Advantages and disadvantages

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Advantages and disadvantages"

Transcription

1 Advantages and disadvantages Advantages Disadvantages Asynchronous transmission Simple, doesn't require synchronization of both communication sides Cheap, timing is not as critical as for synchronous transmission, therefore hardware can be made cheaper Set-up is very fast, so well suited for applications where messages are generated at irregular intervals, for example data entry from the keyboard Large relative overhead, a high proportion of the transmitted bits are uniquely for control purposes and thus carry no useful information Synchronous transmission Lower overhead and thus, greater throughput Slightly more complex Hardware is more expensive

2 3.3 Data Transmission Modes The transmission of binary data across a link can be accomplished in either parallel or serial mode. In parallel mode, multiple bits are sent with each clock tick. In serial mode, 1 bit is sent with each clock tick. While there is one way to send parallel data, there are three subclasses of serial transmission: asynchronous, synchronous, and isochronous. Figure 3.3: Data transmission and modes Serial and Parallel Serial Transmission In serial transmission one bit follows another, so we need only one communication channel rather than n to transmit data between two communicating devices. The advantage of serial over parallel transmission is that with only one communication channel, serial transmission reduces cost of transmission over parallel by roughly a factor of n. Since communication within devices is parallel, conversion devices are required at the interface between the sender and the line (parallel-to-serial) and between the line and the receiver (serial-

3 to-parallel). Serial transmission occurs in one of three ways: asynchronous, synchronous, and isochronous. Parallel Transmission Binary data, consisting of 1 s and 0 s, may be organized into groups of n bits each. Computers produce and consume data in groups of bits much as we conceive of and use spoken language in the form of words rather than letters. By grouping, we can send data n bits at a time instead of 1. This is called parallel transmission. The mechanism for parallel transmission is a simple one: Use n wires to send n bits at one time. That way each bit has its own wire, and all n bits of one group can be transmitted with each clock tick from one device to another. The advantage of parallel transmission is speed. All else being equal, parallel transmission can increase the transfer speed by a factor on n over serial transmission. But there is a significant disadvantage: cost. Parallel transmission requires n communication lines just to transmit the data stream. Because this is expensive, parallel transmission is usually limited to short distances Simplex, Half duplex and Full duplex There are three modes of data transmission that correspond to the three types of circuits available. These are: a) Simplex b) Half-duplex c) Full-duplex Figure 3.4: Different Modes of Data Transmission Simplex

4 Simplex communications imply a simple method of communicating, which they are. In simplex communication mode, there is a one-way communication transmission. Television transmission is a good example of simplex communications. The main transmitter sends out a signal (broadcast), but it does not expect a reply as the receiving units cannot issue a reply back to the transmitter. A data collection terminal on a factory floor or a line printer (receive only). Another example of simplex communication is a keyboard attached to a computer because the keyboard can only send data to the computer. At first thought it might appear adequate for many types of application in which flow of information is unidirectional. However, in almost all data processing applications, communication in both directions is required. Even for a one-way flow of information from a terminal to computer, the system will be designed to allow the computer to signal the terminal that data has been received. Without this capability, the remote used might enter data and never know that it was not received by the other terminal. Hence, simplex circuits are seldom used because a return path is generally needed to send acknowledgement, control or error signals. Half-duplex In half-duplex mode, both units communicate over the same medium, but only one unit can send at a time. While one is in send mode, the other unit is in receiving mode. It is like two polite people talking to each other one talks, the other listens, but neither one talks at the same time. Thus, a half duplex line can alternately send and receive data. It requires two wires. This is the most common type of transmission for voice communications because only one person is supposed to speak at a time. It is also used to connect a terminal with a computer. The terminal might transmit data and then the computer responds with an acknowledgement. The transmission of data to and from a hard disk is also done in half duplex mode. Full duplex In a half-duplex system, the line must be turned around each time the direction is reversed. This involves a special switching circuit and requires a small amount of time (approximately 150 milliseconds). With high speed capabilities of the computer, this turn-around time is unacceptable in many instances. Also, some applications require simultaneous transmission in both directions. In such cases, a full-duplex system is used that allows information to flow simultaneously in both directions on the transmission path. Use of a full-duplex line improves efficiency as the line turnaround time required in a half-duplex arrangement is eliminated. It requires four wires Synchronous and Asynchronous transmission Synchronous Transmission In synchronous transmission, the bit stream is combined into longer frames, which may contain multiple bytes. Each byte, however, is introduced onto the transmission link without a gap between it and the next one. It is left to the receiver to separate the bit stream into bytes for decoding purpose. In other words, data are transmitted as an unbroken sting of 1s and 0s, and the receiver separates that string into the bytes, or characters, it needs to reconstruct the information. Without gaps and start and stop bits, there is no built-in mechanism to help the receiving device adjust its bits synchronization midstream. Timing becomes very important, therefore, because the accuracy of the received information is completely dependent on the ability of the receiving device to keep an accurate count of the bits as they come in.

5 The advantage of synchronous transmission is speed. With no extra bits or gaps to introduce at the sending end and remove at the receiving end, and, by extension, with fewer bits to move across the link, synchronous transmission is faster than asynchronous transmission of data from one computer to another. Byte synchronization is accomplished in the data link layer. Figure 3.5: Synchronous transmission Asynchronous Transmission Asynchronous transmission is so named because the timing of a signal is unimportant. Instead, information is received and translated by agreed upon patterns. As long as those patterns are followed, the receiving device can retrieve the information without regard to the rhythm in which it is sent. Patterns are based on grouping the bit stream into bytes. Each group, usually 8 bits, is sent along the link as a unit. The sending system handles each group independently, relaying it to the link whenever ready, without regard to t timer. Without synchronization, the receiver cannot use timing to predict when the next group will arrive. To alert the receiver to the arrival of an new group, therefore, an extra bit is added to the beginning of each byte. This bit, usually a 0, is called the start bit. To let the receiver know that the byte is finished, 1 or more additional bits are appended to the end of the byte. These bits, usually 1s, are called stop bits. By this method, each byte is increased in size to at least 10 bits, of which 8 bits is information and 2 bits or more are signals to the receiver. In addition, the transmission of each byte may then be followed by a gap of varying duration. This gap can be represented either by an idle channel or by a stream of additional stop bits. The start and stop bits and the gap alert the receiver to the beginning and end of the each byte and also it to synchronize with the data stream. This mechanism is called asynchronous because, at the byte level, the sender and receiver do not have to be synchronized. But within each byte, the receiver must still by synchronized with the incoming bit stream. That is, some synchronization is required, but only for the duration of a single byte. The receiving device resynchronizes at the onset of each new byte. When the receiver detects a start bit, it sets

6 a timer and begins counting bits as they come in. after n bits, the receiver looks for a stop bit. As soon as it detects the stop bit, it waits until it detects the next start bit. Figure 3.6: Asynchronous transmission Isochronous Transmission In real-time audio and video, in which uneven delays between frames are not acceptable, synchronous transmission fails. For example, TV images are broadcast at the rate of 30 images per second; they must be viewed at the same rate. If each image is send by using one or more frames, there should be no delays between frames. For this type of application, synchronization between characters is not enough; the entire stream of bits must be synchronized. The isochronous transmission guarantees that the data arrive at a fixed rate. Self Assessment Questions: State whether the following statements are True or False: 4. Serial transmission is costlier than parallel transmission. 5. In half duplex, transmission is done at a time from the sender and receiver. 6. In full duplex turn-around time is eliminated to the sender and the receiver. 7. In asynchronous transmission the bits are received by patterns 3.4 Switching A network is a set of connected devices. Whenever we have multiple devices, we have the problem of how to connect them to make one-to-one communication possible. One of the better solutions is switching. A switch is network consists of a series of interlinked nodes, called switches. Switches are devices capable of crating temporary connections between two or more devices linked to the switch. In a switched network, some of these nodes are connected to the end systems (computers or telephones). Others are used only for routing. Switched networks are divided, as shown in the figure.

7 Figure 3.7: Different types of switching techniques Circuit switching A circuit switched network consists of a set of switches connected by physical links. A connection between two stations is a dedicated path made of one or more links. It is mainly used for telephones to call from one to one. Figure 3.8: Circuit switching in telephone In the figure, each office has three incoming lines and three outgoing lines. When call passes through a switching office, a physical connection is established between the line on which the call came in and one of the output lines, as shown by the dotted lines. An important property of circuit switching is the need to set up an end-to-end path before any data can be sent. The elapsed time between the end of dialing and the start of ringing can easily be 10 sec, more on long-distance or international calls. Before data transmissions begin, the destination telephone should give acknowledgement. Once call setup, the only delay for data is the propagation time for the electromagnetic signal, about 5 msec per 1000 km. There is no problem of congestion Message switching The message switching is used to transfer the messages form one end to other end. There is no physical path is establishes in advance between the sender and receiver. Initially the messages were converted to Morse code i.e. in the form of dots and dashes. Each dot or dash was communicated by transmitting short and long pulses of electrical current over a copper wire. In this method a human operator was needed to encode the text messages, routing decision, error checking. Here also we use the concept of store-and forward, where the entire messages were

8 received fully, inspected for errors, and then transmitted to the destinations. The same method with slight change we are following in our applications Packet switching In packet switching, we transfer the messages in terms of small block fixed sizes called packets. In packet switching, there is no path; packets are routed independently by sharing the network at time to time, by following the best path to the destination. Packets can be in order to the destination. Packet switching is more fault tolerant than circuit switching. The store-and-forward transmission is used to route to the destination, while storing the packet in the routers main memory. Congestion may occur when more packets are sending from the various hosts Comparison of switching techniques Self Assessment Questions: Parallel Transmission a. Binary data consisting of 1s and 0s may be organized into groups of n bits each b. By grouping we can send data n bits at a time instead of one bit

9 Serial Transmission a. One bit follows another, so we need only one channel rather than n to transmit data between two devices b. Conversion devices are required at the interface Advantage COST Types of Serial Transmission There are two types of Serial Transmission: Asychronous Transmission Synchronous Transmission Asynchronous Transmission a. It is so named because the timing of the signal is unimportant. Instead information is received and translated by agreed upon patterns b. Start and Stop Bits Asynchronous Transmission Advantages Cheap Effective Disadvantages Slow Synchronous Transmission

10 Data is transmitted as an unbroken string of 1 s and 0 s and the receiver separates that string into the bytes or characters it need to reconstruct the information Synchronous Transmission Advantage Speed Figure Different modes of transmission Parallel Transmission Parallel transmission involves grouping several bits, say n, together and sending all the n bits at a time. Figure shows how parallel transmission occurs for n = 8. This can be accomplishes with the help of eight wires bundled together in the form of a cable with a connector at each end. Additional wires, such as request (req) and acknowledgement (ack) are required for asynchronous transmission. Primary advantage of parallel transmission is higher speed, which is achieved at the expense of higher cost of cabling. As this is expensive for longer distances, parallel transmission is feasible only for short distances. Figure Parallel mode of communication with n = 8 Serial Transmission

11 Serial transmission involves sending one data bit at a time. Figure shows how serial transmission occurs. It uses a pair of wire for communication of data in bit-serial form. Version 2 CSE IIT, Kharagpur Since communication within devices is parallel, it needs parallel-to-serial and serial-to- parallel conversion at both ends. Serial mode of communication widely used because of the following advantages: Reduced cost of cabling: Lesser number of wires is required as compared to parallel connection Reduced cross talk: Lesser number of wires result in reduced cross talk Availability of suitable communication media Inherent device characteristics: Many devices are inherently serial in nature Portable devices like PDAs, etc use serial communication to reduce the size of the connector

12 However, it is slower than parallel mode of communication. There are two basic approaches for serial communication to achieve synchronization of data transfer between the source-destination pair. These are referred to as asynchronous and synchronous. In the first case, data are transmitted in small sizes, say character by character, to avoid timing problem and make data transfer selfsynchronizing, as discussed later. However, it is not very efficient because of large overhead. To overcome this problem, synchronous mode is used. In synchronous mode, a block with large number of bits can be sent at a time. However, this requires tight synchronization between the transmitter and receiver clocks. Figure Serial mode of communication Direction of data flow: There are three possible modes in serial communication: simplex, full duplex and half duplex. In simplex mode, the communication is unidirectional, such as from a computer to a printer, as shown in Fig (a). In full-duplex mode both the sides can communicate simultaneously, as shown in Fig (b). On the other hand, in halfduplex mode of communication, each station can both send and receive data, as shown in Fig (c). But, when one is sending, the other one can only receive and vice versa. Version 2 CSE IIT, Kharagpur (a)

13 (b) (c) Figure Direction of data flow Framing and Synchronization Why Framing and Synchronization? Normally, units of data transfer are larger than a single analog or digital encoding symbol. It is necessary to recover clock information for both the signal (so we can recover the right number of symbols and recover each symbol as accurately as possible), and obtain synchronization for larger units of data (such as data words and frames). It is necessary to recover the data in words or blocks because this is the only way the receiver process will be able to interpret the data received; for a given bit stream. Depending on the byte boundaries, there will be seven or eight ways to interpret the bit stream as ASCII characters, and these are likely to be very different. So, it is necessary to add other bits to the block that convey control information used in the data link control procedures. The data along with preamble, postamble, and control information forms a frame. This framing is necessary for the purpose of synchronization and other data control functions Synchronization Data sent by a sender in bit-serial form through a medium must be correctly interpreted

14 at the receiving end. This requires that the beginning, the end and logic level and duration of each bit as sent at the transmitting end must be recognized at the receiving end. There are three synchronization levels: Bit, Character and Frame. Moreover, to achieve synchronization, two approaches known as asynchronous and synchronous transmissions are used. Frame synchronization is the process by which incoming frame alignment signals (i.e., distinctive bit sequences) are identified, i.e. distinguished from data bits, permitting the data bits within the frame to be extracted for decoding or retransmission. The usual Version 2 CSE IIT, Kharagpur practice is to insert, in a dedicated time slot within the frame, a non-information bit that is used for the actual synchronization of the incoming data with the receiver. In order to receive bits in the first place, the receiver must be able to determine how fast bits are being sent and when it has received a signal symbol. Further, the receiver needs to be able to determine what the relationship of the bits in the received stream have to one another, that is, what the logical units of transfer are, and where each received bit fits into the logical units. We call these logical units frames. This means that in addition to bit (or transmission symbol) synchronization, the receiver needs word and frame synchronization Synchronous communication (bit-oriented)

15 Timing is recovered from the signal itself (by the carrier if the signal is analog, or by regular transitions in the data signal or by a separate clock line if the signal is digital). Scrambling is often used to ensure frequent transitions needed. The data transmitted may be of any bit length, but is often constrained by the frame transfer protocol (data link or MAC protocol). Bit-oriented framing only assumes that bit synchronization has been achieved by the underlying hardware, and the incoming bit stream is scanned at all possible bit positions for special patterns generated by the sender. The sender uses a special pattern (a flag pattern) to delimit frames (one flag at each end), and has to provide for data transparency by use of bit stuffing (see below). A commonly used flag pattern is HDLC's flag as shown in Fig The bit sequence is used for both preamble and postamble for the purpose of synchronization. A frame format for bit-oriented synchronous frame is shown in Fig Apart from the flag bits there are control fields. This field contains the commands, responses and sequences numbers used to maintain the data flow accountability of the link, defines the functions of the frame and initiates the logic to control the movement of traffic between sending and receiving stations (a) Specific pattern

16 to represent start of frame (b) Specific pattern to represent end of frame Figure Bit oriented framing (a) Data to be sent to the peer, (b) Data after being character stuffed. Version 2 CSE IIT, Kharagpur Figure Frame format for synchronous communication Summary of the approach:

17 Initially 1 or 2 synchronization characters are sent Data characters are then continuously sent without any extra bits At the end, some error detection data is sent Advantages: Much less overhead No overhead is incurred except for synchronization characters Disadvantages: No tolerance in clock frequency is allowed The clock frequency should be same at both the sending and receiving ends Bit stuffing: If the flag pattern appears anywhere in the header or data of a frame, then the receiver may prematurely detect the start or end of the received frame. To overcome this problem, the sender makes sure that the frame body it sends has no flags in it at any position (note that since there is no character synchronization, the flag pattern can start at any bit location within the stream). It does this by bit stuffing, inserting an extra bit in any pattern that is beginning to look like a flag. In HDLC, whenever 5 consecutive 1's are encountered in the data, a 0 is inserted after the 5th 1, regardless of the next bit in the data as shown in Fig On the receiving end, the bit stream is piped through a shift register as the receiver looks for the flag pattern. If 5 consecutive 1's followed by a 0 is seen, then the 0 is dropped before sending the data on (the receiver destuffs the stream). If 6 1's and a 0 are seen, it is a flag and either the current frame are ended or a new frame is started, depending on the current state of the receiver. If more than 6 consecutive 1's

18 are seen, then the receiver has detected an invalid pattern, and usually the current frame, if any, is discarded. a). b) Specific pattern to represent start of frame s stuffed after every five 1 s Specific pattern to represent end of frame Figure Bit oriented (a) Data to be sent to the peer, (b) Data after being bit stuffed. Version 2 CSE IIT, Kharagpur

19 With bit stuffing, the boundary between two frames can be unambiguously recognized by the flag pattern. Thus, if receiver loses track of where it is, all it has to do is to scan the input for flag sequence, since they can only occur at frame boundaries and never within data. In addition to receiving the data in logical units called frames, the receiver should have some way of determining if the data has been corrupted or not. If it has been corrupted, it is desirable not only to realize that, but also to make an attempt to obtain the correct data. This process is called error detection and error correction, which will be discussed in the next lesson Asynchronous communication (word-oriented) In asynchronous communication, small, fixed-length words (usually 5 to 9 bits long) are transferred without any clock line or clock is recovered from the signal itself. Each word has a start bit (usually as a 0) before the first data bit of the word and a stop bit (usually as a 1) after the last data bit of the word, as shown in Fig The receiver's local clock is started when the receiver detects the 1-0 transition of the start bit, and the line is sampled in the middle of the fixed bit intervals (a bit interval is the inverse of the data rate). The sender outputs the bit at the agreed-upon rate, holding the line in the appropriate state for one bit interval for each bit, but using its own local clock to determine the length of these bit intervals. The receiver's clock and the sender's clock may not run at the same speed, so that there is a relative clock drift (this may be caused by variations in the crystals used, temperature, voltage, etc.). If the receiver's clock drifts too much relative to the sender's clock, then the bits may be sampled while the line is in transition from one state to another, causing the receiver to misinterpret the received data. There can be variable amount of gap between two frames as shown in Fig

20 Figure Character or word oriented format for asynchronous mode Version 2 CSE IIT, Kharagpur Figure Data units sent with variable gap sent in asynchronous mode Advantages of asynchronous character oriented mode of communication are summarized below: Simple to implement Self synchronization; Clock signal need not be sent Tolerance in clock frequency is possible The bits are sensed in the middle hence ± ½ bit tolerance is provided This mode of data communication, however, suffers from high overhead incurred in data transmission. Data must be sent in multiples of the data length of the word, and the two or more bits of synchronization overhead compared to the relatively short data length causes the effective data rate to be rather low. For example, 11 bits are required to transmit 8 bits of data. In other words, baud rate (number of signal elements) is higher

Chapter 9: Data Transmission

Chapter 9: Data Transmission Chapter 9: Data Transmission MULTIPLE CHOICE 1. In practical terms, parallel data transmission is sent: a. over short distances only c. over any distance b. usually over long distances d. usually over

More information

ET3110 Networking and Communications UNIT 2: Communication Techniques and Data Link Control Protocol skong@itt-tech.edutech.edu Learning Objectives Identify methods of detecting errors. Use Hamming code

More information

Direct Link Networks: Building Blocks (2.1), Encoding (2.2), Framing (2.3)

Direct Link Networks: Building Blocks (2.1), Encoding (2.2), Framing (2.3) Direct Link Networks: Building Blocks (2.1), Encoding (2.2), Framing (2.3) ECPE/CS 5516: Computer Networks Originally by Scott F. Midkiff (ECpE) Modified by Marc Abrams (CS) Virginia Tech courses.cs.vt.edu/~cs5516

More information

Local Area Network Overview

Local Area Network Overview Local Area Network Overview Chapter 15 CS420/520 Axel Krings Page 1 LAN Applications (1) Personal computer LANs Low cost Limited data rate Back end networks Interconnecting large systems (mainframes and

More information

)454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

)454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU INTERNATIONAL TELECOMMUNICATION UNION )454 6 TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU $!4! #/--5.)#!4)/. /6%2 4(% 4%,%0(/.%.%47/2+ #/$%).$%0%.$%.4 %22/2#/.42/, 3934%- )454 Recommendation 6 (Extract

More information

PPP. Point-to-Point Protocol

PPP. Point-to-Point Protocol PPP Point-to-Point Protocol 1 Introduction One of the most common types of WAN connection is the point-to-point connection. Point-to-point connections are used to connect LANs to service provider WANs,

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching

William Stallings Data and Computer Communications 7 th Edition. Chapter 10 Circuit Switching and Packet Switching William Stallings Data and Computer Communications 7 th Edition Chapter 10 Circuit Switching and Packet Switching Switching Networks Long distance transmission is typically done over a network of switched

More information

Fig.12.5 Serial Data Line during Serial Communication

Fig.12.5 Serial Data Line during Serial Communication Lecture-66 Asynchronous Serial Data Communication A serial data signal is divided into time intervals called bit times as shown in fig.2.5. During each bit time interval (T B ), the signal is either a

More information

Chapter 7: Data Link Control. Data Link Control Protocols

Chapter 7: Data Link Control. Data Link Control Protocols Chapter 7: Data Link Control CS420/520 Axel Krings Page 1 Data Link Control Protocols Need layer of logic above Physical to manage exchange of data over a link frame synchronization flow control error

More information

CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca

CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca CSCI-1680 Physical Layer Link Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia Snowcast milestone today! 4-7pm Sign up at http://tinyurl.com/cs168-calendar

More information

Circuit Switching and Packet Switching

Circuit Switching and Packet Switching Chapter 10: Circuit Switching and Packet Switching CS420/520 Axel Krings Page 1 Switching Networks Long distance transmission is typically done over a network of switched nodes Nodes not concerned with

More information

Contention Protocols and Networks

Contention Protocols and Networks 4/13/2005 314 Lecture Contention Protocols and Networks 1 Contention Protocols and Networks Contention Protocols CSMA/CD Network Topologies Ethernet 4/13/2005 314 Lecture Contention Protocols and Networks

More information

Lecture 6 Datalink Framing, Switching. From Signals to Packets

Lecture 6 Datalink Framing, Switching. From Signals to Packets Lecture 6 Datalink Framing, Switching David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05/ 1 From Signals to

More information

Layer 2 functionality bridging and switching

Layer 2 functionality bridging and switching Layer 2 functionality bridging and switching BSAD 141 Dave Novak Sources: Network+ Guide to Networks, Dean 2013 Overview Layer 2 functionality Error detection Bridges Broadcast and collision domains How

More information

Chapter -4 OSI Reference Model

Chapter -4 OSI Reference Model Chapter -4 OSI Reference Model Objectives Concept of Reference Model. OSI Reference Model Concept. Layers of OSI Reference Model. 4.1 Introduction Layered Architecture, Peer-to- Peer Processes, Interfaces

More information

CMPE150 Midterm Solutions

CMPE150 Midterm Solutions CMPE150 Midterm Solutions Question 1 Packet switching and circuit switching: (a) Is the Internet a packet switching or circuit switching network? Justify your answer. The Internet is a packet switching

More information

TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS

TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS TCOM 370 NOTES 99-1 NETWORKING AND COMMUNICATIONS Communication Networks Allow Exchange of Information between Users telephone network for voice communication interconnected computers and peripherals,

More information

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006

CS 123: Lecture 12, LANs, and Ethernet. George Varghese. October 24, 2006 CS 123: Lecture 12, LANs, and Ethernet George Varghese October 24, 2006 Selective Reject Modulus failure Example w = 2, Max = 3 0 0 1 3 0 A(1) A(2) 1 0 retransmit A(1) A(2) buffer Case 1 Case 2 reject

More information

D-STAR Review & Final Exam

D-STAR Review & Final Exam Page 1 of 8 D-STAR Review & Final Exam Summary This lesson consists of a selection of items from the review sections of Lessons #1 - #9. The Final Exam consists of twenty questions selected from the individual

More information

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1 Computer Network Direct Link Networks Reliable Transmission rev 1.01 24/2/2004 1 Outline Direct link networks (Ch. 2) Encoding Framing Error detection Reliable delivery Media access control Network Adapter

More information

Data Communications & Networks. Session 3 Main Theme Data Encoding and Transmission. Dr. Jean-Claude Franchitti

Data Communications & Networks. Session 3 Main Theme Data Encoding and Transmission. Dr. Jean-Claude Franchitti Data Communications & Networks Session 3 Main Theme Data Encoding and Transmission Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences

More information

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks. - 9 th class; 19 th Aug Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 9 th class; 19 th Aug 2011 Instructor: Sridhar Iyer IIT Bombay Contention-based MAC: ALOHA Users transmit whenever they have data to send Collisions occur,

More information

Introduction to Information Technology Turban, Rainer and Potter John Wiley & Sons, Inc. Copyright 2005

Introduction to Information Technology Turban, Rainer and Potter John Wiley & Sons, Inc. Copyright 2005 Introduction to Information Technology Turban, Rainer and Potter John Wiley & Sons, Inc. Copyright 2005 Network and Telecommunications Basics Chapter Outline The telecommunications system Network services

More information

Computer Peripherals

Computer Peripherals Computer Peripherals School of Computer Engineering Nanyang Technological University Singapore These notes are part of a 3rd year undergraduate course called "Computer Peripherals", taught at Nanyang Technological

More information

Introduction to Open System Interconnection Reference Model

Introduction to Open System Interconnection Reference Model Chapter 5 Introduction to OSI Reference Model 1 Chapter 5 Introduction to Open System Interconnection Reference Model Introduction The Open Systems Interconnection (OSI) model is a reference tool for understanding

More information

CS 455. Week 9. Reading: 1. Data Communications and Networking Behrouz A Forouzan Edition: 4.

CS 455. Week 9. Reading: 1. Data Communications and Networking Behrouz A Forouzan Edition: 4. CS 455 Week 9 Reading: 1. Data Communications and Networking Behrouz A Forouzan Edition: 4. Objectives: 1. To test the students knowledge on the concepts covered from Week 1 through Week 7. Concepts: 1.

More information

William Stallings Data and Computer Communications. Chapter 7 Data Link Control

William Stallings Data and Computer Communications. Chapter 7 Data Link Control William Stallings Data and Computer Communications Chapter 7 Data Link Control Flow Control Ensuring the sending entity does not overwhelm the receiving entity Preventing buffer overflow Transmission time

More information

RECOMMENDATION ITU-R BS.776 * Format for user data channel of the digital audio interface **

RECOMMENDATION ITU-R BS.776 * Format for user data channel of the digital audio interface ** Rec. ITU-R BS.776 1 RECOMMENDATION ITU-R BS.776 * Format for user data channel of the digital audio interface ** The ITU Radiocommunication Assembly considering (1992) a) that there is a real need for

More information

Module 16: Distributed System Structures

Module 16: Distributed System Structures Module 16: Distributed System Structures Chapter 16: Distributed System Structures Motivation Types of Distributed Operating Systems Network Structure Network Topology Communication Structure Communication

More information

Outline: Connecting Many Computers

Outline: Connecting Many Computers Outline: Connecting Many Computers Last lecture: sending data between two computers This lecture: link-level network protocols (from last lecture) sending data among many computers 1 Review: A simple point-to-point

More information

Module 16: Distributed System Structures. Operating System Concepts 8 th Edition,

Module 16: Distributed System Structures. Operating System Concepts 8 th Edition, Module 16: Distributed System Structures, Silberschatz, Galvin and Gagne 2009 Chapter 16: Distributed System Structures Motivation Types of Network-Based Operating Systems Network Structure Network Topology

More information

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation

Jaringan Komputer. Broadcast Network. Outline. MAC (Medium Access Control) Channel Allocation Problem. Dynamic Channel Allocation Broadcast Network Jaringan Komputer Medium Access Control Sublayer 2 network categories: point-to-point connections broadcast channels Key issue in broadcast network: how to determine who gets to use the

More information

Last Lecture. Network Architecture: Layers. This Lecture. In the sending host (2) In the sending host

Last Lecture. Network Architecture: Layers. This Lecture. In the sending host (2) In the sending host Chapter 7.B and 7.C Architecture: Layers Prof. Dina Katabi Last Lecture We learned how to share the network infrastructure between many connections/flows We also learned about the implications of the sharing

More information

The data link layer has a number of specific functions it can carry out. These functions include. Figure 2-1. Relationship between packets and frames.

The data link layer has a number of specific functions it can carry out. These functions include. Figure 2-1. Relationship between packets and frames. Module 2 Data Link Layer: - Data link Layer design issues - Error Detection and correction Elementary Data link protocols, Sliding window protocols- Basic Concept, One Bit Sliding window protocol, Concept

More information

Chapter 11 Data Link Control 11.1

Chapter 11 Data Link Control 11.1 Chapter 11 Data Link Control 11.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 11-1 1 FRAMING The data link layer needs to pack bits into frames,, so that

More information

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure.

Chapter 5: The Data Link Layer. Chapter 5 Link Layer and LANs. Ethernet. Link Layer. Star topology. Ethernet Frame Structure. hapter 5 Link Layer and LNs omputer Networking: Top Down pproach 5 th edition. Jim Kurose, Keith Ross ddison-wesley, pril 2009. hapter 5: The Data Link Layer Our goals: understand principles behind data

More information

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection: 1 Topics 2 LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS Multiple access: CSMA/CD, CSMA/CA, token passing, channelization LAN: characteristics, i basic principles i Protocol architecture Topologies

More information

UNIT-II OVERVIEW OF PHYSICAL LAYER SWITCHING & MULTIPLEXING

UNIT-II OVERVIEW OF PHYSICAL LAYER SWITCHING & MULTIPLEXING 1 UNIT-II OVERVIEW OF PHYSICAL LAYER SWITCHING & MULTIPLEXING Syllabus: Physical layer and overview of PL Switching: Multiplexing: frequency division multiplexing, wave length division multiplexing, synchronous

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

S5 Communications. Rev. 1

S5 Communications. Rev. 1 S5 Communications Rev. 1 Page 1 of 15 S5 Communications For a complete understanding of the S5 Battery Validation System (BVS) communication options, it is necessary to understand the measurements performed

More information

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07)

Serial I-O for Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai (version 14/10/07) Serial I-O for 8051 Dinesh K. Sharma Electrical Engineering Department I.I.T. Bombay Mumbai 400 076 (version 14/10/07) 1 Motivation Serial communications means sending data a single bit at a time. But

More information

CCNA Exploration1 Chapter 7: OSI Data Link Layer

CCNA Exploration1 Chapter 7: OSI Data Link Layer CCNA Exploration1 Chapter 7: OSI Data Link Layer LOCAL CISCO ACADEMY ELSYS TU INSTRUCTOR: STELA STEFANOVA 1 Explain the role of Data Link layer protocols in data transmission; Objectives Describe how the

More information

Ethernet Hub. Campus Network Design. Hubs. Sending and receiving Ethernet frames via a hub

Ethernet Hub. Campus Network Design. Hubs. Sending and receiving Ethernet frames via a hub Campus Network Design Thana Hongsuwan Ethernet Hub 2003, Cisco Systems, Inc. All rights reserved. 1-1 2003, Cisco Systems, Inc. All rights reserved. BCMSN v2.0 1-2 Sending and receiving Ethernet frames

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2009 Ashok Agrawala Set 4 1 The Data Link Layer 2 Data Link Layer Design Issues Services Provided to the Network Layer Framing Error Control Flow Control

More information

Blog - https://anilkumarprathipati.wordpress.com/

Blog - https://anilkumarprathipati.wordpress.com/ Input-Output organization 1. Peripheral Devices The input-output subsystem of a computer, referred to as I/O, provides an efficient mode of communication between the central system and the outside environment.

More information

User Datagram Protocol (UDP):

User Datagram Protocol (UDP): SFWR 4C03: Computer Networks and Computer Security Feb 2-5 2004 Lecturer: Kartik Krishnan Lectures 13-15 User Datagram Protocol (UDP): UDP is a connectionless transport layer protocol: each output operation

More information

More on IO: The Universal Serial Bus (USB)

More on IO: The Universal Serial Bus (USB) ecture 37 Computer Science 61C Spring 2017 April 21st, 2017 More on IO: The Universal Serial Bus (USB) 1 Administrivia Project 5 is: USB Programming (read from a mouse) Optional (helps you to catch up

More information

CH : 15 LOCAL AREA NETWORK OVERVIEW

CH : 15 LOCAL AREA NETWORK OVERVIEW CH : 15 LOCAL AREA NETWORK OVERVIEW P. 447 LAN (Local Area Network) A LAN consists of a shared transmission medium and a set of hardware and software for interfacing devices to the medium and regulating

More information

LAN Protocols. Required reading: Forouzan 13.1 to 13.5 Garcia 6.7, 6.8. CSE 3213, Fall 2015 Instructor: N. Vlajic

LAN Protocols. Required reading: Forouzan 13.1 to 13.5 Garcia 6.7, 6.8. CSE 3213, Fall 2015 Instructor: N. Vlajic 1 LAN Protocols Required reading: Forouzan 13.1 to 13.5 Garcia 6.7, 6.8 CSE 3213, Fall 2015 Instructor: N. Vlajic What is LAN? 2 Local Area Network (LAN) properties private ownership freedom to choose/change/upgrade

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 7 Data Link Control Protocols Eighth Edition by William Stallings Lecture slides by Lawrie Brown Data Link Control Protocols "Great and enlightened one," said Ten-teh,

More information

Principles behind data link layer services

Principles behind data link layer services Data link layer Goals: Principles behind data link layer services Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control: Done!

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SEED NETWORKS LAYERS The function and associated information of the planes is as follows: The reference model is composed of the following planes: Control lane manages the call and connection.

More information

Data Communications & Computer Networks. Digital Data Communications Techniques

Data Communications & Computer Networks. Digital Data Communications Techniques Data Communications & Computer Networks Chapter 6 Digital Data Communications Techniques Fall 2008 Agenda Preface Asynchronous & Synchronous transmission Error Detection & Correction Line configurations

More information

Flow control: Ensuring the source sending frames does not overflow the receiver

Flow control: Ensuring the source sending frames does not overflow the receiver Layer 2 Technologies Layer 2: final level of encapsulation of data before transmission over a physical link responsible for reliable transfer of frames between hosts, hop by hop, i.e. on a per link basis

More information

CSE380 - Operating Systems. Communicating with Devices

CSE380 - Operating Systems. Communicating with Devices CSE380 - Operating Systems Notes for Lecture 15-11/4/04 Matt Blaze (some examples by Insup Lee) Communicating with Devices Modern architectures support convenient communication with devices memory mapped

More information

Communication Networks for the Next-Generation Vehicles

Communication Networks for the Next-Generation Vehicles Communication Networks for the, Ph.D. Electrical and Computer Engg. Dept. Wayne State University Detroit MI 48202 (313) 577-3855, smahmud@eng.wayne.edu January 13, 2005 4 th Annual Winter Workshop U.S.

More information

Today. Last Time. Motivation. CAN Bus. More about CAN. What is CAN?

Today. Last Time. Motivation. CAN Bus. More about CAN. What is CAN? Embedded networks Characteristics Requirements Simple embedded LANs Bit banged SPI I2C LIN Ethernet Last Time CAN Bus Intro Low-level stuff Frame types Arbitration Filtering Higher-level protocols Today

More information

Direct Link Networks. Nodes. Links. Outline Building Blocks Encoding

Direct Link Networks. Nodes. Links. Outline Building Blocks Encoding Direct Link Networks Outline Building Blocks Encoding Spring 2009 CSE 30462 1 Nodes Network adaptor Device driver Memory bottleneck CPU Cache Network adaptor (To network) Memory I/O bus Spring 2009 CSE

More information

Multiple Access Protocols

Multiple Access Protocols Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

More information

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

Network Working Group

Network Working Group Network Working Group Request for Comments: 2637 Category: Informational K. Hamzeh Ascend Communications G. Pall Microsoft Corporation W. Verthein 3Com J. Taarud Copper Mountain Networks W. Little ECI

More information

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols Link Layer: Introduction daptors ommunicating hosts and routers are nodes links connect nodes wired links wireless links layer-2 packet is a frame, encapsulates datagram datagram controller sending host

More information

Peer entities. Protocol Layering. Protocols. Example

Peer entities. Protocol Layering. Protocols. Example Peer entities Protocol Layering An Engineering Approach to Computer Networking Customer A and B are peers Postal worker A and B are peers Protocols A protocol is a set of rules and formats that govern

More information

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1 Outline PPP ATM X.25 Frame Relay 2 Point to Point Data Link Control One sender, one receiver,

More information

CHAPTER 4 DATA COMMUNICATION MODES

CHAPTER 4 DATA COMMUNICATION MODES USER S MANUAL CHAPTER DATA COMMUNICATION MODES. INTRODUCTION The SCC provides two independent, full-duplex channels programmable for use in any common asynchronous or synchronous data communication protocol.

More information

Topics Today. Lecture 8: Physical and Link Layers. Protocol Layering. Physical layer: chips versus bits. Physical Layer (Layer 1) Protocol Layering

Topics Today. Lecture 8: Physical and Link Layers. Protocol Layering. Physical layer: chips versus bits. Physical Layer (Layer 1) Protocol Layering Topics Today Physical layer: chips versus bits Lecture 8: Physical and Link Layers Link layer and media access control (MAC) Ethernet Hubs and Switches MPLS Protocol Layering Physical layer: chips versus

More information

A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers,

A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers, CBCN4103 A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers, servers, and other devices. LANs offer computer

More information

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 6 The Data Link Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Link Layer: setting the context two physically connected devices: host-router, router-router, host-host,

More information

IEEE Technical Tutorial. Introduction. IEEE Architecture

IEEE Technical Tutorial. Introduction. IEEE Architecture IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle

More information

UNIVERSITI TUN HUSSEIN ONN MALAYSIA FINAL EXAMINATION SEMESTER I SESSION 2009/10

UNIVERSITI TUN HUSSEIN ONN MALAYSIA FINAL EXAMINATION SEMESTER I SESSION 2009/10 UNIVERSITI TUN HUSSEIN ONN MALAYSIA FINAL EXAMINATION SEMESTER I SESSION 2009/10 SUBJECT NAME SUBJECT CODE COURSE DATA COMMUNICATION BEP4223 4BEE EXAMINATION DATE NOVEMBER 2009 DURATION INSTRUCTION 3 HOURS

More information

Switching, Mobile Phones, Cable, Beginning Data Link Layer. CS158a Chris Pollett Feb 21, 2007.

Switching, Mobile Phones, Cable, Beginning Data Link Layer. CS158a Chris Pollett Feb 21, 2007. Switching, Mobile Phones, Cable, Beginning Data Link Layer CS158a Chris Pollett Feb 21, 2007. Outline Switching Mobile Phones Cable Start of Data Link Layer Switching We will now examine how the switching

More information

UNIT II DATA LINK LAYER 10

UNIT II DATA LINK LAYER 10 UNIT II DATA LINK LAYER 10 Error detection and correction Parity LRC CRC Hamming code flow Control and Error control - stop and wait go back-n ARQ selective repeat ARQ- sliding window HDLC. - LAN - Ethernet

More information

2. LAN Topologies Gilbert Ndjatou Page 1

2. LAN Topologies Gilbert Ndjatou Page 1 2. LAN Topologies Two basic categories of network topologies exist, physical topologies and logical topologies. The physical topology of a network is the cabling layout used to link devices. This refers

More information

Routing Strategies. Fixed Routing. Fixed Flooding Random Adaptive

Routing Strategies. Fixed Routing. Fixed Flooding Random Adaptive Routing Strategies Fixed Flooding Random Adaptive Fixed Routing Single permanent route for each source to destination pair Determine routes using a least cost algorithm Route fixed, at least until a change

More information

Principles behind data link layer services:

Principles behind data link layer services: Data link layer Goals: Principles behind data link layer services: Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control Example

More information

Lecture (11) OSI layer 4 protocols TCP/UDP protocols

Lecture (11) OSI layer 4 protocols TCP/UDP protocols Lecture (11) OSI layer 4 protocols TCP/UDP protocols Dr. Ahmed M. ElShafee ١ Agenda Introduction Typical Features of OSI Layer 4 Connectionless and Connection Oriented Protocols OSI Layer 4 Common feature:

More information

Chapter 6 Medium Access Control Protocols and Local Area Networks

Chapter 6 Medium Access Control Protocols and Local Area Networks Chapter 6 Medium Access Control Protocols and Local Area Networks Part I: Medium Access Control Part II: Local Area Networks CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Chapter Overview Broadcast

More information

ECE4110 Internetwork Programming. Introduction and Overview

ECE4110 Internetwork Programming. Introduction and Overview ECE4110 Internetwork Programming Introduction and Overview 1 EXAMPLE GENERAL NETWORK ALGORITHM Listen to wire Are signals detected Detect a preamble Yes Read Destination Address No data carrying or noise?

More information

TCP Strategies. Keepalive Timer. implementations do not have it as it is occasionally regarded as controversial. between source and destination

TCP Strategies. Keepalive Timer. implementations do not have it as it is occasionally regarded as controversial. between source and destination Keepalive Timer! Yet another timer in TCP is the keepalive! This one is not required, and some implementations do not have it as it is occasionally regarded as controversial! When a TCP connection is idle

More information

Level 1: Physical Level 2: Data link Level 3: Network Level 4: Transport

Level 1: Physical Level 2: Data link Level 3: Network Level 4: Transport Network protocols Aside from the issues of the physical network (signal types and voltage levels, connector pinouts, cabling, topology, etc.), there needs to be a standardized way in which communication

More information

Lesson 2-3: The IEEE x MAC Layer

Lesson 2-3: The IEEE x MAC Layer Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes

More information

Data Link Layer, Part 3 Medium Access Control. Preface

Data Link Layer, Part 3 Medium Access Control. Preface Data Link Layer, Part 3 Medium Access Control These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable

More information

ECSE 414 Fall 2014 Final Exam Solutions

ECSE 414 Fall 2014 Final Exam Solutions ECSE 414 Fall 2014 Final Exam Solutions Question 1 a. The five main layers of the internet protocol stack, along with the service provided by each, and the place where each is implemented are as follows:

More information

Internet A Brief Tutorial. Jean Walrand EECS U.C. Berkeley

Internet A Brief Tutorial. Jean Walrand EECS U.C. Berkeley Internet A Brief Tutorial Jean Walrand EECS U.C. Berkeley Contents History Key Ideas Protocols Technology Research History 1962 L. Kleinrock proposes Packet Switching 1966 L. Roberts proposes architecture

More information

Data and Computer Communications

Data and Computer Communications Data and Computer Communications Chapter 10 Circuit Switching and Packet Switching Eighth Edition by William Stallings Lecture slides by Lawrie Brown Circuit Switching and Packet Switching He got into

More information

William Stallings Data and Computer Communications. Chapter 10 Packet Switching

William Stallings Data and Computer Communications. Chapter 10 Packet Switching William Stallings Data and Computer Communications Chapter 10 Packet Switching Principles Circuit switching designed for voice Resources dedicated to a particular call Much of the time a data connection

More information

Simulation of TCP Layer

Simulation of TCP Layer 39 Simulation of TCP Layer Preeti Grover, M.Tech, Computer Science, Uttrakhand Technical University, Dehradun ABSTRACT The Transmission Control Protocol (TCP) represents the most deployed transport protocol

More information

Network Protocols. Terms you ll need to understand: Techniques you ll need to master:

Network Protocols. Terms you ll need to understand: Techniques you ll need to master: 3 Network Protocols Terms you ll need to understand: OSI Reference Model Application layer Presentation layer Session layer Transport layer Network layer Data Link layer Physical layer IEEE 802 specifications

More information

Medium Access Control Sublayer

Medium Access Control Sublayer Wireless (WLAN) Medium Access Control Sublayer Mahalingam Mississippi State University, MS October 20, 2014 Outline Medium Access Protocols Wireless (WLAN) 1 Medium Access Protocols ALOHA Slotted ALOHA

More information

Medium Access Protocols

Medium Access Protocols Medium Access Protocols Summary of MAC protocols What do you do with a shared media? Channel Partitioning, by time, frequency or code Time Division,Code Division, Frequency Division Random partitioning

More information

The Link Layer II: Ethernet

The Link Layer II: Ethernet Monday Recap The Link Layer II: Ethernet q Link layer services q Principles for multiple access protocols q Categories of multiple access protocols CSC 249 March 24, 2017 1 2 Recap: Random Access Protocols

More information

04/03/33. Dr.Gihan Naguib. Overview. Dr.Gihan Naguib Behrouz A. Forouzan Data communications and Networking

04/03/33. Dr.Gihan Naguib. Overview. Dr.Gihan Naguib Behrouz A. Forouzan Data communications and Networking PART I Overview of Data Communications and Networking Dr.Gihan Naguib Behrouz A. Forouzan Data communications and Networking 1 Overview 2 1 Chapters Chapter 1 Introduction Chapter 2 Network Models 3 Chapter

More information

Introduction to LAN Protocols

Introduction to LAN Protocols CHAPTER 2 Chapter Goals Learn about different LAN protocols. Understand the different methods used to deal with media contention. Learn about different LAN topologies. This chapter introduces the various

More information

Lecture / The Data Link Layer: Framing and Error Detection

Lecture / The Data Link Layer: Framing and Error Detection Lecture 2 6.263/16.37 The Data Link Layer: Framing and Error Detection MIT, LIDS Slide 1 Data Link Layer (DLC) Responsible for reliable transmission of packets over a link Framing: Determine the start

More information

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this?

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this? Introduction the Serial Communications Huang Sections 9.2, 10.2, 11.2 SCI Block User Guide SPI Block User Guide IIC Block User Guide o Parallel vs Serial Communication o Synchronous and Asynchronous Serial

More information

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017

CS 43: Computer Networks Switches and LANs. Kevin Webb Swarthmore College December 5, 2017 CS 43: Computer Networks Switches and LANs Kevin Webb Swarthmore College December 5, 2017 Ethernet Metcalfe s Ethernet sketch Dominant wired LAN technology: cheap $20 for NIC first widely used LAN technology

More information

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching

IP Packet Switching. Goals of Todayʼs Lecture. Simple Network: Nodes and a Link. Connectivity Links and nodes Circuit switching Packet switching IP Packet Switching CS 375: Computer Networks Dr. Thomas C. Bressoud Goals of Todayʼs Lecture Connectivity Links and nodes Circuit switching Packet switching IP service model Best-effort packet delivery

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on

Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on CBCN4103 Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on the correct path across the complete network

More information

INTERNATIONAL TELECOMMUNICATION UNION

INTERNATIONAL TELECOMMUNICATION UNION INTERNATIONAL TELECOMMUNICATION UNION CCITT G.709 THE INTERNATIONAL TELEGRAPH AND TELEPHONE CONSULTATIVE COMMITTEE (11/1988) SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS General

More information