Medium Access Control Protocols: scheduled schemes

Size: px
Start display at page:

Download "Medium Access Control Protocols: scheduled schemes"

Transcription

1 Medium Access Control Protocols: scheduled schemes Redes ad hoc Sem Fio Prof. Marco Aurélio Spohn DSC/UFCG Excerpt from presentation by Prof. Garcia-Luna-Aceves and Katia O. (CMPE Wireless and Mobile Networking, University of California Santa Cruz, Spring 2005)

2 Channel Access Schemes Contention based schemes ALOHA, CSMA/CA (FAMA, MACA, IEEE ) : with/without RTS/CTS handshakes. Difficulties: not scalable, fairness, QoS. Scheduled schemes FDMA/TDMA/CDMA in multi-hop networks: graph coloring problem Node/link activation based on NCR (Neighbor-aware Contention Resolution)

3 Scheduled Access Problem description: Given a set of contenders M i of an entity i in contention context t, how does i determine whether itself is the winner during t? Topology dependence: Exactly two-hop neighbor information required to resolve contentions. In ad hoc networks, two-hop neighbors are acquired by each node broadcasting its one-hop neighbor set.

4 Goals to Achieve Collision-free avoid hidden terminal problem, no waste on transmissions; Fair the probability of accessing the channel is proportional to contention; Live capable of yielding at least one transmission each time slot.

5 Neighbor-Aware Contention Resolution (NCR) In each contention context (time slot t ): Compute priorities i is the winner for channel access if: j M i,p i t >p j t 6 a 4 9 e 5 c b 2 Contention Floor d

6 Channel Access Probability: Dependent on the number of contenders in the neighborhood. Channel access probability: Bandwidth allocation general formula to i q i = I i I k

7 Neighbor Protocol

8 NAMA: Node Activation Multiple Access (Broadcast) Channel is time-slotted. Transmissions are broadcasts via omnidirectional antenna: all one-hop neighbors can receive the packet from a node. The contenders of a node for channel access are neighbors within two hops because of direct and hidden terminal contentions.

9 Algorithm

10 Illustration of NAMA 8 A 5 B 9 G C D E 1 F 2 H

11 NAMA Improvements Inefficient activation in certain scenarios. For example, only one node (i.e., node a ) can be activated according NAMA, although several other opportunities exist. 10 a 1 f 8 4 b e c d 3 g h We want to activate g and d as well.

12 Node + Link (Hybrid) Activation Additional assumption Radio transceiver is capable of code division channelization (DSSS direct sequence spread spectrum) Code set is C. Code assignment for each node is per time slot: i.code = i.prio mod C

13 Hybrid Activation Multiple Access (HAMA) Node state classification per time slot according to their priorities: Receiver (Rx): intermediate prio among one-hop neighbors. Drain (DRx): lowest prio amongst one-hop. Broadcast Transmitter (BTx): highest prio among twohop. Unicast Transmitter (UTx): highest prio among one-hop. Drain Transmitter (DTx): highest prio among the one-hop of a drain. Yield: the node could be in either UT or DT, but yield/backoff to avoid collision!

14 HAMA (cont.) Transmission schedules: BTx > all one-hop neighbors. UTx > selected one-hops, which are in Rx (i.e., DRx or Rx) state, and the UTx has the highest prio among the one-hop neighbors of the receiver. DTx > Drains (DRx), and the DTx has the highest prio among the one-hops of the DRx.

15 HAMA Operations Suppose no conflict in code assignment. Nodal states are denoted beside each node: Node d converted from Rx to DTx. Benefit: one-activation in NAMA to four possible activations in HAMA. 10-BTx a 1-DRx f 8-Rx b 7-UTx g 6-Rx c 5-DTx d 4-DRx e 3-DRx h

16 Other Channel Access Protocols Other protocols using omni-directional antennas: LAMA: Link Activation Multiple Access PAMA: Pair-wise Activation Multiple Access Protocols that work when uni-directional links exist. Node A can receive node B s transmission but B cannot receive A s. Protocols using direct antenna systems.

17 Plotting Channel Access Probability

18 Comparison of Channel Access Probability

19 Comparisons with CSMA CSMA/CA by Analysis Different slotting: NAMA long slots: a time slot can carry a complete data packet CSMA and CSMA/CA short slots: a time slot lasts for the duration of a channel round-trip propagation (multiple time slots may be necessary to transmit a data packet).

20 Comparisons with CSMA CSMA/CA by Analysis CSMA(CA) assumptions: Heavy load (always have packets waiting) Channel access regulated by back-off probability p in each slot. Convert the load to comparable one in NAMA.

21 Protocol Throughput Comparison

22 Multi-hop Network (Throughput)

23 Multi-hop Network (Delay)

24 Conclusions NCR ensures collision-free transmissions. Only two-hop topology information is needed. HAMA performs better than static scheduling algorithms (UxDMA). HAMA performs better than contentionbased protocols.

25 References [R01] S. Ramanathan, A unified framework and algorithm for channel assignment in wireless networks, ACM Wireless Networks, Vol. 5, No. 2, March [BG01] Lichun Bao and JJ, A New Approach to Channel Access Scheduling for Ad Hoc Networks, Proc. of The Seventh ACM Annual International Conference on Mobile Computing and networking (MOBICOM), July 16-21, 2001, Rome, Italy. [BG02] Lichun Bao and JJ, Hybrid Channel Access Scheduling in Ad Hoc Networks, IEEE Tenth International Conference on Network Protocols (ICNP), Paris, France, November 12-15, 2002.

Medium Access Control Protocols

Medium Access Control Protocols CMPE 257: Wireless Networking SET MAC-2: Medium Access Control Protocols Spring 2006 UCSC CMPE257 1 NAMA Improvements Inefficient activation in certain scenarios. For example, only one node, a, can be

More information

Distributed Channel Access Scheduling for Ad Hoc Networks

Distributed Channel Access Scheduling for Ad Hoc Networks Distributed Channel Access Scheduling for Ad Hoc Networks Lichun Bao Computer Science Department School of Information and Computer Sciences University of California, Irvine lbao@ics.uci.edu J.J. Garcia-Luna-Aceves

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Spring'15 1 Next week Announcements April 14: ICN (Spencer Sevilla) April 16: DTN

More information

A STUDY & ANALYSIS OF SUITABLE CHANNEL ACCESS PROTOCOL FOR MOBILE AD-HOC NETWORK ON DIFFERENT APPLICATION

A STUDY & ANALYSIS OF SUITABLE CHANNEL ACCESS PROTOCOL FOR MOBILE AD-HOC NETWORK ON DIFFERENT APPLICATION International Journal of Computer Engineering and Applications, Volume V, Issue III, March 14 www.ijcea.com ISSN 2321-3469 A STUDY & ANALYSIS OF SUITABLE CHANNEL ACCESS PROTOCOL FOR MOBILE AD-HOC NETWORK

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a /space problem Who transmits when?

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 4 1 Announcements Project proposals. Due April 17 th. Submit by e-mail to katia@soe.ucsc.edu.

More information

Hybrid Channel Access Scheduling in Ad Hoc Networks

Hybrid Channel Access Scheduling in Ad Hoc Networks Hybrid Channel Access Scheduling in Ad Hoc Networks Lichun Bao Computer Science Department University of California, Santa Cruz baolc@soe.ucsc.edu J.J. Garcia-Luna-Aceves Computer Engineering Department

More information

The MAC layer in wireless networks

The MAC layer in wireless networks The MAC layer in wireless networks The wireless MAC layer roles Access control to shared channel(s) Natural broadcast of wireless transmission Collision of signal: a time/space problem Who transmits when?

More information

Channel-Hopping Multiple Access

Channel-Hopping Multiple Access Channel-Hopping Multiple Access Asimakis Tzamaloukas and J.J. Garcia-Luna-Aceves Computer Engineering Department Baskin School of Engineering University of California, Santa Cruz, California 9564 jamal,

More information

MAC protocols. Lecturer: Dmitri A. Moltchanov

MAC protocols. Lecturer: Dmitri A. Moltchanov MAC protocols Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ OUTLINE: Problems for MAC to deal with; Design goals; Classification of MAC protocols Contention-based

More information

CSC8223 Wireless Sensor Networks. Chapter 5 Medium Access Control Protocols

CSC8223 Wireless Sensor Networks. Chapter 5 Medium Access Control Protocols CSC8223 Wireless Sensor Networks Chapter 5 Medium Access Control Protocols Goals of this chapter Controlling when to send a packet and when to listen for a packet are perhaps the two most important operations

More information

Channel-Hopping Multiple Access

Channel-Hopping Multiple Access Channel-Hopping Multiple Access Asimakis Tzamaloukas and J.J. Garcia-Luna-Aceves Computer Engineering Department Baskin School of Engineering University of California, Santa Cruz, California 9564 fjamal,

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

Outline. Overview of ad hoc wireless networks (I) Overview of ad hoc wireless networks (II) Paper presentation Ultra-Portable Devices.

Outline. Overview of ad hoc wireless networks (I) Overview of ad hoc wireless networks (II) Paper presentation Ultra-Portable Devices. Paper presentation Ultra-Portable Devices Paper: Design Challenges for Energy-Constrained Ad Hoc Wireless Networks Andrea J. Goldsmith, Stephen B. Wicker IEEE Wireless Communication August 2002, pages

More information

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University Lecture 4: Wireless MAC Overview Hung-Yu Wei National Taiwan University Medium Access Control Topology 3 Simplex and Duplex 4 FDMA TDMA CDMA DSSS FHSS Multiple Access Methods Notice: CDMA and spread spectrum

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 5 CMPE 257 Winter'11 1 Announcements Project proposals. Student presentations. 10 students so

More information

CONTENTION BASED PROTOCOLS WITH RESERVATION MECHANISMS

CONTENTION BASED PROTOCOLS WITH RESERVATION MECHANISMS CONTENTION BASED PROTOCOLS WITH RESERVATION MECHANISMS Five-Phase Reservation Protocol A single-channel time division multiple access (TDMA)-based broadcast scheduling protocol. Nodes use a contention

More information

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy

Lecture 12 December 04, Wireless Access. Graduate course in Communications Engineering. University of Rome La Sapienza. Rome, Italy Lecture 12 December 04, 2017 Wireless Access Graduate course in Communications Engineering University of Rome La Sapienza Rome, Italy 2017-2018 Random Medium Access Control Part II - CSMA and Collision

More information

MAC protocols for ad hoc networks

MAC protocols for ad hoc networks MAC protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2756/ OUTLINE: Problems for MAC to deal with; Design goals; Classification of

More information

Multiple Access Links and Protocols

Multiple Access Links and Protocols Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet

More information

Rahman 1. Application

Rahman 1. Application Data Link layer Overview of IEEE 802.11 Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Sensor Network Protocols

Sensor Network Protocols EE360: Lecture 15 Outline Sensor Network Protocols Announcements 2nd paper summary due March 7 Reschedule Wed lecture: 11-12:15? 12-1:15? 5-6:15? Project poster session March 15 5:30pm? Next HW posted

More information

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15 Lecture 23 Overview Last Lecture ADSL, ATM This Lecture Wireless Technologies (1) Wireless LAN, CSMA/CA, Bluetooth Source: chapters 6.2, 15 Next Lecture Wireless Technologies (2) Source: chapter 16, 19.3

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

2 Related Work. 1 Introduction. 3 Background

2 Related Work. 1 Introduction. 3 Background Modeling the Performance of A Wireless Node in Multihop Ad-Hoc Networks Ping Ding, JoAnne Holliday, Aslihan Celik {pding, jholliday, acelik}@scu.edu Santa Clara University Abstract: In this paper, we model

More information

Tarek Sheltami. CCSE COE 3/8/2008 1

Tarek Sheltami. CCSE COE  3/8/2008 1 Mobile Ad hoc Networks COE 549 Random Access I Tarek Sheltami KFUPM CCSE COE http://faculty.kfupm.edu.sa/coe/tarek/coe549.htm 3/8/2008 1 Outline Medium Access Control Protocols ALOHA BTMA CSMA Some simulation

More information

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network

Improving the Data Scheduling Efficiency of the IEEE (d) Mesh Network Improving the Data Scheduling Efficiency of the IEEE 802.16(d) Mesh Network Shie-Yuan Wang Email: shieyuan@csie.nctu.edu.tw Chih-Che Lin Email: jclin@csie.nctu.edu.tw Ku-Han Fang Email: khfang@csie.nctu.edu.tw

More information

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem.

Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem. Dynamic Channel Allocation in LANs and MANs Chapter 4 The Medium Access Control Sublayer 1. Station Model. 2. Single Channel Assumption. 3. Collision Assumption. 4. (a) Continuous Time. (b) Slotted Time.

More information

/99/$10.00 (c) 1999 IEEE

/99/$10.00 (c) 1999 IEEE COLLISION-FREE MEDIUM ACCESS CONTROL SCHEME FOR AD-HOC NETWORKS Zygmunt J. Haas and Jing Deng School of Electrical Engineering Cornell University Ithaca, NY 14853 haas@ee.cornell.edu Siamak Tabrizi US

More information

CDMA-Based MAC Protocol for Wireless Ad Hoc Networks

CDMA-Based MAC Protocol for Wireless Ad Hoc Networks CDMA-Based MAC Protocol for Wireless Ad Hoc Networks Alaa Muqattash and Marwan Krunz Presented by: Habibullah Pagarkar for 600.647-Advanced Topics in Wireless Networks. JHU. Spring 04 Today s Presentation

More information

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:

More information

CSE 6811 Ashikur Rahman

CSE 6811 Ashikur Rahman Data Link layer Application Overview of IEEE 802.11 LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform address recognition and CRC validation.

More information

MAC LAYER. Murat Demirbas SUNY Buffalo

MAC LAYER. Murat Demirbas SUNY Buffalo MAC LAYER Murat Demirbas SUNY Buffalo MAC categories Fixed assignment TDMA (Time Division), CDMA (Code division), FDMA (Frequency division) Unsuitable for dynamic, bursty traffic in wireless networks Random

More information

Logical Link Control (LLC) Medium Access Control (MAC)

Logical Link Control (LLC) Medium Access Control (MAC) Overview of IEEE 802.11 Data Link layer Application Presentation Session Transport LLC: On transmission, assemble data into a frame with address and CRC fields. On reception, disassemble frame, perform

More information

Distributed TDMA MAC Protocol with Source-Driven Combined Resource Allocation in Ad Hoc Networks

Distributed TDMA MAC Protocol with Source-Driven Combined Resource Allocation in Ad Hoc Networks Distributed TDMA MAC Protocol with Source-Driven Combined Resource Allocation in Ad Hoc Networks Myunghwan Seo, Hyungweon Cho Wireless Comm. Group Samsung Thales Co., LTD. Yongin, 449-885, South Korea

More information

Multiple Access Protocols

Multiple Access Protocols Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

More information

Keywords: Medium access control, network coding, routing, throughput, transmission rate. I. INTRODUCTION

Keywords: Medium access control, network coding, routing, throughput, transmission rate. I. INTRODUCTION Performance Analysis of Network Parameters, Throughput Optimization Using Joint Routing, XOR Routing and Medium Access Control in Wireless Multihop Network 1 Dr. Anuradha M. S., 2 Ms. Anjali kulkarni 1

More information

Design Principles for Distributed Channel Assignment in Wireless Ad Hoc Networks

Design Principles for Distributed Channel Assignment in Wireless Ad Hoc Networks Design Principles for Distributed Channel Assignment in Wireless Ad Hoc Networks Michelle X. Gong Scott F. Midkiff Shiwen Mao The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 3 MAC Layer Andreas Terzis Outline MAC Protocols MAC Protocol Examples Channel Partitioning TDMA/FDMA Token Ring Random Access Protocols Aloha and Slotted

More information

MAC Sublayer(1) Principal service of the Medium Access Control Sublayer: Allocating a single broadcast channel (mostly a LAN) among competing users

MAC Sublayer(1) Principal service of the Medium Access Control Sublayer: Allocating a single broadcast channel (mostly a LAN) among competing users MAC Sublayer(1) Principal service of the Medium Access Control Sublayer: Allocating a single broadcast channel (mostly a LAN) among competing users Static Channel Allocation: Frequency Division Multiplexing

More information

A Performance Analysis of IEEE Networks in the Presence of Hidden Stations

A Performance Analysis of IEEE Networks in the Presence of Hidden Stations A Performance Analysis of IEEE 802.11 Networks in the Presence of Hidden Stations Marek Natkaniec, Andrzej R. Pach University of Mining and Metallurgy, Department of Telecommunications, Cracow, Poland

More information

Embedded Internet and the Internet of Things WS 12/13

Embedded Internet and the Internet of Things WS 12/13 Embedded Internet and the Internet of Things WS 12/13 4. MAC Protocols Prof. Dr. Mesut Güneş Distributed, embedded Systems (DES) Institute of Computer Science Freie Universität Berlin Prof. Dr. Mesut Güneş

More information

Random Assignment Protocols

Random Assignment Protocols Random Assignment Protocols Random assignment strategies attempt to reduce problem occur in fixed assignment strategy by eliminating pre allocation of bandwidth to communicating nodes. Random assignment

More information

Wireless Communications

Wireless Communications 4. Medium Access Control Sublayer DIN/CTC/UEM 2018 Why do we need MAC for? Medium Access Control (MAC) Shared medium instead of point-to-point link MAC sublayer controls access to shared medium Examples:

More information

Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks

Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks Energy-Efficient, Collision-Free Medium Access Control for Wireless Sensor Networks Venkatesh Rajendran, Katia Obraczka, J.J. Garcia-Luna-Aceves Department of Computer Engineering Jack Baskin School of

More information

Dynamic Power Control MAC Protocol in Mobile Adhoc Networks

Dynamic Power Control MAC Protocol in Mobile Adhoc Networks Dynamic Power Control MAC Protocol in Mobile Adhoc Networks Anita Yadav Y N Singh, SMIEEE R R Singh Computer Science and Engineering Electrical Engineering Computer Science and Engineering Department Department

More information

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection: 1 Topics 2 LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS Multiple access: CSMA/CD, CSMA/CA, token passing, channelization LAN: characteristics, i basic principles i Protocol architecture Topologies

More information

Distributed STDMA in Ad Hoc Networks

Distributed STDMA in Ad Hoc Networks Distributed STDMA in Ad Hoc Networks Jimmi Grönkvist Swedish Defence Research Agency SE-581 11 Linköping, Sweden email: jimgro@foi.se Abstract Spatial reuse TDMA is a collision-free access scheme for ad

More information

Multi-channel MAC with Dynamic Channel Selection for Ad Hoc Networks

Multi-channel MAC with Dynamic Channel Selection for Ad Hoc Networks Multi-channel MAC with Dynamic Channel Selection for Ad Hoc Networks Asis Nasipuri and Jai Mondhe Department of Electrical & Computer Engineering The University of North Carolina at Charlotte Charlotte,

More information

Data Link Layer: Collisions

Data Link Layer: Collisions Data Link Layer: Collisions 1 Multiple Access Data Link layer divided into two sublayers. The upper sublayer is responsible for datalink control, The lower sublayer is responsible for resolving access

More information

Wireless Medium Access Control Protocols

Wireless Medium Access Control Protocols Wireless Medium Access Control Protocols Telecomunicazioni Undergraduate course in Electrical Engineering University of Rome La Sapienza Rome, Italy 2007-2008 Classification of wireless MAC protocols Wireless

More information

New Channel Access Coordination Functions in Large Scale Wireless LAN Systems

New Channel Access Coordination Functions in Large Scale Wireless LAN Systems New Channel Access Coordination Functions in Large Scale Wireless LAN Systems Lichun Bao Dept. of Computer Science, University of California, Irvine 3019 Donald Bren Hall, Irvine, California 92697-3435,

More information

Wireless networks. Wireless Network Taxonomy

Wireless networks. Wireless Network Taxonomy Wireless networks two components to be considered in deploying applications and protocols wireless links ; mobile computing they are NOT the same thing! wireless vs. wired links lower bandwidth; higher

More information

Data and Computer Communications. Chapter 13 Wireless LANs

Data and Computer Communications. Chapter 13 Wireless LANs Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer

More information

/$10.00 (c) 1998 IEEE

/$10.00 (c) 1998 IEEE Dual Busy Tone Multiple Access (DBTMA) - Performance Results Zygmunt J. Haas and Jing Deng School of Electrical Engineering Frank Rhodes Hall Cornell University Ithaca, NY 85 E-mail: haas, jing@ee.cornell.edu

More information

NMA Radio Networks Network Level: Medium Access Control Roberto Verdone

NMA Radio Networks Network Level: Medium Access Control Roberto Verdone NMA Radio Networks Network Level: Medium Access Control Roberto Verdone Outline 1. Introduction 2. Fundamentals of Random MAC Aloha in Compact Networks Slotted Aloha in Compact Networks CSMA in Compact

More information

Priority Scheduling in Wireless Ad Hoc Networks

Priority Scheduling in Wireless Ad Hoc Networks Priority Scheduling in Wireless Ad Hoc Networks Xue Yang Nitin H.Vaidya Department of Electrical and Computer Engineering, and Coordinated Science Laboratory University of Illinois at Urbana-Champaign

More information

Power-aware design of MAC and routing for UWB networks

Power-aware design of MAC and routing for UWB networks CAMAD'04 Workshop, IEEE Global Communications Conference 2004, November 29 - December 3 2004, Dallas, Texas, USA, pp. 235-239. Power-aware design of MAC and routing for UWB networks (Invited Paper) Luca

More information

UNIT-III MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS

UNIT-III MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS UNIT-III MAC PROTOCOLS FOR WIRELESS SENSOR NETWORKS Syllabus: Issues in Designing a MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classifications

More information

AN ADAPTIVE ENERGY EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS

AN ADAPTIVE ENERGY EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS International Journal on Intelligent Electronic Systems, Vol.3, No.2, July 2009 7 Abstract AN ADAPTIVE ENERGY EFFICIENT MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS Lakshmanan M., Noor Mohammed V. 1 E-mail

More information

PATM: Priority-based Adaptive Topology Management for Efficient Routing in Ad Hoc Networks

PATM: Priority-based Adaptive Topology Management for Efficient Routing in Ad Hoc Networks PATM: Priority-based Adaptive Topology Management for Efficient Routing in Ad Hoc Networks Haixia Tan, Weilin Zeng and Lichun Bao Donald Bren School of Information and Computer Sciences University of California,

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

MAC in /20/06

MAC in /20/06 MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to

More information

Research Directions in Low-Power Wireless Networks

Research Directions in Low-Power Wireless Networks Research Directions in Low-Power Wireless Networks Behnam Dezfouli [ dezfouli@ieee.org ] November 2014 1 q OBSERVING AND CHARACTERIZING THE EFFECT OF ENVIRONMENT ON WIRELESS COMMUNICATIONS For example,

More information

AN ANALYSIS OF THE MODIFIED BACKOFF MECHANISM FOR IEEE NETWORKS

AN ANALYSIS OF THE MODIFIED BACKOFF MECHANISM FOR IEEE NETWORKS AN ANALYSIS OF THE MODIFIED BACKOFF MECHANISM FOR IEEE 802.11 NETWORKS Marek Natkaniec, Andrzej R. Pach Department of Telecommunications University of Mining and Metallurgy al. Mickiewicza 30, 30-059 Cracow

More information

A MAC Protocol based on Dynamic Time Adjusting in Wireless MIMO Networks

A MAC Protocol based on Dynamic Time Adjusting in Wireless MIMO Networks 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) A MAC Protocol based on Dynamic Time Adjusting in Wireless MIMO Networks Yang Qin*, Xiaoxiong Zhong, Li Li, Zhenhua

More information

Channel Access Scheduling in Ad Hoc Networks with Unidirectional Links

Channel Access Scheduling in Ad Hoc Networks with Unidirectional Links Channel Access Scheduling in Ad Hoc Networks with Unidirectional Links Lichun Bao Computer Science Department University of California Santa Cruz, CA 9564 baolc@soe.ucsc.edu J.J. Garcia-Luna-Aceves Computer

More information

A Directional MAC Protocol with the DATA-frame Fragmentation and Short Busy Advertisement Signal for Mitigating the Directional Hidden Node Problem

A Directional MAC Protocol with the DATA-frame Fragmentation and Short Busy Advertisement Signal for Mitigating the Directional Hidden Node Problem 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC) A Directional MAC Protocol with the DATA-frame Fragmentation and Short Busy Advertisement Signal for

More information

Energy-Efficient, Application-Aware Medium Access for Sensor Networks

Energy-Efficient, Application-Aware Medium Access for Sensor Networks Energy-Efficient, Application-Aware Medium Access for Sensor Networks Venkatesh Rajendran Email: venkat@soe.ucsc.edu Computer Engineering Department University of California at Santa Cruz Santa Cruz, CA

More information

Broadcast Traffic in Ad Hoc Networks with Directional Antennas

Broadcast Traffic in Ad Hoc Networks with Directional Antennas Broadcast Traffic in Ad Hoc Networks with Directional Antennas Yu Wang J.J. Garcia-Luna-Aceves Department of Computer Engineering University of California at Santa Cruz Santa Cruz, CA 9564, U.S.A. {ywang,jj}@cse.ucsc.edu

More information

LECTURE PLAN. Script. Introduction about MAC Types o ALOHA o CSMA o CSMA/CD o CSMA/CA

LECTURE PLAN. Script. Introduction about MAC Types o ALOHA o CSMA o CSMA/CD o CSMA/CA Course- B.Sc. Applied Physical Science (Computer Science) Year- IIIrd, Sem- Vth Subject Computer Science Paper- XVIIth, Computer Networks Lecture -11 Lecture Title- Medium Access Layer Script Today in

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

Vorlesung Kommunikationsnetze Research Topics: QoS in VANETs

Vorlesung Kommunikationsnetze Research Topics: QoS in VANETs Vorlesung Kommunikationsnetze Research Topics: QoS in VANETs Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I)

ECE453 Introduction to Computer Networks. Broadcast vs. PPP. Delay. Lecture 7 Multiple Access Control (I) ECE453 Introduction to Computer Networks Lecture 7 Multiple Access Control (I) 1 Broadcast vs. PPP Broadcast channel = multiaccess channel = random access channel Broadcast LAN Satellite network PPP WAN

More information

Grid-Based Channel Resource Allocation and Access Scheduling Using Latin Squares in Wireless Mesh Networks

Grid-Based Channel Resource Allocation and Access Scheduling Using Latin Squares in Wireless Mesh Networks Grid-Based Channel Resource Allocation and Access Scheduling Using Latin Squares in Wireless Mesh Networks Di Wu and Lichun Bao Donald Bren School of ICS, University of California, Irvine, USA Abstract

More information

Collision Avoidance and Resolution Multiple Access for Multichannel Wireless Networks

Collision Avoidance and Resolution Multiple Access for Multichannel Wireless Networks 1 Collision Avoidance and Resolution Multiple Access for Multichannel Wireless Networks RODRIGO GARCÉS rgarces@metricom.com Metricom Inc. 980 University Avenue Los Gatos, CA 95032 J.J. GARCIA-LUNA-ACEVES

More information

UNIT IV. Data link layer protocols. Prof.Prasad S.Halgaonkar

UNIT IV. Data link layer protocols. Prof.Prasad S.Halgaonkar UNIT IV Data link layer protocols Link Layer Frame synchronization. Data are sent in blocks called frames. The beginning and end of each frame must be recognized. Flow control. The sending station must

More information

Directional Antenna based Time Division Scheduling in Wireless Ad hoc Networks

Directional Antenna based Time Division Scheduling in Wireless Ad hoc Networks Directional Antenna based Time Division Scheduling in Wireless Ad hoc Networks Li Shaohua and Dong-Ho Cho School of Electrical Engineering and Computer Science Korea Advanced Institute of Science and Technology

More information

H-MMAC: A Hybrid Multi-channel MAC Protocol for Wireless Ad hoc Networks

H-MMAC: A Hybrid Multi-channel MAC Protocol for Wireless Ad hoc Networks H-: A Hybrid Multi-channel MAC Protocol for Wireless Ad hoc Networks Duc Ngoc Minh Dang Department of Computer Engineering Kyung Hee University, Korea Email: dnmduc@khu.ac.kr Choong Seon Hong Department

More information

COMPUTER NETWORKS - Local area networks

COMPUTER NETWORKS - Local area networks Local area networks Telecommunication Networks Group firstname.lastname@polito.it http://www.telematica.polito.it/ COMPUTER NETWORKS LANs - 1 Copyright Quest opera è protetta dalla licenza Creative Commons

More information

Local area networks. Copyright

Local area networks. Copyright Local area networks Telecommunication Networks Group firstname.lastname@polito.it http://www.telematica.polito.it/ COMPUTER NETWORKS LANs - 1 Copyright Quest opera è protetta dalla licenza Creative Commons

More information

CSMA/IC: A New Class of Collision free MAC Protocols for Ad Hoc Wireless Networks

CSMA/IC: A New Class of Collision free MAC Protocols for Ad Hoc Wireless Networks CSMA/IC: A New Class of Collision free MAC Protocols for Ad Hoc Wireless Networks Tiantong You (you@cs.queensu.ca) Department of Computing and Information Science Chi-Hsiang Yeh (yeh@ece.queensu.ca) Department

More information

CS 410/510 Sensor Networks Portland State University

CS 410/510 Sensor Networks Portland State University CS 410/510 Sensor Networks Portland State University Lecture 7 Energy Conservation and Harvesting 2/9/2009 Nirupama Bulusu 1 Source Acknowledgements Wei Ye and John Heidemann USC Information Sciences Institute

More information

Mobile Ad-hoc Networks - Analysis of Dynamic Channel Allocation and Load Balancing

Mobile Ad-hoc Networks - Analysis of Dynamic Channel Allocation and Load Balancing Mobile Ad-hoc Networks - Analysis of Dynamic Channel Allocation and Load Balancing D.Bhadru 1, G.R.Ramadevi 2, ShankarNayak Bhukya 3 1,2,3 Associate Professor, Dept.CSE,SVIT, Hyderabad, TS, India ABSTRACT

More information

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks. Networks: Wireless LANs 1 Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application

More information

A Token Passing Tree MAC Scheme for Wireless Ad Hoc Networks to Support Real-Time Traffic

A Token Passing Tree MAC Scheme for Wireless Ad Hoc Networks to Support Real-Time Traffic A Token Passing Tree MAC Scheme for Wireless Ad Hoc Networks to Support Real-Time Traffic Rao Jianqiang 1, Jiang Shengming 2,andHeDajiang 1 1 Department of Electrical Engineering, National University of

More information

College of Computer and Information Sciences Department of Computer Engineering CEN444 Computer Networks Midterm 2 Exam Second Semester 1434/1435

College of Computer and Information Sciences Department of Computer Engineering CEN444 Computer Networks Midterm 2 Exam Second Semester 1434/1435 College of Computer and Information Sciences Department of Computer Engineering CEN444 Computer Networks Midterm 2 Exam Second Semester 1434/1435 Student Name ID Time Allowed: 2.0 Hours. Closed Book, Closed

More information

WITH advances in wireless communications and the

WITH advances in wireless communications and the 1 Priority Scheduling in Wireless Ad Hoc Networks (Draft Version) Xue Yang and Nitin.H.Vaidya Coordinated Science Laboratory University of Illinois at Urbana-Champaign Abstract Ad hoc networks formed without

More information

CPSC 441 Tutorial-19. Department of Computer Science University of Calgary

CPSC 441 Tutorial-19. Department of Computer Science University of Calgary CPSC 441 Tutorial-19 Department of Computer Science University of Calgary Problem-1 Consider n nodes that use the slotted CSMA/ CD with binary exponential back-off to access a shared broadcast channel.

More information

Wireless Networks (CSC-7602) Lecture 6 (08 Oct. 2007) Seung-Jong Park (Jay) Wireless MAC

Wireless Networks (CSC-7602) Lecture 6 (08 Oct. 2007) Seung-Jong Park (Jay)  Wireless MAC Wireless Networks (CSC-7602) Lecture 6 (08 Oct. 2007) Seung-Jong Park (Jay) http://www.csc.lsu.edu/~sjpark 1 Wireless MAC 2 1 Wireless MAC CSMA as wireless MAC? Hidden and exposed terminal problems make

More information

SENSOR-MAC CASE STUDY

SENSOR-MAC CASE STUDY SENSOR-MAC CASE STUDY Periodic Listen and Sleep Operations One of the S-MAC design objectives is to reduce energy consumption by avoiding idle listening. This is achieved by establishing low-duty-cycle

More information

Energy Management Issue in Ad Hoc Networks

Energy Management Issue in Ad Hoc Networks Wireless Ad Hoc and Sensor Networks - Energy Management Outline Energy Management Issue in ad hoc networks WS 2010/2011 Main Reasons for Energy Management in ad hoc networks Classification of Energy Management

More information

QoS Assurance and Energy Conservation Using DSR-TDMA Protocol and Leach Algorithm in MANETs

QoS Assurance and Energy Conservation Using DSR-TDMA Protocol and Leach Algorithm in MANETs QoS Assurance and Energy Conservation Using DSR-TDMA Protocol and Leach Algorithm in MANETs Shruti Tripathi, Prof. Avinash Rai M. Tech. Scholar, Department of Electronics & Communication, University Institute

More information

MAC Research Highlight

MAC Research Highlight MAC Research Highlight Y.C. Tseng Outline: 3 Main Research Issues Analysis: G. Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, IEEE J-SAC, 2000. K. Kanodia et al., Ordered

More information

Energy Management Issue in Ad Hoc Networks

Energy Management Issue in Ad Hoc Networks Wireless Ad Hoc and Sensor Networks (Energy Management) Outline Energy Management Issue in ad hoc networks WS 2009/2010 Main Reasons for Energy Management in ad hoc networks Classification of Energy Management

More information

Advanced Networking Technologies

Advanced Networking Technologies Advanced Networking Technologies Chapter 4 Medium Access Control Protocols (Acknowledgement: These slides have been prepared by Prof. Dr. Holger Karl) Advanced Networking (SS 16): 04 Medium Access Control

More information

RECEIVER CONTROLLED MEDIUM ACCESS IN MULTIHOP AD HOC NETWORKS WITH MULTIPACKET RECEPTION

RECEIVER CONTROLLED MEDIUM ACCESS IN MULTIHOP AD HOC NETWORKS WITH MULTIPACKET RECEPTION RECEIVER CONTROLLED MEDIUM ACCESS IN MULTIHOP AD HOC NETWORKS WITH MULTIPACKET RECEPTION Gökhan Mergen and Lang Tong School of Electrical and Computer Engineering Cornell University, Ithaca, NY 14853 {mergen,ltong}@eecornelledu

More information

Media Access Control in Ad Hoc Networks

Media Access Control in Ad Hoc Networks Media Access Control in Ad Hoc Networks The Wireless Medium is a scarce precious resource. Furthermore, the access medium is broadcast in nature. It is necessary to share this resource efficiently and

More information