reliable Broadcast in Vehicular Networks

Literature Review on Characteristic Analysis of Efficient and Reliable Broadcast in Vehicular Networks International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 3 (2013), pp. 205-210 International Research Publication House http://www.irphouse.com Literature Review

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Multiple Access in Cellular and Systems

Multiple Access in Cellular and Systems Multiple Access in Cellular and 802.11 Systems 1 GSM The total bandwidth is divided into many narrowband channels. (200 khz in GSM) Users are given time slots in a narrowband channel (8 users) A channel

More information

A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS

A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS A FORWARDING CACHE VLAN PROTOCOL (FCVP) IN WIRELESS NETWORKS Tzu-Chiang Chiang,, Ching-Hung Yeh, Yueh-Min Huang and Fenglien Lee Department of Engineering Science, National Cheng-Kung University, Taiwan,

More information

UNIT- 2 Physical Layer and Overview of PL Switching

UNIT- 2 Physical Layer and Overview of PL Switching UNIT- 2 Physical Layer and Overview of PL Switching 2.1 MULTIPLEXING Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. Figure

More information

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network

Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network Intra and Inter Cluster Synchronization Scheme for Cluster Based Sensor Network V. Shunmuga Sundari 1, N. Mymoon Zuviria 2 1 Student, 2 Asisstant Professor, Computer Science and Engineering, National College

More information

Performance Evaluation of MANET through NS2 Simulation

Performance Evaluation of MANET through NS2 Simulation International Journal of Electronic and Electrical Engineering. ISSN 0974-2174, Volume 7, Number 1 (2014), pp. 25-30 International Research Publication House http://www.irphouse.com Performance Evaluation

More information

ARPA Mobile Information Systems Applications Workshop December 7-8, Mobile Networking

ARPA Mobile Information Systems Applications Workshop December 7-8, Mobile Networking ARPA Mobile Information Systems Applications Workshop December 7-8, 1995 Mobile Networking Randy H. Katz CS Division EECS Department University of California, Berkeley 1 Mobile Networking Middleware Reliable

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part I: Medium Access Control Part II: Local Area Networks CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Chapter Overview Broadcast

More information

Speech Support in Wireless, Mobile and Multihop Networks

Speech Support in Wireless, Mobile and Multihop Networks Proc. Natl. Sci. Counc. ROC(A) Vol. 24, No. 6, 2000. pp. 441-449 Speech Support in Wireless, Mobile and Multihop Networks HSIAO-KUANG WU *, MARIO GERLA **, AND RAJIVE BAGRODIA ** * Computer Science and

More information

SUMMERY, CONCLUSIONS AND FUTURE WORK

SUMMERY, CONCLUSIONS AND FUTURE WORK Chapter - 6 SUMMERY, CONCLUSIONS AND FUTURE WORK The entire Research Work on On-Demand Routing in Multi-Hop Wireless Mobile Ad hoc Networks has been presented in simplified and easy-to-read form in six

More information

Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application. Ling Wang

Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application. Ling Wang Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application Ling Wang ling.wang2@wayne.edu Outline Introduction Parameterization Differentiation Evaluation

More information

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS AMANDEEP University College of Engineering, Punjabi University Patiala, Punjab, India amandeep8848@gmail.com GURMEET KAUR University College of Engineering,

More information

ECEN 5032 Data Networks Medium Access Control Sublayer

ECEN 5032 Data Networks Medium Access Control Sublayer ECEN 5032 Data Networks Medium Access Control Sublayer Peter Mathys mathys@colorado.edu University of Colorado, Boulder c 1996 2005, P. Mathys p.1/35 Overview (Sub)networks can be divided into two categories:

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET

QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET 2011 International Conference on Information and Network Technology IPCSIT vol.4 (2011) (2011) IACSIT Press, Singapore QoS Routing By Ad-Hoc on Demand Vector Routing Protocol for MANET Ashwini V. Biradar

More information

Ethernet. Lecture 6. Outline. Ethernet - Physical Properties. Ethernet - Physical Properties. Ethernet

Ethernet. Lecture 6. Outline. Ethernet - Physical Properties. Ethernet - Physical Properties. Ethernet Lecture 6 Ethernet Reminder: Homework 2, Programming Project 2 due on 9/20/12. Thick-net Thin-net Twisted Pair Thursday, September 13 CS 475 Networks - Lecture 6 1 Thursday, September 13 CS 475 Networks

More information

Final Exam: Mobile Networking (Part II of the course Réseaux et mobilité )

Final Exam: Mobile Networking (Part II of the course Réseaux et mobilité ) Final Exam: Mobile Networking (Part II of the course Réseaux et mobilité ) Prof. J.-P. Hubaux February 12, 2004 Duration: 2 hours, all documents allowed Please write your answers on these sheets, at the

More information

CHAPTER 5 PROPAGATION DELAY

CHAPTER 5 PROPAGATION DELAY 98 CHAPTER 5 PROPAGATION DELAY Underwater wireless sensor networks deployed of sensor nodes with sensing, forwarding and processing abilities that operate in underwater. In this environment brought challenges,

More information

LANs Local Area Networks LANs provide an efficient network solution : To support a large number of stations Over moderately high speed

LANs Local Area Networks LANs provide an efficient network solution : To support a large number of stations Over moderately high speed Local Area Networks LANs provide an efficient network solution : To support a large number of stations Over moderately high speed With relatively small bit errors Multiaccess Protocols Communication among

More information

CS 716: Introduction to communication networks. - 8 th class; 17 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 8 th class; 17 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 8 th class; 17 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Key points to consider for MAC Types/Modes of communication: Although the medium is shared,

More information

Communication Networks

Communication Networks Communication Networks Chapter 3 Multiplexing Frequency Division Multiplexing (FDM) Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency

More information

The Novel HWN on MANET Cellular networks using QoS & QOD

The Novel HWN on MANET Cellular networks using QoS & QOD The Novel HWN on MANET Cellular networks using QoS & QOD Abstract: - Boddu Swath 1 & M.Mohanrao 2 1 M-Tech Dept. of CSE Megha Institute of Engineering & Technology for Women 2 Assistant Professor Dept.

More information

Mobile Ad-Hoc Wireless Network

Mobile Ad-Hoc Wireless Network Mobile Ad-Hoc Wireless Network Krunal N. Chandewar, H.R. Deshmukha Computer science Computer science,amravati university Amravati university Satkar Nagar, Nagpur Road Bhandara, India Abstract An ad hoc

More information

A DYNAMIC RESOURCE ALLOCATION STRATEGY FOR SATELLITE COMMUNICATIONS. Eytan Modiano MIT LIDS Cambridge, MA

A DYNAMIC RESOURCE ALLOCATION STRATEGY FOR SATELLITE COMMUNICATIONS. Eytan Modiano MIT LIDS Cambridge, MA A DYNAMIC RESOURCE ALLOCATION STRATEGY FOR SATELLITE COMMUNICATIONS Aradhana Narula-Tam MIT Lincoln Laboratory Lexington, MA Thomas Macdonald MIT Lincoln Laboratory Lexington, MA Eytan Modiano MIT LIDS

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Network Layer: Ad Hoc Routing Tamer Nadeem Dept. of Computer Science The OSI Communication Model Page 2 Spring 2012 CS 752/852 - Wireless

More information

Collisions & Virtual collisions in IEEE networks

Collisions & Virtual collisions in IEEE networks Collisions & Virtual collisions in IEEE 82.11 networks Libin Jiang EE228a project report, Spring 26 Abstract Packet collisions lead to performance degradation in IEEE 82.11 [1] networks. The carrier-sensing

More information

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL

CHAPTER 2 WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL WIRELESS SENSOR NETWORKS AND NEED OF TOPOLOGY CONTROL 2.1 Topology Control in Wireless Sensor Networks Network topology control is about management of network topology to support network-wide requirement.

More information

Chapter - 1 INTRODUCTION

Chapter - 1 INTRODUCTION Chapter - 1 INTRODUCTION Worldwide Interoperability for Microwave Access (WiMAX) is based on IEEE 802.16 standard. This standard specifies the air interface of fixed Broadband Wireless Access (BWA) system

More information

Simulation and Analysis of Impact of Buffering of Voice Calls in Integrated Voice and Data Communication System

Simulation and Analysis of Impact of Buffering of Voice Calls in Integrated Voice and Data Communication System Simulation and Analysis of Impact of Buffering of Voice Calls in Integrated Voice and Data Communication System VM Chavan 1, MM Kuber 2 & RJ Mukhedkar 3 1&2 Department of Computer Engineering, Defence

More information

Introduction to Mobile Ad hoc Networks (MANETs)

Introduction to Mobile Ad hoc Networks (MANETs) Introduction to Mobile Ad hoc Networks (MANETs) 1 Overview of Ad hoc Network Communication between various devices makes it possible to provide unique and innovative services. Although this inter-device

More information

AN ANTENNA SELECTION FOR MANET NODES AND CLUSTER HEAD GATEWAY IN INTEGRATED MOBILE ADHOC NETWORK

AN ANTENNA SELECTION FOR MANET NODES AND CLUSTER HEAD GATEWAY IN INTEGRATED MOBILE ADHOC NETWORK www.arpapress.com/volumes/vol9issue2/ijrras_9_2_09.pdf AN ANTENNA SELECTION FOR MANET NODES AND CLUSTER HEAD GATEWAY IN INTEGRATED MOBILE ADHOC NETWORK Ashish Bagwari 1, Danish Quamar 2, Noor Mohd 3 &

More information

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols High Level View EE 122: Ethernet and 802.11 Ion Stoica September 18, 2002 Goal: share a communication medium among multiple hosts connected to it Problem: arbitrate between connected hosts Solution goals:

More information

Expected Path Bandwidth Based Efficient Routing Mechanism in Wireless Mesh Network

Expected Path Bandwidth Based Efficient Routing Mechanism in Wireless Mesh Network Expected Path Bandwidth Based Efficient Routing Mechanism in Wireless Mesh Network K Anandkumar, D.Vijendra Babu PG Student, Chennai, India Head, Chennai, India ABSTRACT : Wireless mesh networks (WMNs)

More information

Ad Hoc Networks: Issues and Routing

Ad Hoc Networks: Issues and Routing Ad Hoc Networks: Issues and Routing Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks

Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks Implementation and simulation of OLSR protocol with QoS in Ad Hoc Networks Mounir FRIKHA, Manel MAAMER Higher School of Communication of Tunis (SUP COM), Network Department, m.frikha@supcom.rnu.tn ABSTRACT

More information

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy Lecture 12 December 04, 2017 Wireless Access Graduate course in Communications Engineering University of Rome La Sapienza Rome, Italy 2017-2018 Random Medium Access Control Part II - CSMA and Collision

More information

Comparative Study on Performance Evaluation of Ad-Hoc Network Routing Protocols Navpreet Chana 1, Navjot Kaur 2, Kuldeep Kumar 3, Someet Singh 4

Comparative Study on Performance Evaluation of Ad-Hoc Network Routing Protocols Navpreet Chana 1, Navjot Kaur 2, Kuldeep Kumar 3, Someet Singh 4 Comparative Study on Performance Evaluation of Ad-Hoc Network Routing Protocols Navpreet Chana 1, Navjot Kaur 2, Kuldeep Kumar 3, Someet Singh 4 1 Research Scholar, Computer Science and Engineering, Lovely

More information

Figure 1. Clustering in MANET.

Figure 1. Clustering in MANET. Volume 6, Issue 12, December 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Performance

More information

Overview of Networks

Overview of Networks CMPT765/408 08-1 Overview of Networks Qianping Gu 1 Overview of Networks This note is mainly based on Chapters 1-2 of High Performance of Communication Networks by J. Walrand and P. Pravin, 2nd ed, and

More information

3. Evaluation of Selected Tree and Mesh based Routing Protocols

3. Evaluation of Selected Tree and Mesh based Routing Protocols 33 3. Evaluation of Selected Tree and Mesh based Routing Protocols 3.1 Introduction Construction of best possible multicast trees and maintaining the group connections in sequence is challenging even in

More information

Spectrum Management in Cognitive Radio Networks

Spectrum Management in Cognitive Radio Networks Spectrum Management in Cognitive Radio Networks Jul 14,2010 Instructor: professor m.j omidi 1/60 BY : MOZHDEH MOLA & ZAHRA ALAVIKIA Contents Overview: Cognitive Radio Spectrum Sensing Spectrum Decision

More information

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5. Rahem Abri Content 1. Introduction 2. The Ad-hoc On-Demand Distance Vector Algorithm Path Discovery Reverse Path Setup Forward Path Setup Route Table Management Path Management Local Connectivity Management

More information

Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s

Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s Performance Evaluation of Mesh - Based Multicast Routing Protocols in MANET s M. Nagaratna Assistant Professor Dept. of CSE JNTUH, Hyderabad, India V. Kamakshi Prasad Prof & Additional Cont. of. Examinations

More information

Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks

Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks Efficient Hybrid Multicast Routing Protocol for Ad-Hoc Wireless Networks Jayanta Biswas and Mukti Barai and S. K. Nandy CAD Lab, Indian Institute of Science Bangalore, 56, India {jayanta@cadl, mbarai@cadl,

More information

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University Lecture 4: Wireless MAC Overview Hung-Yu Wei National Taiwan University Medium Access Control Topology 3 Simplex and Duplex 4 FDMA TDMA CDMA DSSS FHSS Multiple Access Methods Notice: CDMA and spread spectrum

More information

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University

Wireless and WiFi. Daniel Zappala. CS 460 Computer Networking Brigham Young University Wireless and WiFi Daniel Zappala CS 460 Computer Networking Brigham Young University Wireless Networks 2/28 mobile phone subscribers now outnumber wired phone subscribers similar trend likely with Internet

More information

They avoid the cost, installation, and maintenance of network infrastructure.

They avoid the cost, installation, and maintenance of network infrastructure. Ad Hoc Network Ammar Abu-Hudrouss Islamic University Gaza ١ Introduction An ad hoc wireless network is a collection of wireless mobile nodes that self-configure to form a network without the aid of any

More information

MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS

MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS MODIFIED VERTICAL HANDOFF DECISION ALGORITHM FOR IMPROVING QOS METRICS IN HETEROGENEOUS NETWORKS 1 V.VINOTH, 2 M.LAKSHMI 1 Research Scholar, Faculty of Computing, Department of IT, Sathyabama University,

More information

Wireless Backhaul Synchronization

Wireless Backhaul Synchronization Wireless Backhaul Synchronization Abstract This paper focuses on Next Generation Backhaul Networks Synchronization and the way it is implemented by Ceragon s high capacity, LTE Ready point to point microwave

More information

Review of Medium Access Control protocol for MANET

Review of Medium Access Control protocol for MANET Review of Medium Access Control protocol for MANET Khushboo Agarwal Department of CSE&IT, Madhav Institute of Technology and Science, Gwalior 474005 ka.agarwal5@gmail.com Abstract: The mobile Adhoc network

More information

Reversing Ticket Based Probing Routing Protocol for MANET

Reversing Ticket Based Probing Routing Protocol for MANET Reversing Ticket Based Probing Routing Protocol for MANET TURGUT YUCEL and MIN SONG Department of Electrical and Computer Engineering Old Dominion University Norfolk, VA 23529 U.S.A. http://www.odu.edu/networking

More information

Wireless Medium Access Control Protocols

Wireless Medium Access Control Protocols Wireless Medium Access Control Protocols Telecomunicazioni Undergraduate course in Electrical Engineering University of Rome La Sapienza Rome, Italy 2007-2008 Classification of wireless MAC protocols Wireless

More information

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg Five Problems Encoding/decoding Framing Error Detection Error Correction Media Access Five Problems Encoding/decoding Framing

More information

Keywords: AODV, MANET, WRP

Keywords: AODV, MANET, WRP Performance Analysis of AODV and WRP in MANET Sachchida Nand Singh*, Surendra Verma**, Ravindra Kumar Gupta*** *(Pursuing M.Tech in Software Engineering, SSSIST Sehore(M.P), India, Email: sesachchida@gmail.com)

More information

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks 1 Ravindra.E, 2 Pooja Agraharkar Asst Prof, Dept. of Electronics & Communication Engg, Mtech Student, Dept. of Electronics & Communication

More information

Physical Layer: Multiplexing, Spectrum Spreading and Switching. Covers Chapters# 06 & 08 from Text Book

Physical Layer: Multiplexing, Spectrum Spreading and Switching. Covers Chapters# 06 & 08 from Text Book Physical Layer: Multiplexing, Spectrum Spreading and Switching Covers Chapters# 06 & 08 from Text Book 2 Multiplexing From Chapter#06 3 Multiplexing If bandwidth of a medium linking two devices is greater

More information

Optical networking technology

Optical networking technology 1 Optical networking technology Technological advances in semiconductor products have essentially been the primary driver for the growth of networking that led to improvements and simplification in the

More information

Keywords: Medium access control, network coding, routing, throughput, transmission rate. I. INTRODUCTION

Keywords: Medium access control, network coding, routing, throughput, transmission rate. I. INTRODUCTION Performance Analysis of Network Parameters, Throughput Optimization Using Joint Routing, XOR Routing and Medium Access Control in Wireless Multihop Network 1 Dr. Anuradha M. S., 2 Ms. Anjali kulkarni 1

More information

Introduction. The fundamental purpose of data communications is to exchange information between user's computers, terminals and applications programs.

Introduction. The fundamental purpose of data communications is to exchange information between user's computers, terminals and applications programs. Introduction The fundamental purpose of data communications is to exchange information between user's computers, terminals and applications programs. Simplified Communications System Block Diagram Intro-1

More information

Dynamic bandwidth management for multihop wireless ad hoc networks

Dynamic bandwidth management for multihop wireless ad hoc networks Dynamic bandwidth management for multihop wireless ad hoc networks Sofiane Khalfallah Email: sofiane.khalfallah@insa-lyon.fr Cheikh Sarr Email: Cheikh.Sarr@insa-lyon.fr Isabelle Guerin Lassous Email: Isabelle.Guerin-Lassous@inrialpes.fr

More information

Random Assignment Protocols

Random Assignment Protocols Random Assignment Protocols Random assignment strategies attempt to reduce problem occur in fixed assignment strategy by eliminating pre allocation of bandwidth to communicating nodes. Random assignment

More information

PRIVACY AND TRUST-AWARE FRAMEWORK FOR SECURE ROUTING IN WIRELESS MESH NETWORKS

PRIVACY AND TRUST-AWARE FRAMEWORK FOR SECURE ROUTING IN WIRELESS MESH NETWORKS PRIVACY AND TRUST-AWARE FRAMEWORK FOR SECURE ROUTING IN WIRELESS MESH NETWORKS 1 PRASHANTH JAYAKUMAR, 2 P.S.KHANAGOUDAR, 3 VINAY KAVERI 1,3 Department of CSE, GIT, Belgaum, 2 Assistant Professor, Dept.

More information

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network Improving the Data Scheduling Efficiency of the IEEE 802.16(d) Mesh Network Shie-Yuan Wang Email: shieyuan@csie.nctu.edu.tw Chih-Che Lin Email: jclin@csie.nctu.edu.tw Ku-Han Fang Email: khfang@csie.nctu.edu.tw

More information

Wireless LAN -Architecture

Wireless LAN -Architecture Wireless LAN -Architecture IEEE has defined the specifications for a wireless LAN, called IEEE 802.11, which covers the physical and data link layers. Basic Service Set (BSS) Access Point (AP) Distribution

More information

Multicast Communications. Tarik Čičić, 4. March. 2016

Multicast Communications. Tarik Čičić, 4. March. 2016 Multicast Communications Tarik Čičić, 4. March. 06 Overview One-to-many communication, why and how Algorithmic approach: Steiner trees Practical algorithms Multicast tree types Basic concepts in multicast

More information

Chapter 6 Wireless and Mobile Networks

Chapter 6 Wireless and Mobile Networks Chapter 6 Wireless and Mobile Networks Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. 6: Wireless and Mobile Networks 6

More information

A Distributed Routing Algorithm for Supporting Connection-Oriented Service in Wireless Networks with Time-Varying Connectivity

A Distributed Routing Algorithm for Supporting Connection-Oriented Service in Wireless Networks with Time-Varying Connectivity A Distributed Routing Algorithm for Supporting Connection-Oriented Service in Wireless Networks with Time-Varying Connectivity Anastassios Michail Department of Electrical Engineering and Institute for

More information

Performance Evaluation of DSDV, DSR AND ZRP Protocol in MANET

Performance Evaluation of DSDV, DSR AND ZRP Protocol in MANET Performance Evaluation of, AND Protocol in MANET Zaiba Ishrat IIMT Engg college,meerut Meerut, India Pankaj singh Sidhi vinayak Group of College,Alwar Alwar,Rajasthan Rehan Ahmad IIMT Engg college,meerut

More information

Class-based Packet Scheduling Policies for Bluetooth

Class-based Packet Scheduling Policies for Bluetooth Class-based Packet Scheduling Policies for Bluetooth Vishwanath Sinha, D. Raveendra Babu Department of Electrical Engineering Indian Institute of Technology, Kanpur - 08 06, INDIA vsinha@iitk.ernet.in,

More information

CSC 4900 Computer Networks: Wireless Networks

CSC 4900 Computer Networks: Wireless Networks CSC 4900 Computer Networks: Wireless Networks Professor Henry Carter Fall 2017 Last Time Mobile applications are taking off! What about current platforms is fueling this? How are an application s permission

More information

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross

Wireless Networks. CSE 3461: Introduction to Computer Networking Reading: , Kurose and Ross Wireless Networks CSE 3461: Introduction to Computer Networking Reading: 6.1 6.3, Kurose and Ross 1 Wireless Networks Background: Number of wireless (mobile) phone subscribers now exceeds number of wired

More information

Subject Data Communication. Subject Code 15CS46. Module 2 (Part 2) Multiplexing and Switching

Subject Data Communication. Subject Code 15CS46. Module 2 (Part 2) Multiplexing and Switching 1. What is multiplexing? What are types of multiplexing? (Dec 2012) Multiplexing is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link. If the

More information

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS

AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS AN EFFICIENT MAC PROTOCOL FOR SUPPORTING QOS IN WIRELESS SENSOR NETWORKS YINGHUI QIU School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, 102206, China ABSTRACT

More information

MAC LAYER. Murat Demirbas SUNY Buffalo

MAC LAYER. Murat Demirbas SUNY Buffalo MAC LAYER Murat Demirbas SUNY Buffalo MAC categories Fixed assignment TDMA (Time Division), CDMA (Code division), FDMA (Frequency division) Unsuitable for dynamic, bursty traffic in wireless networks Random

More information