Internet Routers Past, Present and Future

Size: px
Start display at page:

Download "Internet Routers Past, Present and Future"

Transcription

1 Internet Routers Past, Present and Future Nick McKeown Stanford University British Computer Society June 2006

2 Outline What is an Internet router? What limits performance: Memory access time The early days: Modified computers Programmable against uncertainty The middle years: Specialized for performance Needed new architectures, theory, and practice So how did we do? Now: Internet showing its age Simple model breaking down The future: Simplify (again) or move over

3 Ada Lovelace Ada Lovelace

4 Routers process heads Data Head Head

5 Definitions N 1 2 R N = number of linecards. Typically 8-32 per chassis R = line-rate. 1Gb/s, 2.5Gb/s, 10Gb/s, 40Gb/s, 100Gb/s Capacity of router = N x R

6 Data Header Internet Address 2. Age 3. Checksum to protect header

7 Lookup internet address Check and update age Check and update checksum

8 Barebones Router Router Control and Management

9 Barebones Router

10 Barebones Router

11 Bottlenecks Memory, memory, 1 2

12 DRAM as bottleneck DRAM then DRAM now d d Address Data Address Data DRAMs designed to maximize number of bytes d has stayed constant (yield) d determines access time (capacitance) Access time ( speed ) has stayed constant

13 Outline What is an Internet router? What limits performance: Memory access time The early days: Modified computers Programmable against uncertainty The middle years: Specialized for performance Needed new architectures, theory, and practice So how did we do? The present: Internet showing its age Simple model breaking down The future: Simplify or move over

14 Early days: Modified Computer Must run at rate N x R R R R R R R R R Bottlenecks

15 2 nd Generation Router R R R R

16 Early days: Modified Computer Function more important than speed 1993 (WWW) changed everything We badly needed Some new architecture Some theory Some practice Nick McKeown 2006

17 3 rd Generation Router: Switch N x R

18

19 1 x R Nick McKeown 2006 Arbiter

20 Arbiter Arbiter Arbiter Arbiter Arbiter Arbiter Arbiter Arbiter Nick McKeown 2006 Developed at Abrizio Inc. Arbiter

21 4 th Generation Router Multirack; optics inside Optical links 100s of metres Linecards Switch

22 More 4 th Generation Routers Alcatel 7670 RSP Juniper TX8/T640 TX8 Avici TSR Cisco CRS-1

23 Power consumption per chassis Power (kw)

24 5 th Generation routers? Load-balancing over passive optics

25 5 th Generation routers? Load-balancing over passive optics Zero-power Passive switching No No arbiter Optical Guaranteed Switch performance (AWGR) Electronic processing at at R Very Very scalable. Petabits?

26 Examples of Router Theory 1. There s something special about 2 2. Making fast queues 3. How big should the queue be?

27 Case 1: Placing calls Crosspoint switch Permutation A crosspoint switch supports all permutations So it is non-blocking But it needs N 2 crosspoints

28 1 Case 1: Placing Calls Uncertainty costs If I give you the permutation, you can route it. If I give you entries one at a time, you can t. Clos (1950s): But if you make it run 2 times faster you can route calls one at a time.

29 Case 2: Mimicking N x R

30 Case 2: Mimicking 1 x R

31 Are they equivalent? NR No. R

32 Case 2: Mimicking 1 x R? x R Nick McKeown 2006 Algorithm

33 Now are they equivalent? NR Yes, if it runs 2 times faster. R 2R Algorithm

34 Case 3: Are they equivalent? Yes, if it runs 2 times faster.

35 Case 4: Routing packets with uncertainty R Rates Nick McKeown Algorithm If you know the rates, you can find a sequence of permutations: = But we don t know the rates (they are always changing)

36 Case 4: Routing packets with uncertainty 2 If you choose the permutations one at a time, and you can spend as long as you want choosing, then you can support any pattern of rates. 3 But if you have to make decisions one at a time, then the switch has to run 2 times faster.

37 Case 5: Load-balancing Load-balancing to support all rate matrices: Requires the network to run 2 times faster Case 6: Local versus global decisions Local ( selfish ) routing decisions: Cost twice as much as global decisions Nick McKeown 2006

38 Examples of Router Theory 1. There s something special about 2 2. Making fast queues 3. How big should the queue be?

39 Fast Queues 1 DRAM Cheap and plentiful Too slow 2 SRAM Fast enough 50x as expensive Network industry buys over $500M of SRAMs per year. Computer industry has its own solution: Cache in SRAM, Store in DRAM But networking can t tolerate a miss-rate

40 Fast Queues 1 3 DRAM Speed=1 Fast as SRAM Big as DRAM Never misses Q Algorithm SRAM Speed=b SRAM SRAM size: size: QblnQ Nick McKeown 2006 Developed as Network Memory by Nemo Systems

41 Examples of Router Theory 1. There s something special about 2 2. Making fast queues 3. How big should the queue be?

42 How big should the queue be??

43 Packet delay = T? R Rule of thumb: Queue needs to hold 2T x R packets

44 How big should the queue be? The story so far # packets at 10Gb/s 1,000,000 10, T R 2T R O(20) n Where n = number of flows passing through router

45 Outline What is an Internet router? What limits performance: Memory access time The early days: Modified computers Programmable against uncertainty The middle years: Specialized for performance Needed new architectures, theory, and practice So how did we do? The present: Internet showing its age Simple model breaking down The future: Simplify or move over Nick McKeown 2006

46 What to expect Link speeds followed Moore s Law User demand doubled every year Router capacity limited by memory speed DRAM is no faster now than 10 years ago Routers should have fallen behind

47 Backbone router capacity Followed Moore s Law 1Tb/s 100Gb/s 10Gb/s 1Gb/s Router capacity per chassis doubled every 18 months

48 Outline What is an Internet router? What limits performance: Memory access time The early days: Modified computers Programmable against uncertainty The middle years: Specialized for performance Needed new architectures, theory, and practice So how did we do? The present: Internet showing its age Simple model breaking down The future: Simplify or move over

49 What s happened since End of the Internet end-to-end model + Uncertainty + Lack of competition Explosion of complexity in routers IPv6, multicast, ACLs, firewall, virtual routing, MPLS, Diffserv, IntServ, RSVP, ATM, IP Tunnels, IPSec, VPNs, Virtual routing, Calea, Power-hungry, expensive, unreliable

50 Packet processing gets harder Operations per arriving packet What What we d we d like like (more (more features) What What we we can can do do if if We re We re lucky lucky Line-rates Line-rates don t don t exceed exceed Moore s Moore s Law Law We We ignore ignore power power More More likely likely time

51 Outline What is an Internet router? What limits performance: Memory access time The early days: Modified computers Programmable against uncertainty The middle years: Specialized for performance Needed new architectures, theory, and practice So how did we do? The present: Internet showing its age Simple model breaking down The future: Simplify or move over

52 Prediction Increased need for dependability & reliability of the whole network

53 Unfashionable Predictions In 10 years, big routers will be much simpler Fewer features Much smaller queues (Prevailing wisdom is that they will become more complex with big queues)

54 Current network operators Grossly over-provisioned Hard to predict traffic now Harder to predict traffic growth Resilience against failure of routers and links Over-provision by 50% to protect against 2% failures Customers hate delay and delay variation Current usage less than 10% No network provider makes profit from public Internet service Subsidised by voice (especially mobile) and VPNs Nick McKeown 2006

55 Trends in networks Consolidation of (i.e. reduction in) number of network providers Does it converge on competition or monopoly? Emerging structure around population centres One regional centre per 5-10 million people UK: 5-10 centres USA: centres Increased meshing and load-balancing Nick McKeown 2006

56 Current Structure Nick McKeown 2006 Reproduced with permission of Bill Cheswick, Lumeta Inc

57 Emerging Structure

58 Can we exploit emerging structure and consolidation to make networks simpler, more dependable and even profitable?

59 Valiant Load-Balancing

60 Valiant Load-Balancing Operates over logical mesh of optical circuits Supports all traffic patterns No need to over-provision against uncertainty Resilient against failure Network can be designed for any amount of resilience Over-provision by 5% to provably protect against 5% failures (1:1 instead of 20:1) Simple Routing Cost Can be used close to 100% load Less expensive than today s network

61 Unfashionable Predictions In 10 years, we will be close to a monopoly. (Get over it) it) In 15 years, flow-by-flow load-balancing will be common.

62 What about optical routers? Prevailing wisdom A router must Process headers, 2. Switch packet-by-packet, and 3. Buffer packets during times of congestion. Optics suck at all three. Emerging possibilities 1. Process headers: Carry headers slower; process electronically. 2. Switch packets: Valiant Load Balancing means no packet-by-packet sw 3. Buffer packets: packets might be enough in the backbone Nick McKeown 2006 DARPA DOD-N Program (LASOR and IRIS Projects)

63 [Burmeister and Bowers, UCSB] Integrated optical buffers Think: packets on a chip

64 Unfashionable Predictions In 15 years, optical routers will be possible (Not ready to to predict that they will be necessary)

65 Unfashionable Predictions In 10 years, big routers will be much simpler Fewer features Much smaller queues and they will have to compete with optical dynamic circuit switches (DCS)

66 Structure of switching centers

67 Circuit switches control the topology SONET/SDH, DWDM Nick McKeown 2006

68 Conventional Wisdom Circuit switching finally eliminated?

69 Circuit Switches Advantages of circuit switches Well-suited to optics Circuit switches are simple Start with a packet switch and throw 90% of it away Higher capacity per unit volume Higher capacity per watt Lower cost per Gb/s No queues, no delay variation Disadvantages They are unfashionable

70 DCS: Capacity on demand between border routers

71

72 Unfashionable Predictions In 15 years, fast dynamic circuit switches will be common Will big routers be something of the past.?

73 Thank you!

How Emerging Optical Technologies will affect the Future Internet

How Emerging Optical Technologies will affect the Future Internet How Emerging Optical Technologies will affect the Future Internet NSF Meeting, 5 Dec, 2005 Nick McKeown Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm Emerged (and deployed) Optical

More information

Scaling routers: Where do we go from here?

Scaling routers: Where do we go from here? Scaling routers: Where do we go from here? HPSR, Kobe, Japan May 28 th, 2002 Nick McKeown Professor of Electrical Engineering and Computer Science, Stanford University nickm@stanford.edu www.stanford.edu/~nickm

More information

CSE 123A Computer Networks

CSE 123A Computer Networks CSE 123A Computer Networks Winter 2005 Lecture 8: IP Router Design Many portions courtesy Nick McKeown Overview Router basics Interconnection architecture Input Queuing Output Queuing Virtual output Queuing

More information

Introducing optical switching into the network

Introducing optical switching into the network Introducing optical switching into the network ECOC 2005, Glasgow Nick McKeown High Performance Networking Group Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm Network religion Bigger

More information

Building Core Networks and Routers in the 2002 Economy

Building Core Networks and Routers in the 2002 Economy Building Core Networks and Routers in the 2002 Economy June, 2002 David Ward Cisco Systems, Inc. (mailto:dward@cisco.com) 1 Internet Backbone Growth Key Inflections & Trends 10000 5120 Technology Milestone

More information

Professor Yashar Ganjali Department of Computer Science University of Toronto.

Professor Yashar Ganjali Department of Computer Science University of Toronto. Professor Yashar Ganjali Department of Computer Science University of Toronto yganjali@cs.toronto.edu http://www.cs.toronto.edu/~yganjali Today Outline What this course is about Logistics Course structure,

More information

Network Processors and their memory

Network Processors and their memory Network Processors and their memory Network Processor Workshop, Madrid 2004 Nick McKeown Departments of Electrical Engineering and Computer Science, Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm

More information

INF5050 Protocols and Routing in Internet (Friday ) Subject: IP-router architecture. Presented by Tor Skeie

INF5050 Protocols and Routing in Internet (Friday ) Subject: IP-router architecture. Presented by Tor Skeie INF5050 Protocols and Routing in Internet (Friday 9.2.2018) Subject: IP-router architecture Presented by Tor Skeie High Performance Switching and Routing Telecom Center Workshop: Sept 4, 1997. This presentation

More information

Routers Technologies & Evolution for High-Speed Networks

Routers Technologies & Evolution for High-Speed Networks Routers Technologies & Evolution for High-Speed Networks C. Pham Université de Pau et des Pays de l Adour http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Router Evolution slides from Nick McKeown,

More information

Packet Switch Architectures Part 2

Packet Switch Architectures Part 2 Packet Switch Architectures Part Adopted from: Sigcomm 99 Tutorial, by Nick McKeown and Balaji Prabhakar, Stanford University Slides used with permission from authors. 999-000. All rights reserved by authors.

More information

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology

Themes. The Network 1. Energy in the DC: ~15% network? Energy by Technology Themes The Network 1 Low Power Computing David Andersen Carnegie Mellon University Last two classes: Saving power by running more slowly and sleeping more. This time: Network intro; saving power by architecting

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction In a packet-switched network, packets are buffered when they cannot be processed or transmitted at the rate they arrive. There are three main reasons that a router, with generic

More information

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4

Network Superhighway CSCD 330. Network Programming Winter Lecture 13 Network Layer. Reading: Chapter 4 CSCD 330 Network Superhighway Network Programming Winter 2015 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

Network layer (addendum) Slides adapted from material by Nick McKeown and Kevin Lai

Network layer (addendum) Slides adapted from material by Nick McKeown and Kevin Lai Network layer (addendum) Slides adapted from material by Nick McKeown and Kevin Lai Routers.. A router consists - A set of input interfaces at which packets arrive - A set of output interfaces from which

More information

EE 122: Router Design

EE 122: Router Design Routers EE 22: Router Design Kevin Lai September 25, 2002.. A router consists - A set of input interfaces at which packets arrive - A set of output interfaces from which packets depart - Some form of interconnect

More information

The Arbitration Problem

The Arbitration Problem HighPerform Switchingand TelecomCenterWorkshop:Sep outing ance t4, 97. EE84Y: Packet Switch Architectures Part II Load-balanced Switches ick McKeown Professor of Electrical Engineering and Computer Science,

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary TOC Switching Why? Direct vs. Switched Networks: n links Single link Direct Network

More information

Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch

Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch Buffer Sizing in a Combined Input Output Queued (CIOQ) Switch Neda Beheshti, Nick Mckeown Stanford University Abstract In all internet routers buffers are needed to hold packets during times of congestion.

More information

The Evolution Path from Frames to Services

The Evolution Path from Frames to Services The Evolution Path from Frames to Services Alberto Degradi Manager Systems Engineering Core Technology HPSR Turin 26th June 1 Agenda Market Trends Lan Switching Evolution Routing evolution 2 Agenda Market

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Network Superhighway Spring 2018 Lecture 13 Network Layer Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007

More information

Routers: Forwarding EECS 122: Lecture 13

Routers: Forwarding EECS 122: Lecture 13 Input Port Functions Routers: Forwarding EECS 22: Lecture 3 epartment of Electrical Engineering and Computer Sciences University of California Berkeley Physical layer: bit-level reception ata link layer:

More information

Network Performance: Queuing

Network Performance: Queuing Network Performance: Queuing EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials

More information

Switch and Router Design. Packet Processing Examples. Packet Processing Examples. Packet Processing Rate 12/14/2011

Switch and Router Design. Packet Processing Examples. Packet Processing Examples. Packet Processing Rate 12/14/2011 // Bottlenecks Memory, memory, 88 - Switch and Router Design Dr. David Hay Ross 8b dhay@cs.huji.ac.il Source: Nick Mckeown, Isaac Keslassy Packet Processing Examples Address Lookup (IP/Ethernet) Where

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary Why? Direct vs. Switched Networks: Single link Switches Direct Network Limitations:

More information

Routers: Forwarding EECS 122: Lecture 13

Routers: Forwarding EECS 122: Lecture 13 Routers: Forwarding EECS 122: Lecture 13 epartment of Electrical Engineering and Computer Sciences University of California Berkeley Router Architecture Overview Two key router functions: run routing algorithms/protocol

More information

New Approaches to Optical Packet Switching in Carrier Networks. Thomas C. McDermott Chiaro Networks Richardson, Texas

New Approaches to Optical Packet Switching in Carrier Networks. Thomas C. McDermott Chiaro Networks Richardson, Texas New Approaches to Optical Packet Switching in Carrier Networks Thomas C. McDermott Chiaro Networks Richardson, Texas Outline Introduction, Vision, Problem statement Approaches to Optical Packet Switching

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

CAS CS 556. What to expect? Background? Abraham Matta. Advanced Computer Networks. Increase understanding of fundamentals and design tradeoffs

CAS CS 556. What to expect? Background? Abraham Matta. Advanced Computer Networks. Increase understanding of fundamentals and design tradeoffs CAS CS 556 Abraham Matta Advanced Computer Networks What to expect? Increase understanding of fundamentals and design tradeoffs Discuss latest developments and research issues Naming & addressing, routing,

More information

MPLS, THE BASICS CSE 6067, UIU. Multiprotocol Label Switching

MPLS, THE BASICS CSE 6067, UIU. Multiprotocol Label Switching MPLS, THE BASICS CSE 6067, UIU Multiprotocol Label Switching Basic Concepts of MPLS 2 Contents Drawbacks of Traditional IP Forwarding Basic MPLS Concepts MPLS versus IP over ATM Traffic Engineering with

More information

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t

Announcements. Network Performance: Queuing. Goals of Today s Lecture. Window Scaling. Window Scaling, con t. Window Scaling, con t Announcements Network Performance: Queuing Additional reading for today s lecture: Peterson & Davie 3.4 EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson As: Dilip

More information

Network Processors. Nevin Heintze Agere Systems

Network Processors. Nevin Heintze Agere Systems Network Processors Nevin Heintze Agere Systems Network Processors What are the packaging challenges for NPs? Caveat: I know very little about packaging. Network Processors What are the packaging challenges

More information

Information and Communication Networks. Communication

Information and Communication Networks. Communication Information Technology Communication Information and Communication Networks Integrating IP and : Delivering QoS in an IP Environment Multiservice Platforms G One infrastructure supporting voice, video

More information

Outline. The demand The San Jose NAP. What s the Problem? Most things. Time. Part I AN OVERVIEW OF HARDWARE ISSUES FOR IP AND ATM.

Outline. The demand The San Jose NAP. What s the Problem? Most things. Time. Part I AN OVERVIEW OF HARDWARE ISSUES FOR IP AND ATM. Outline AN OVERVIEW OF HARDWARE ISSUES FOR IP AND ATM Name one thing you could achieve with ATM that you couldn t with IP! Nick McKeown Assistant Professor of Electrical Engineering and Computer Science

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

MPLS опорни мрежи MPLS core networks

MPLS опорни мрежи MPLS core networks MPLS опорни мрежи MPLS core networks Николай Милованов/Nikolay Milovanov http://niau.org Objectives Identify the drawbacks of traditional IP routing Describe basic MPLS concepts and LSR types. MPLS Labels

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

EE384Y: Packet Switch Architectures Part II Scaling Crossbar Switches

EE384Y: Packet Switch Architectures Part II Scaling Crossbar Switches High Performance Switching and Routing Telecom Center Workshop: Sept 4, 997. EE384Y: Packet Switch Architectures Part II Scaling Crossbar Switches Nick McKeown Professor of Electrical Engineering and Computer

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks Ibrahim Matta What to expect? Increase understanding of fundamentals and design tradeoffs Discuss latest developments and research issues Naming & addressing, routing, connection

More information

MPLS Multi-Protocol Label Switching

MPLS Multi-Protocol Label Switching MPLS Multi-Protocol Label Switching Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer Networks Design and Management - 1 MPLS: introduction

More information

Cisco IOS Switching Paths Overview

Cisco IOS Switching Paths Overview This chapter describes switching paths that can be configured on Cisco IOS devices. It contains the following sections: Basic Router Platform Architecture and Processes Basic Switching Paths Features That

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

2610:f8:ffff:2010:04:13:0085:1

2610:f8:ffff:2010:04:13:0085:1 2610:f8:ffff:2010:04:13:0085:1 Qwest IPv6 Implementation Experience Shawn Carroll 2610:f8:ffff:2010:04:13:0085:55 Previous Qwest Implementation Work Obtained 6bone Pseudo Next Level Aggregator (pnla) from

More information

Technical Sub-Study Areas

Technical Sub-Study Areas Technical Sub-Study Areas Transmission Technologies Equipment evolution, next-generation standards, transmission protocols & fibre provisioning. Control Plane Technologies Switching & routing matrices

More information

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES Greg Hankins APRICOT 2012 2012 Brocade Communications Systems, Inc. 2012/02/28 Lookup Capacity and Forwarding

More information

CCVP QOS Quick Reference Sheets

CCVP QOS Quick Reference Sheets Why You Need Quality of Service (QoS)...3 QoS Basics...5 QoS Deployment...6 QoS Components...6 CCVP QOS Quick Reference Sheets Basic QoS Configuration...11 Traffic Classification and Marking...15 Queuing...26

More information

Converged Networks. Objectives. References

Converged Networks. Objectives. References Converged Networks Professor Richard Harris Objectives You will be able to: Discuss what is meant by convergence in the context of current telecommunications terminology Provide a network architecture

More information

Wide Area Networks :

Wide Area Networks : Wide Area Networks : Backbone Infrastructure Ian Pratt University of Cambridge Computer Laboratory Outline Demands for backbone bandwidth Fibre technology DWDM Long-haul link design Backbone network technology

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

Multi Protocol Label Switching

Multi Protocol Label Switching MPLS Multi-Protocol Label Switching Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network Management and QoS Provisioning - 1 MPLS: introduction

More information

Scaling Internet Routers Using Optics Producing a 100TB/s Router. Ashley Green and Brad Rosen February 16, 2004

Scaling Internet Routers Using Optics Producing a 100TB/s Router. Ashley Green and Brad Rosen February 16, 2004 Scaling Internet Routers Using Optics Producing a 100TB/s Router Ashley Green and Brad Rosen February 16, 2004 Presentation Outline Motivation Avi s Black Box Black Box: Load Balance Switch Conclusion

More information

Multiprotocol Label Switching (MPLS) on Cisco Routers

Multiprotocol Label Switching (MPLS) on Cisco Routers Multiprotocol Label Switching (MPLS) on Cisco Routers This document describes commands for configuring and monitoring Multiprotocol Label Switching (MPLS) functionality on Cisco routers and switches. This

More information

CS519: Computer Networks. Lecture 2: Feb 2, 2004 IP (Internet Protocol)

CS519: Computer Networks. Lecture 2: Feb 2, 2004 IP (Internet Protocol) : Computer Networks Lecture 2: Feb 2, 2004 IP (Internet Protocol) A hypothetical service You want a mail delivery service You have two choices: Acme Guaranteed Mail Delivery Service We never fail Rocko

More information

Network Design Clinic

Network Design Clinic Network Design Clinic A Network Design should be as simple as possible, but no simpler! Presented by: Jason Bomar, CCIE #9316 Introduction We will cover a number of topics, at a high level they are: Hierarchy

More information

Network Design and Management. Nixu Ltd.

Network Design and Management. Nixu Ltd. Network Design and Management Nixu Ltd. Contents Network Design and Management The FCAPS Model High Availability solutions SNMP protocol Nixu Ltd. 2/31 Network Design and Management Network Design and

More information

Flow-Based Routing: Towards New QoS Models Dr. Riad Hartani Caspian Networks

Flow-Based Routing: Towards New QoS Models Dr. Riad Hartani Caspian Networks Flow-Based Routing: Towards New QoS Models Dr. Riad Hartani Caspian Networks Agenda MPLS: status and ongoing work items Flow-based routing the technology Flow-based routing benefits Overall technology

More information

Packet Optical Trends for wireless backhaul and Challenges for Embedded Designers. Soumya Desai, 21 st May 2011

Packet Optical Trends for wireless backhaul and Challenges for Embedded Designers. Soumya Desai, 21 st May 2011 Packet Optical Trends for wireless backhaul and Challenges for Embedded Designers Soumya Desai, 21 st May 2011 Silicon India Global Embedded Conference 2011 What is wireless backhaul? We do this line!!

More information

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS

CS519: Computer Networks. Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS : Computer Networks Lecture 5, Part 5: Mar 31, 2004 Queuing and QoS Ways to deal with congestion Host-centric versus router-centric Reservation-based versus feedback-based Window-based versus rate-based

More information

CS118 Discussion, Week 6. Taqi

CS118 Discussion, Week 6. Taqi CS118 Discussion, Week 6 Taqi 1 Outline Network Layer IP NAT DHCP Project 2 spec 2 Network layer: overview Basic functions for network layer Routing Forwarding Connection v.s. connection-less delivery

More information

Router Construction. Workstation-Based. Switching Hardware Design Goals throughput (depends on traffic model) scalability (a function of n) Outline

Router Construction. Workstation-Based. Switching Hardware Design Goals throughput (depends on traffic model) scalability (a function of n) Outline Router Construction Outline Switched Fabrics IP Routers Tag Switching Spring 2002 CS 461 1 Workstation-Based Aggregate bandwidth 1/2 of the I/O bus bandwidth capacity shared among all hosts connected to

More information

Sizing Router Buffers

Sizing Router Buffers Sizing Router Buffers Sachin Katti, CS244 Slides courtesy: Nick McKeown Routers need Packet Buffers It s well known that routers need packet buffers It s less clear why and how much Goal of this work is

More information

ENTERPRISE MPLS. Kireeti Kompella

ENTERPRISE MPLS. Kireeti Kompella ENTERPRISE MPLS Kireeti Kompella AGENDA The New VLAN Protocol Suite Signaling Labels Hierarchy Signaling Advanced Topics Layer 2 or Layer 3? Resilience and End-to-end Service Restoration Multicast ECMP

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

THE MPLS JOURNEY FROM CONNECTIVITY TO FULL SERVICE NETWORKS. Sangeeta Anand Vice President Product Management Cisco Systems.

THE MPLS JOURNEY FROM CONNECTIVITY TO FULL SERVICE NETWORKS. Sangeeta Anand Vice President Product Management Cisco Systems. THE MPLS JOURNEY FROM CONNECTIVITY TO FULL SERVICE NETWORKS Sangeeta Anand Vice President Product Management Cisco Systems October 20, 2003 1 Agenda Introducing the Full Service Network The MPLS Journey

More information

CS 268: Computer Networking

CS 268: Computer Networking CS 268: Computer Networking L-8 outers Forwarding and outers Forwarding IP lookup High-speed router architecture eadings [McK97] A Fast Switched Backplane for a Gigabit Switched outer [KCY03] Scaling ternet

More information

BW Protection. 2002, Cisco Systems, Inc. All rights reserved.

BW Protection. 2002, Cisco Systems, Inc. All rights reserved. BW Protection 2002, Cisco Systems, Inc. All rights reserved. 1 Cisco MPLS - Traffic Engineering for VPNs Amrit Hanspal Sr. Product Manager MPLS & QoS Internet Technologies Division 2 Agenda MPLS Fundamentals

More information

A configuration-only approach to shrinking FIBs. Prof Paul Francis (Cornell)

A configuration-only approach to shrinking FIBs. Prof Paul Francis (Cornell) A configuration-only approach to shrinking FIBs Prof Paul Francis (Cornell) 1 Virtual Aggregation An approach to shrinking FIBs (and RIBs) In routers, not in route reflectors Works with legacy routers

More information

Networks. Characteristics of IP. Internet overview Service Router Service Aggregation Router Ethernet Service Switch

Networks. Characteristics of IP. Internet overview Service Router Service Aggregation Router Ethernet Service Switch 1 IP/MPLS Service Networks The Alcatel-Lucent NRS II exam topics covered in this chapter include the following: Characteristics of IP Internet overview Alcatel-Lucent 7750 Service Router product group

More information

Differentiated Services

Differentiated Services Diff-Serv 1 Differentiated Services QoS Problem Diffserv Architecture Per hop behaviors Diff-Serv 2 Problem: QoS Need a mechanism for QoS in the Internet Issues to be resolved: Indication of desired service

More information

Last Lecture: Network Layer

Last Lecture: Network Layer Last Lecture: Network Layer 1. Design goals and issues 2. Basic Routing Algorithms & Protocols 3. Addressing, Fragmentation and reassembly 4. Internet Routing Protocols and Inter-networking 5. Router design

More information

Toward a unified architecture for LAN/WAN/WLAN/SAN switches and routers

Toward a unified architecture for LAN/WAN/WLAN/SAN switches and routers Toward a unified architecture for LAN/WAN/WLAN/SAN switches and routers Silvano Gai 1 The sellable HPSR Seamless LAN/WLAN/SAN/WAN Network as a platform System-wide network intelligence as platform for

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Computer Networks and The Inter Sec 1.3 Prof. Lina Battestilli Fall 2017 Outline Computer Networks and the Inter (Ch 1) 1.1 What is the Inter? 1.2 work

More information

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016 Caches and Memory Hierarchy: Review UCSB CS240A, Winter 2016 1 Motivation Most applications in a single processor runs at only 10-20% of the processor peak Most of the single processor performance loss

More information

Advanced Network Design

Advanced Network Design Advanced Network Design Organization Whoami, Book, Wikipedia www.cs.uchicago.edu/~nugent/cspp54015 Grading Homework/project: 60% Midterm: 15% Final: 20% Class participation: 5% Interdisciplinary Course

More information

CS 557 Congestion and Complexity

CS 557 Congestion and Complexity CS 557 Congestion and Complexity Observations on the Dynamics of a Congestion Control Algorithm: The Effects of Two-Way Traffic Zhang, Shenker, and Clark, 1991 Spring 2013 The Story So Far. Transport layer:

More information

The IP Data Plane: Packets and Routers

The IP Data Plane: Packets and Routers The IP Data Plane: Packets and Routers EE 122, Fall 2013 Sylvia Ratnasamy http://inst.eecs.berkeley.edu/~ee122/ Material thanks to Ion Stoica, Scott Shenker, Jennifer Rexford, Nick McKeown, and many other

More information

Networking and Internetworking 1

Networking and Internetworking 1 Networking and Internetworking 1 Today l Networks and distributed systems l Internet architecture xkcd Networking issues for distributed systems Early networks were designed to meet relatively simple requirements

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

ALCATEL Edge Services Router

ALCATEL Edge Services Router ALCATEL 7420 Edge Services Router Alcatel builds next generation networks, delivering integrated end-to-end voice and data networking solutions to established and new carriers, as well as enterprises and

More information

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including

Introduction. Introduction. Router Architectures. Introduction. Recent advances in routing architecture including Router Architectures By the end of this lecture, you should be able to. Explain the different generations of router architectures Describe the route lookup process Explain the operation of PATRICIA algorithm

More information

Parallelism in Network Systems

Parallelism in Network Systems High Performance Switching Telecom Center Workshop: and outing Sept 4, 997. Parallelism in Network Systems Joint work with Sundar Iyer HP Labs, 0 th September, 00 Nick McKeown Professor of Electrical Engineering

More information

Data Centers. Tom Anderson

Data Centers. Tom Anderson Data Centers Tom Anderson Transport Clarification RPC messages can be arbitrary size Ex: ok to send a tree or a hash table Can require more than one packet sent/received We assume messages can be dropped,

More information

Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14

Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14 Routers with a Single Stage of Buffering * Sigcomm Paper Number: 342, Total Pages: 14 Abstract -- Most high performance routers today use combined input and output queueing (CIOQ). The CIOQ router is also

More information

Multiprotocol Label Switching (MPLS) on Cisco Routers

Multiprotocol Label Switching (MPLS) on Cisco Routers Multiprotocol Label Switching (MPLS) on Cisco Routers This document describes commands for configuring and monitoring Multiprotocol Label Switching (MPLS) functionality on Cisco routers and switches. This

More information

CSE 3214: Computer Network Protocols and Applications Network Layer

CSE 3214: Computer Network Protocols and Applications Network Layer CSE 314: Computer Network Protocols and Applications Network Layer Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office: 101C Lassonde

More information

Deploying MPLS & DiffServ

Deploying MPLS & DiffServ Deploying MPLS & DiffServ Thomas Telkamp Director, Data Architecture & Technology Global Crossing Telecommunications, Inc. telkamp@gblx.net MPLS and DiffServ technologies are getting a lot of attention

More information

Differentiated Services

Differentiated Services 1 Differentiated Services QoS Problem Diffserv Architecture Per hop behaviors 2 Problem: QoS Need a mechanism for QoS in the Internet Issues to be resolved: Indication of desired service Definition of

More information

Multiprotocol Label Switching (MPLS) on Cisco Routers

Multiprotocol Label Switching (MPLS) on Cisco Routers Multiprotocol Label Switching (MPLS) on Cisco Routers Feature History Release 11.1CT 12.1(3)T 12.1(5)T 12.0(14)ST 12.0(21)ST 12.0(22)S Modification The document introduced MPLS and was titled Tag Switching

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

DATA CENTER FABRIC COOKBOOK

DATA CENTER FABRIC COOKBOOK Do It Yourself! DATA CENTER FABRIC COOKBOOK How to prepare something new from well known ingredients Emil Gągała WHAT DOES AN IDEAL FABRIC LOOK LIKE? 2 Copyright 2011 Juniper Networks, Inc. www.juniper.net

More information

Mellanox Virtual Modular Switch

Mellanox Virtual Modular Switch WHITE PAPER July 2015 Mellanox Virtual Modular Switch Introduction...1 Considerations for Data Center Aggregation Switching...1 Virtual Modular Switch Architecture - Dual-Tier 40/56/100GbE Aggregation...2

More information

Chapter 4. Advanced Internetworking. 4.3 MPLS 4.4 Mobile IP

Chapter 4. Advanced Internetworking. 4.3 MPLS 4.4 Mobile IP Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie Advanced Internetworking 4.3 MPLS 4.4 Mobile IP Copyright 2, Elsevier Inc. All rights Reserved 4.3 MPLS (Multi-Protocol Label

More information

Hybrid Optoelectronic Router

Hybrid Optoelectronic Router Hybrid Optoelectronic Router Ryohei Urata, Tatsushi Nakahara, Hirokazu Takenouchi, Toru Segawa, Ryo Takahashi NTT Photonics Laboratories, NTT Corporation Supported in part by the National Institute of

More information

QoS in IPv6. Madrid Global IPv6 Summit 2002 March Alberto López Toledo.

QoS in IPv6. Madrid Global IPv6 Summit 2002 March Alberto López Toledo. QoS in IPv6 Madrid Global IPv6 Summit 2002 March 2002 Alberto López Toledo alberto@dit.upm.es, alberto@dif.um.es Madrid Global IPv6 Summit What is Quality of Service? Quality: reliable delivery of data

More information

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14 Last Lecture Lecture 22 Overview Internet Applications This Lecture ADSL, ATM Source: chapter 14 Next Lecture Wireless Networking Source: chapter 15 COSC244 & TELE202 Lecture 22 - ADSL, ATM 1 Modem Enable

More information

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks Internet Traffic Characteristics Bursty Internet Traffic Statistical aggregation of the bursty data leads to the efficiency of the Internet. Large Variation in Source Bandwidth 10BaseT (10Mb/s), 100BaseT(100Mb/s),

More information

The Network Processor Revolution

The Network Processor Revolution The Network Processor Revolution Fast Pattern Matching and Routing at OC-48 David Kramer Senior Design/Architect Market Segments Optical Mux Optical Core DWDM Ring OC 192 to OC 768 Optical Mux Carrier

More information