BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "BGP. Autonomous system (AS) BGP version 4. Definition (AS Autonomous System)"

Transcription

1 BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 310, 2014/03/11 10:50:06) Monday, March 10, 2014 General ideas behind BGP Background Providers, Customers and Peers External and Internal BGP BGP information bases The BGP protocol BGP attributes BGP messages Traffic Engineering Outbound Traffic Engineering Inbound Traffic Engineering IBGP scaling BGP version 4 Autonomous system (AS) Border Gateway Protocol version 4 (BGP4) Specified in RFC 4271 The inter-as routing protocol Monopolises the Internet Based on path vector routing which is inbetween distance vector and link state Uses (often non-coordinated) routing policies which can be problematic for convergence Definition (AS Autonomous System) A connected group of networks and routers Representing some assigned set of IP prefixes Having a single, consistent routing policy Both internally and externally

2 Autonomous system illustration Providers and Customers Autonomous Systems AS2503 AS192 Internet IP IP Provider IP Customer Internet AS Slide courtesy Iljitsch van Beijnum Peers Providers, Customers and Peers Provider 1 Provider 2 Provider 3 IP IP Customer 1 Customer 2 Customer 3 G1 IP R1 G2 No packets C1 C2 P1 IP P2 C3 C4

3 The AS abstraction Providers, Customers and Peers routing preferences AS Graph!= Internet Topology BGP was designed to throw away information! The order of preference for a route is Customers have highest preference Peers have the next highest preference Providers have the lowest preference Transit relationships are enforced by export filtering Do not advertise or peer routes to other s or peers Do advertise all routes to customers Do advertise customer routes to s and peers The AS graph may look like this Reality may be closer to this Providers, Customers and Peers: Import Import Routes Providers, Customers and Peers: Export Export Routes route peer route customer route ISP route route peer route customer route ISP route From From To From From peer From peer To peer To peer From customer From customer To customer To customer filters block

4 External and Internal BGP (1) External and Internal BGP (2) EBGP (External BGP) Used for BGP neighbors between different ASs Exchanging prefixes Implementing policies IBGP (Internal BGP) Used for BGP neighbors within one and the same AS Distributing Internet prefixes across the backbone in order to create a consistent view among all entry/exit points Inserting locally originated prefixes for instance for customers that do not speak BGP Routes imported from one IBGP peer are not distributed to another IBGP peer This prevents possible routing loops Loop detection is based on duplicates in AS paths EBGP detects this between different ASs IBGP cannot detect this inside one and the same AS Requires IBGP peers to be configured as a full mesh Routing Information Bases (RIBs) Adj-RIB-In (one per peer) Routes after input filtering Every AS needs an input policy Loc-RIB (only one globally) Routes after best path selection Path selection is a fixed and specified algorithm Adj-RIB-Out (one per peer) Routes after output filtering Every AS needs an output policy BGP route processing Receive BGP Updates BGP Route Processing Apply Import Policies Open ended programming Constrained only by vendor configuration language Apply Policy = filter routes & tweak attributes Based on Attribute Values Best Route Selection Best Routes Best Route Table Install forwarding Entries for best Routes IP Forwarding Table Apply Policy = filter routes & tweak attributes Apply Export Policies Transmit BGP Updates 52

5 BGP protocol Some important BGP attributes Uses TCP over port 179 Usually with a directly connected neighbor on layer 2 Exchanges Network Layer Reachability Information (NLRI) Prefixes that can or can no longer be reached through the router Accompanied by BGP attributes used by the best route selection algorithm In order of path selection importance LOCAL PREF (Local Preference) AS PATH ORIGIN (Historical) MULTI EXIT DISC (MED; Multi-exit discriminator) And unrelated to path selection NEXT HOP Must be reachable (directly or via IGP) except in the case of multi-hop BGP Next Hop in EBGP and IBGP Interaction between BGP and IGP BGP Next Hop Attribute Join EGP with IGP For Connectivity AS 6431 AT&T Research AS 7018 AT&T /16 Next Hop = RIPE NCC RIS project /16 Next Hop = Every time a route announcement crosses an AS boundary, the Next Hop attribute is changed to the IP address of the border router that announced the route Forwarding Table destination next hop /30 + EGP destination / next hop /16 Next Hop = /30 Forwarding Table destination next hop / / /16

6 BGP attribute types LOCAL PREF (Local Preference) Well-known mandatory ORIGIN, AS PATH, NEXT HOP Well-known discretionary LOCAL PREF, ATOMIC AGGREGATE Optional transitive COMMUNITIES, AGGREGATOR Optional non-transitive MULTI EXIT DISC Advertised within a single AS (via IBGP) Used to implement local policies Can depend on any locally available information This might be learned outside of BGP Default value is 100 Highest value wins AS PATH Sequence of ASs An AS can also be generalized to a set of ASs Used for loop detection The sequence length defines the metric (distance) Shortest path wins Prepend your own AS in EBGP updates Possibly multiple times, enabling traffic engineering Leave unchanged in IBGP updates AS PATH example /16 AS Path = Sprint /16 AS Path = 6341 AS 6341 AT&T Research /16 Prefix Originated ASPATH Attribute /16 AS Path = Ebone /16 AS Path = AS7018 AT&T /16 AS Path = Global Access /16 AS Path = RIPE NCC RIS project /16 AS Path = AS 3549 Global Crossing 64

7 AS PATH length can be deceptive Shorter Doesn t Always Mean Shorter AS PATH for loop prevention Interdomain Loop Prevention In fairness: could you do this right and still scale? Exporting internal state would dramatically increase global instability and amount of routing state AS 3 Mr BGP says that path 4 1 is better than path Duh! AS 4 BGP at AS YYY will never accept a route with ASPATH containing YYY AS 7018 Don t Accept! /16 ASPATH = Traffic often follows AS PATH Sometimes traffic does not follow AS PATH Traffic Often Follows ASPATH But It Might Not /16 AS /16 ASPATH = AS / /16 ASPATH = /25 ASPATH = 5 filters all subnets with masks longer than /24 AS /16 ASPATH = AS 4 IP Packet Dest = AS /25 IP Packet Dest = From AS 4, it may look like this packet will take path 3 2 1, but it actually takes path 3 2 5

8 ORIGIN MULTI EXIT DISC (Multi-Exit Discriminator or MED) The ORIGIN attribute tells where the route (NLRI) originated Interior to the originating AS: ORIGIN = 0 Via the EGP protocol (historic): ORIGIN = 1 Via some other means: ORIGIN = 2 A lower ORIGIN wins The MED (or metric, formerly INTER AS METRIC) is meant to be advertised between neighboring ASs (via EBGP) Some implementations carry MED on by IBGP Hot potato versus cold potato The MED is non-transitive (is not transferred into a third AS) A lower MED wins The default MED is 0 (lowest possible value) Some implementations choose the highest possible value Best route selection BGP message header Definition (Route selection preference) 1 (Weight; Cisco specific) 2 Highest Local Preference 3 Shortest AS Path 4 (Lowest Origin; hardly used; historic) 5 Lowest MED 6 Prefer EBGP over IBGP 7 Lowest IGP cost to BGP egress 8 Lowest Router ID Length Marker Type We use the term message and not packet, because BGP packets are in fact part of one single TCP-stream

9 BGP header fields BGP OPEN message BGP header fields Marker 128 bits of 1 (compatibility) Length Total length (min 19, max 4096) No padding 1, Including header Type 1: OPEN 2: UPDATE 3: NOTIFICATION 4: KEEPALIVE 5: Route-REFRESH Version My Autonomous System Opt Parm Len Hold Time BGP Identifier Optional Parameters (variable) 1 No superfluous bytes are allowed inside the TCP stream OPEN message fields BGP KEEPALIVE message OPEN message fields Version 4 My Autonomous System Sender s AS Hold Time Liveness detection BGP Identifier Sender s identifying IP address Opt Parm Length Length of parameter field Optional Parameters TLV-encoded options This page intentionally left blank One interesting parameter is the Capabilities Optional Parameter, which defines (among others) the Route Refresh Capability

10 KEEPALIVE message fields BGP NOTIFICATION message KEEPALIVE message fields :) Error code Error subcode Data (variable) NOTIFICATION message fields BGP Route-REFRESH message NOTIFICATION message fields Error code Error subcode Data 1: Message Header Error 2: OPEN Error 3: UPDATE Error 4: Hold Timer Expired Depends on error code Depends on error code and subcode AFI Reserved SAFI

11 Route-REFRESH message fields BGP UPDATE message Route-REFRESH message fields AFI Address Family Identifier Reserved 0 SAFI Subsequent Address Family Identifier Unfeasible Routes Length Total Path Attribute Length Withdrawn Routes (variable length) Path Attributes (variable length) Network Layer Reachability Information (variable length) UPDATE message fields Tweaking your policies UPDATE message fields Unfeasible Routes Length Length of Withdrawn Routes Withdrawn Routes List of prefixes 2 Total Path Attribute Length Length of Path Attributes Path Attributes TLV-encoded attributes Network Layer Reachability Information List of NLRI prefixes Tweak Tweak Tweak For inbound traffic Filter outbound routes Tweak attributes on outbound routes in the hope of influencing your neighbor s best route selection For outbound traffic Filter inbound routes Tweak attributes on inbound routes to influence best route selection inbound traffic outbound traffic outbound routes inbound routes In general, an AS has more control over outbound traffic 2 A prefix is specified by its length and just enough bytes of the network IP address to cover this length

12 Outbound Traffic Engineering Choice between, peer or customer So Many Choices peer peer This works by manipulating incoming routes Changing local preference Extending inbound AS paths Manipulating the metric (MED), for instance by using inbound communities It is relatively simple Based on your own policy You are in control yourself customer Frank s Internet Barn AS 4 AS 3 Which route should Frank pick to /16? /16 60 Manipulating local preference Prefer customer over peer over LOCAL PREFERENCE Primary and backup links Implementing Backup Links with Local Preference (Outbound Traffic) Local preference used ONLY in ibgp AS 4 local pref = 80 local pref = 90 AS 3 primary link backup link local pref = 100 Set Local Pref = 100 for all routes from AS Set Local Pref = 50 for all routes from Higher Local preference values are more preferred /16 61 Forces outbound traffic to take primary link, unless link is down We ll talk about inbound traffic soon 70

13 Multihomed primary and backup links Multihomed Backups (Outbound Traffic) primary link Set Local Pref = 100 for all routes from AS 3 backup link Set Local Pref = 50 for all routes from AS 3 Forces outbound traffic to take primary link, unless link is down 71 Inbound Traffic Engineering This works by manipulating outgoing routes Extending outbound AS PATHs is a traditional hack Manipulating the metric (MED) is the official way Setting outbound communities is a more modern approach Agreements with your neighbors are necessary (common policy) Inbound is more complex than outbound Inbound depends (also) on neighbor s policy You are not in control by yourself Announcing more specific routes Method of last resort, but often a bad idea Traffic engineering a longer AS PATH Shedding Inbound Traffic with ASPATH Padding Yes, this is a Glorious Hack Your might overrule your effort But Padding Does Not Always Work /24 ASPATH = 2 AS /24 ASPATH = /24 ASPATH = 2 primary customer backup / /24 ASPATH = Padding will (usually) force inbound traffic from to take primary link 72 primary customer backup /24 AS 3 will send traffic on backup link because it prefers customer routes and local preference is considered before ASPATH length! Padding in this way is often used as a form of load 73 balancing

14 But you can make an agreement by using a community COMMUNITY Attribute to the Rescue! Hot potato routing Hot Potato Routing: Go for the Closest Egress Point AS 3 AS 3: normal customer local pref is 100, peer local pref is / /24 ASPATH = 2 primary backup /24 ASPATH = 2 COMMUNITY = 3:70 egress 1 egress IGP distances customer /24 Customer import policy at AS 3: If 3:90 in COMMUNITY then set local preference to 90 If 3:80 in COMMUNITY then set local preference to 80 If 3:70 in COMMUNITY then set local preference to This Router has two BGP routes to /24 Hot potato: get traffic off of your network as Soon as possible Go for egress 1! 75 Burnt by the hot potato Cold potato routing by honoring MEDs Getting Burned by the Hot Potato Cold Potato Routing with MEDs (Multi-Exit Discriminator Attribute) High bandwidth Provider backbone Heavy Content Web Farm Prefer lower MED values Heavy Content Web Farm SFF NYC /24 MED = /24 MED = 56 Low bandwidth customer backbone San Diego Many customers want their to carry the bits! tiny http request huge http reply /24 This means that MEDs must be considered BEFORE IGP distance! Note1 : some s will not listen to MEDs Note2 : MEDs need not be tied to IGP distance 77

15 Communities Use of communities An optional transitive attribute A community can be used to communicate preferred treatment of a route Communities can be used with both inbound as well as outbound Some communities have a well-known semantics NO EXPORT: don t export beyond current AS (or confederation) NO ADVERTISE: don t export at all Inbound from your upstream Learn where your upstream imported this route You can base policy decisions on that Outbound to your upstream Request specific upstream treatment Setting of local preference Announcements or not to specific ASs AS PATH prepending for certain peerings Your upstream promises to implement the requested policy Structure and semantics of communities Route Reflectors How Can Routes be Colored? BGP Communities! A community value is 32 bits By convention, first 16 bits is ASN indicating who is giving it an interpretation community number Used for signally within and between ASes Very powerful BECAUSE it has no (predefined) meaning Community Attribute = a list of community values (So one route can belong to multiple communities) Specified in RFC 4456 A route reflector is a kind of super IBGP peer A route reflector has clients with which it peers via IBGP and for which it reflects (transitively) routes A route reflector is part of a full mesh of other route reflectors and non-clients RFC 1997 (August 1996) Two reserved communities no_export = 0xFFFFFF01: don t export out of AS no_advertise 0xFFFFFF02: don t pass to BGP neighbors 58

16 Route reflectors illustration Route reflectors illustration Full Mesh Route Reflection Slide courtesy Iljitsch van Beijnum Slide courtesy Iljitsch van Beijnum Confederations Confederations illustration Confederations Specified in RFC 5065 Use multiple private ASs inside your main AS Talk to the outside world with your main AS This hides the private ASs Talk to the inside world as if using EBGP and IBGP Using the different private ASs This needs special AS PATH segment types 41 Slide courtesy Iljitsch van Beijnum

BGP. Autonomous system (AS) BGP version 4

BGP. Autonomous system (AS) BGP version 4 BGP Border Gateway Protocol (an introduction) dr. C. P. J. Koymans Informatics Institute University of Amsterdam March 11, 2008 General ideas behind BGP Background Providers, Customers and Peers External

More information

BGP. Border Gateway Protocol (an introduction) Karst Koymans. Informatics Institute University of Amsterdam. (version 17.3, 2017/12/04 13:20:08)

BGP. Border Gateway Protocol (an introduction) Karst Koymans. Informatics Institute University of Amsterdam. (version 17.3, 2017/12/04 13:20:08) BGP Border Gateway Protocol (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 17.3, 2017/12/04 13:20:08) Tuesday, December 5, 2017 Karst Koymans (UvA) BGP Tuesday,

More information

Internet Routing Protocols Lecture 03 Inter-domain Routing

Internet Routing Protocols Lecture 03 Inter-domain Routing Internet Routing Protocols Lecture 03 Inter-domain Routing Advanced Systems Topics Lent Term, 2008 Timothy G. Griffin Computer Lab Cambridge UK Autonomous Routing Domains A collection of physical networks

More information

Inter-Domain Routing: BGP

Inter-Domain Routing: BGP Inter-Domain Routing: BGP Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Inter-Domain Routing Internet is a network of networks Hierarchy

More information

BGP. Inter-domain routing with the Border Gateway Protocol. Iljitsch van Beijnum Amsterdam, 13 & 16 March 2007

BGP. Inter-domain routing with the Border Gateway Protocol. Iljitsch van Beijnum Amsterdam, 13 & 16 March 2007 BGP Inter-domain routing with the Border Gateway Protocol Iljitsch van Beijnum Amsterdam, 13 & 16 March 2007 1 Routing Between ISPs Internal routing protocols don't work here: too much information So:

More information

L11 : Inter-domain Routing with BGP Lecture14 Michaelmas, 2016

L11 : Inter-domain Routing with BGP Lecture14 Michaelmas, 2016 7//06 L : Inter-domain Routing with BGP Lecture4 Michaelmas, 06 Timothy G. Griffin Computer Lab Cambridge UK 7//06 How many ASNs today (7 November, 06)? http://bgp.potaroo.net/ 7//06 How many prefixes

More information

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella

CS 640: Introduction to Computer Networks. Intra-domain routing. Inter-domain Routing: Hierarchy. Aditya Akella CS 640: Introduction to Computer Networks Aditya Akella Lecture 11 - Inter-Domain Routing - BGP (Border Gateway Protocol) Intra-domain routing The Story So Far Routing protocols generate the forwarding

More information

Interdomain Routing Reading: Sections P&D 4.3.{3,4}

Interdomain Routing Reading: Sections P&D 4.3.{3,4} Interdomain Routing Reading: Sections P&D 4.3.{3,4} EE122: Intro to Communication Networks Fall 2006 (MW 4:00-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/

More information

Internet Interconnection Structure

Internet Interconnection Structure Internet Interconnection Structure Basic Concepts (1) Internet Service Provider (ISP) Provider who connects an end user customer with the Internet in one or few geographic regions. National & Regional

More information

BGP Protocol & Configuration. Scalable Infrastructure Workshop AfNOG2008

BGP Protocol & Configuration. Scalable Infrastructure Workshop AfNOG2008 BGP Protocol & Configuration Scalable Infrastructure Workshop AfNOG2008 Border Gateway Protocol (BGP4) Case Study 1, Exercise 1: Single upstream Part 6: BGP Protocol Basics Part 7: BGP Protocol - more

More information

Internet inter-as routing: BGP

Internet inter-as routing: BGP Internet inter-as routing: BGP BGP (Border Gateway Protocol): the de facto standard BGP provides each AS a means to: 1. Obtain subnet reachability information from neighboring ASs. 2. Propagate the reachability

More information

Connecting to a Service Provider Using External BGP

Connecting to a Service Provider Using External BGP Connecting to a Service Provider Using External BGP First Published: May 2, 2005 Last Updated: August 21, 2007 This module describes configuration tasks that will enable your Border Gateway Protocol (BGP)

More information

Lecture 16: Border Gateway Protocol

Lecture 16: Border Gateway Protocol Lecture 16: Border Gateway Protocol CSE 123: Computer Networks Alex C. Snoeren Some figures courtesy Mike Freedman Lecture 16 Overview Border Gateway Protocol (BGP) The canonical path vector protocol How

More information

Connecting to a Service Provider Using External BGP

Connecting to a Service Provider Using External BGP Connecting to a Service Provider Using External BGP This module describes configuration tasks that will enable your Border Gateway Protocol (BGP) network to access peer devices in external networks such

More information

Lecture 17: Border Gateway Protocol

Lecture 17: Border Gateway Protocol Lecture 17: Border Gateway Protocol CSE 123: Computer Networks Alex C. Snoeren Some figures courtesy Mike Freedman Lecture 18 Overview Border Gateway Protocol (BGP) The canonical path vector protocol How

More information

Module 6 Implementing BGP

Module 6 Implementing BGP Module 6 Implementing BGP Lesson 1 Explaining BGP Concepts and Terminology BGP Border Gateway Protocol Using BGP to Connect to the Internet If only one ISP, do not need BGP. If multiple ISPs, use BGP,

More information

Dynamics of Hot-Potato Routing in IP Networks

Dynamics of Hot-Potato Routing in IP Networks Dynamics of Hot-Potato Routing in IP Networks Jennifer Rexford AT&T Labs Research http://www.research.att.com/~jrex Joint work with Renata Teixeira (UCSD), Aman Shaikh (AT&T), and Timothy Griffin (Intel)

More information

Routing part 2. Electrical and Information Technology

Routing part 2. Electrical and Information Technology Routing part 2 Jens A Andersson Electrical and Information Technology Routing Introduction Inside the Router Unicast Routing Intra Domain Routing Inter Domain Routing MANET and AdHoc routing Multicast

More information

COMP/ELEC 429 Introduction to Computer Networks

COMP/ELEC 429 Introduction to Computer Networks COMP/ELEC 429 Introduction to Computer Networks Lecture 11: Inter-domain routing Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng at

More information

Multiprotocol BGP (MBGP)

Multiprotocol BGP (MBGP) Multiprotocol BGP (MBGP) Module 5 2000, Cisco Systems, Inc. 1 Copyright 1998-2000, Cisco Systems, Inc. Module5.ppt 1 Module Objectives Understand that MBGP is NOT a replacement for PIM Understand the basic

More information

Chapter 13 Configuring BGP4

Chapter 13 Configuring BGP4 Chapter 13 Configuring BGP4 This chapter provides details on how to configure Border Gateway Protocol version 4 (BGP4) on HP products using the CLI and the Web management interface. BGP4 is supported on

More information

CSCI-1680 Network Layer: Inter-domain Routing Rodrigo Fonseca

CSCI-1680 Network Layer: Inter-domain Routing Rodrigo Fonseca CSCI-1680 Network Layer: Inter-domain Routing Rodrigo Fonseca Based partly on lecture notes by Rob Sherwood, David Mazières, Phil Levis, John Janno? Today Last time: Intra-Domain Routing (IGP) RIP distance

More information

Exterior Gateway Protocols: EGP, BGP-4, CIDR

Exterior Gateway Protocols: EGP, BGP-4, CIDR Exterior Gateway Protocols: EGP, BGP-4, CIDR shivkuma@ecse.rpi.edu http://www.ecse.rpi.edu/homepages/shivkuma Based in part upon slides of Tim Griffin (AT&T), Ion Stoica (UCB), J. Kurose (U Mass), Noel

More information

An overview of how packets are routed in the Internet

An overview of how packets are routed in the Internet An overview of how packets are routed in the Internet 1 Dijkstra s shortest path first algorithm (example of a Link State Algorithm ) 1. Exchange link state: A router floods to every other router the state

More information

CS 268: Computer Networking. Next Lecture: Interdomain Routing

CS 268: Computer Networking. Next Lecture: Interdomain Routing CS 268: Computer Networking L-3 BGP Next Lecture: Interdomain Routing BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet 2 Outline Need for hierarchical

More information

This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics:

This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics: Appendix C BGP Supplement This appendix contains supplementary Border Gateway Protocol (BGP) information and covers the following topics: BGP Route Summarization Redistribution with IGPs Communities Route

More information

ISP Border Definition. Alexander Azimov

ISP Border Definition. Alexander Azimov ISP Border Definition Alexander Azimov ISP goal (one ASN) BGP Decision Process Step Attribute Transit 1 Highest Local Preference value Non-transit 2 Lowest AS Path length Transit 3 Lowest

More information

Inter-Domain Routing: BGP II

Inter-Domain Routing: BGP II Inter-Domain Routing: BGP II Mark Handley UCL Computer Science CS 3035/GZ01 BGP Protocol (cont d) BGP doesn t chiefly aim to compute shortest paths (or minimize other metric, as do DV, LS) Chief purpose

More information

Next Lecture: Interdomain Routing : Computer Networking. Outline. Routing Hierarchies BGP

Next Lecture: Interdomain Routing : Computer Networking. Outline. Routing Hierarchies BGP Next Lecture: Interdomain Routing BGP 15-744: Computer Networking L-3 BGP Assigned Reading MIT BGP Class Notes [Gao00] On Inferring Autonomous System Relationships in the Internet Ooops 2 Outline Need

More information

Border Gateway Protocol

Border Gateway Protocol 39 CHAPTER Chapter Goals Understand the purpose of the. Explain BGP attributes and their use in route selection. Examine the BGP route selection process. Introduction The (BGP) is an interautonomous system

More information

CS 457 Networking and the Internet. The Global Internet (Then) The Global Internet (And Now) 10/4/16. Fall 2016

CS 457 Networking and the Internet. The Global Internet (Then) The Global Internet (And Now) 10/4/16. Fall 2016 CS 457 Networking and the Internet Fall 2016 The Global Internet (Then) The tree structure of the Internet in 1990 The Global Internet (And Now) A simple multi-provider Internet 1 The Global Internet Some

More information

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011

Lecture 4: Intradomain Routing. CS 598: Advanced Internetworking Matthew Caesar February 1, 2011 Lecture 4: Intradomain Routing CS 598: Advanced Internetworking Matthew Caesar February 1, 011 1 Robert. How can routers find paths? Robert s local DNS server 10.1.8.7 A 10.1.0.0/16 10.1.0.1 Routing Table

More information

BGP can also be used for carrying routing information for IPv6 prefix over IPv6 networks.

BGP can also be used for carrying routing information for IPv6 prefix over IPv6 networks. This chapter describes how to configure the Cisco ASA to route data, perform authentication, and redistribute routing information using the Border Gateway Protocol (). About, page 1 Guidelines for, page

More information

Inter-domain Routing. Outline. Border Gateway Protocol

Inter-domain Routing. Outline. Border Gateway Protocol Inter-domain Routing Outline Border Gateway Protocol Internet Structure Original idea CS 640 2 Internet Structure Today CS 640 3 Route Propagation in the Internet Autonomous System (AS) corresponds to

More information

Advanced Multihoming. BGP Traffic Engineering

Advanced Multihoming. BGP Traffic Engineering Advanced Multihoming BGP Traffic Engineering 1 Service Provider Multihoming Previous examples dealt with loadsharing inbound traffic Of primary concern at Internet edge What about outbound traffic? Transit

More information

CS519: Computer Networks. Lecture 4, Part 5: Mar 1, 2004 Internet Routing:

CS519: Computer Networks. Lecture 4, Part 5: Mar 1, 2004 Internet Routing: : Computer Networks Lecture 4, Part 5: Mar 1, 2004 Internet Routing: AS s, igp, and BGP As we said earlier, the Internet is composed of Autonomous Systems (ASs) Where each AS is a set of routers, links,

More information

Architectures and Protocols for Integrated Networks. Intra-domain and Inter-domain Routing Protocols

Architectures and Protocols for Integrated Networks. Intra-domain and Inter-domain Routing Protocols Architectures and Protocols for Integrated Networks Intra-domain and Inter-domain Routing Protocols How is the routing table built? Path finding Paths from a device to any other device. Aggregated according

More information

IBGP internals. BGP Advanced Topics. Agenda. BGP Continuity 1. L49 - BGP Advanced Topics. L49 - BGP Advanced Topics

IBGP internals. BGP Advanced Topics. Agenda. BGP Continuity 1. L49 - BGP Advanced Topics. L49 - BGP Advanced Topics IBGP internals BGP Advanced Topics main IBGP aspects inside an AS continuity all packets entering the AS that were not blocked by some policies should reach the proper exit BGP router all transit routers

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 16, 2017 1 Hierarchical routing Our routing study thus far - idealization all routers identical network flat not true in

More information

BGP Attributes and Policy Control

BGP Attributes and Policy Control BGP Attributes and Policy Control ISP/IXP Workshops 1 Agenda BGP Attributes BGP Path Selection Applying Policy 2 BGP Attributes The tools available for the job 3 What Is an Attribute?... Next Hop......

More information

BGP Multihoming ISP/IXP Workshops

BGP Multihoming ISP/IXP Workshops BGP Multihoming ISP/IXP 1 Why Multihome? Redundancy One connection to internet means the network is dependent on: Local router (configuration, software, hardware) WAN media (physical failure, carrier failure)

More information

Configuring BGP on Cisco Routers Volume 1

Configuring BGP on Cisco Routers Volume 1 Volume 1 I. Course Introduction A. Overview/Learner Skills and Knowledge B. Course Flow C. Additional References 1. Cisco Glossary of Terms D. Your Training Curriculum II. BGP Overview III. Introducing

More information

Introduction to BGP. ISP Workshops. Last updated 30 October 2013

Introduction to BGP. ISP Workshops. Last updated 30 October 2013 Introduction to BGP ISP Workshops Last updated 30 October 2013 1 Border Gateway Protocol p A Routing Protocol used to exchange routing information between different networks n Exterior gateway protocol

More information

Implementing BGP. BGP Functional Overview. Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free

Implementing BGP. BGP Functional Overview. Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free interdomain routing between autonomous systems. An autonomous system is a set of routers under a

More information

Configuration BGP Services Avaya Ethernet Routing Switch 8300

Configuration BGP Services Avaya Ethernet Routing Switch 8300 Configuration BGP Services Avaya Ethernet Routing Switch 8300 4.2 NN46200-521, 01.03 May 2011 2011 Avaya Inc. All Rights Reserved. Notice While reasonable efforts have been made to ensure that the information

More information

Inter-AS routing and BGP. Network Layer 4-1

Inter-AS routing and BGP. Network Layer 4-1 Inter-AS routing and BGP Network Layer 4-1 Review: intra-as routing v Also known as interior gateway protocols (IGP) v Most common intra-as routing protocols: RIP: Routing Information Protocol, distance

More information

Interdomain routing with BGP4 Part 4/5

Interdomain routing with BGP4 Part 4/5 Interdomain routing with BGP4 Part 4/5 Olivier Bonaventure Department of Computing Science and Engineering Université catholique de Louvain (UCL) Place Sainte-Barbe, 2, B-1348, Louvain-la-Neuve (Belgium)

More information

Introduction to BGP. ISP/IXP Workshops

Introduction to BGP. ISP/IXP Workshops Introduction to BGP ISP/IXP Workshops 1 Border Gateway Protocol A Routing Protocol used to exchange routing information between different networks Exterior gateway protocol Described in RFC4271 RFC4276

More information

ibgp Multipath Load Sharing

ibgp Multipath Load Sharing This feature module describes the feature. This feature enables the BGP speaking router to select multiple ibgp paths as the best paths to a destination. The best paths or multipaths are then installed

More information

HP Load Balancing Module

HP Load Balancing Module HP Load Balancing Module Appendix Protocol Reference Part number: 5998-4222 Software version: Feature 3221 Document version: 6PW100-20130326 Legal and notice information Copyright 2013 Hewlett-Packard

More information

Introduction to BGP ISP/IXP Workshops

Introduction to BGP ISP/IXP Workshops Introduction to BGP ISP/IXP Workshops 1 Border Gateway Protocol Routing Protocol used to exchange routing information between networks exterior gateway protocol RFC1771 work in progress to update draft-ietf-idr-bgp4-18.txt

More information

Routing on the Internet! Hierarchical Routing! The NSFNet 1989! Aggregate routers into regions of autonomous systems (AS)!

Routing on the Internet! Hierarchical Routing! The NSFNet 1989! Aggregate routers into regions of autonomous systems (AS)! Routing on the Internet! Hierarchical Routing! Aggregate routers into regions of autonomous systems (AS)! In the beginning there was the ARPANET:! route using GGP (Gateway-to-Gateway Protocol)," a distance

More information

BGP. BGP Overview. BGP Operation. BGP Neighbors

BGP. BGP Overview. BGP Operation. BGP Neighbors BGP BGP Overview BGP Operation BGP Neighbors BGP Overview AS - Autonomous Systems Multihoming IGP vs. EGP When to use BGP? 2 BGP Overview AS - Autonomous Systems Multihoming IGP vs. EGP When to use BGP?

More information

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355 BGP Commands Use the commands in this chapter to configure and monitor Border Gateway Protocol (BGP). For BGP configuration information and examples, refer to the Configuring BGP chapter of the Network

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

CS321: Computer Networks Unicast Routing

CS321: Computer Networks Unicast Routing CS321: Computer Networks Unicast Routing Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Introduction The goal of the network layer is deliver a datagram from

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano June 14, 2005 Outline Hierarchical routing BGP Routing Routing Goal: each router u

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks External Routing - BGP protocol Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr Contents Principles of Inter-Domain Routing Autonomous systems Path vector routing Policy

More information

BGP Tutorial. APRICOT 2003, Taipei February Philip Smith APRICOT , Cisco Systems, Inc. All rights reserved.

BGP Tutorial. APRICOT 2003, Taipei February Philip Smith APRICOT , Cisco Systems, Inc. All rights reserved. BGP Tutorial Philip Smith , Taipei February 2003 1 APRICOT BGP Tutorials Four Tutorials over Two Days Part 1 Introduction Monday morning Part 2 Deployment Monday afternoon Part 3 Multihoming

More information

The Border Gateway Protocol

The Border Gateway Protocol 5810ch01.qxd_kp 5/28/04 3:27 PM Page 1 1 The Border Gateway Protocol When networks were small, there was no concept of interior and exterior gateway protocols; a network ran a routing protocol, and that

More information

BGP Tutorial. APRICOT 2004, Kuala Lumpur February Philip Smith APRICOT , Cisco Systems, Inc. All rights reserved.

BGP Tutorial. APRICOT 2004, Kuala Lumpur February Philip Smith APRICOT , Cisco Systems, Inc. All rights reserved. BGP Tutorial Philip Smith , Kuala Lumpur February 2004 1 APRICOT BGP Tutorials Two Tutorials Part 1 Introduction Part 2 Multihoming Morning Afternoon 2 BGP Tutorial Part 1 Introduction Philip

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks External Routing - BGP protocol Prof. Andrzej Duda duda@imag.fr Contents Autonomous systems Interconnection of ASs Path vector routing BGP types of AS protocol structure of BGP

More information

FiberstoreOS BGP Configuration

FiberstoreOS BGP Configuration FiberstoreOS BGP Configuration Contents 1 Configure BGP...1 1.1 Overview... 1 1.2 Basic Topology (EBGP)... 2 1.2.2 Configuration... 2 1.2.3 Validation... 4 1.3 Basic topology(ibgp)... 5 1.3.2 Configuration...

More information

IBGP scaling: Route reflectors and confederations

IBGP scaling: Route reflectors and confederations DD2491 p2 2009/2010 IBGP scaling: Route reflectors and confederations Olof Hagsand KTH /CSC 1 Literature Route Reflectors Practical BGP pages 135 153 RFC 4456 Confederations Practical BGP pages 153 160

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

How does a router know where to send a packet next?

How does a router know where to send a packet next? How does a router know where to send a packet next? The Problem Which path should packets take from A to B? A B R2 R R4 R3 C D 2 The Internet forwards packets hop-by-hop Data IP Address Next-hop A R B

More information

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355

BGP Commands. Network Protocols Command Reference, Part 1 P1R-355 BGP Commands Use the commands in this chapter to configure and monitor Border Gateway Protocol (BGP). For BGP configuration information and examples, refer to the Configuring BGP chapter of the Network

More information

Introduction to IP Routing. Geoff Huston

Introduction to IP Routing. Geoff Huston Introduction to IP Routing Geoff Huston Routing How do packets get from A to B in the Internet? A Internet B Connectionless Forwarding Each router (switch) makes a LOCAL decision to forward the packet

More information

Configuring Advanced BGP

Configuring Advanced BGP CHAPTER 6 This chapter describes how to configure advanced features of the Border Gateway Protocol (BGP) on the Cisco NX-OS switch. This chapter includes the following sections: Information About Advanced

More information

BGP BGP. Fredrik Söderquist Michael Silvin

BGP BGP. Fredrik Söderquist Michael Silvin BGP Fredrik Söderquist Michael Silvin 1 Table of Contents Background...3 A quick look at the mechanics...3 Message Types...3 BGP Message Header...3 OPEN Message (Type 1 RFC 1771)...4 UPDATE Message (Type

More information

Routing on the Internet. Routing on the Internet. Hierarchical Routing. Computer Networks. Lecture 17: Inter-domain Routing and BGP

Routing on the Internet. Routing on the Internet. Hierarchical Routing. Computer Networks. Lecture 17: Inter-domain Routing and BGP Routing on the Internet Computer Networks Lecture 17: Inter-domain Routing and BGP In the beginning there was the ARPANET: route using GGP (Gateway-to-Gateway Protocol), a distance vector routing protocol

More information

Routing(2) Inter-domain Routing

Routing(2) Inter-domain Routing Routing(2) Inter-domain Routing Information Network I Youki Kadobayashi 1 Outline! Distance vector routing! Link state routing! IGP and EGP Intra-domain routing protocol, inter-domain routing protocol!

More information

BGP Operations and Security. Training Course

BGP Operations and Security. Training Course BGP Operations and Security Training Course Training Services RIPE NCC December 2017 Schedule 09:00-09:30 11:00-11:15 13:00-14:00 15:30-15:45 17:30 Coffee, Tea Break Lunch Break End BGP Operations and

More information

BGP and the Internet. Why Multihome? Why Multihome? Why Multihome? Why Multihome? Why Multihome? Redundancy. Reliability

BGP and the Internet. Why Multihome? Why Multihome? Why Multihome? Why Multihome? Why Multihome? Redundancy. Reliability Why Multihome? BGP and the Internet Multihoming Redundancy One connection to internet means the network is dependent on: Local router (configuration, software, hardware) WN media (physical failure, carrier

More information

Network Configuration Example

Network Configuration Example Network Configuration Example Configuring the BGP Local Autonomous System Attribute Release NCE0045 Modified: 2016-11-08 Juniper Networks, Inc. 1133 Innovation Way Sunnyvale, California 94089 USA 408-745-2000

More information

Inter-Autonomous-System Routing: Border Gateway Protocol

Inter-Autonomous-System Routing: Border Gateway Protocol Inter-Autonomous-System Routing: Border Gateway Protocol Antonio Carzaniga Faculty of Informatics University of Lugano December 10, 2014 Outline Hierarchical routing BGP Routing 2005 2007 Antonio Carzaniga

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of

Routing Protocols. The routers in an internet are responsible for receiving and. forwarding IP datagrams through the interconnected set of Routing Protocols MITA DUTTA The routers in an internet are responsible for receiving and forwarding IP datagrams through the interconnected set of sub-networks from source to destination. Routing protocols

More information

Chapter 20 Border Gateway Protocol version 4 (BGP-4)

Chapter 20 Border Gateway Protocol version 4 (BGP-4) Chapter 20 Border Gateway Protocol version 4 (BGP-4) Introduction... 20-3 Overview... 20-3 BGP Operation... 20-5 BGP Attributes... 20-6 BGP Route Selection... 20-8 Classless Inter-domain Routing (CIDR)

More information

Lecture 13: Traffic Engineering

Lecture 13: Traffic Engineering Lecture 13: Traffic Engineering CSE 222A: Computer Communication Networks Alex C. Snoeren Thanks: Mike Freedman, Nick Feamster Lecture 13 Overview Evolution of routing in the ARPAnet Today s TE: Adjusting

More information

BGP made easy. John van Oppen Spectrum Networks / AS11404

BGP made easy. John van Oppen Spectrum Networks / AS11404 1 BGP made easy John van Oppen Spectrum Networks / AS11404 2 What is BGP? Snarky answer: RFC-4271 BGP is an Exterior gateway protocol, the only one used on the public Internet and is used for inter-autonomous

More information

Backbone Networks. Networking Case Studies. Backbone Networks. Backbone Topology. Mike Freedman COS 461: Computer Networks.

Backbone Networks. Networking Case Studies. Backbone Networks. Backbone Topology. Mike Freedman COS 461: Computer Networks. Networking Case Studies Datacenter Backbone Networks Enterprise Backbone Mike Freedman COS 6: Computer Networks Cellular h>p://www.cs.princeton.edu/courses/archive/spr/cos6/ Wireless Backbone Networks

More information

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Autumn 03/04 John Kristoff - DePaul University 1 IPv4 unicast routing All Internet hosts perform basic routing for local net destinations, forward to local host for non-local

More information

Multihoming Complex Cases & Caveats

Multihoming Complex Cases & Caveats Multihoming Complex Cases & Caveats ISP Workshops Last updated 6 October 2011 Complex Cases & Caveats p Complex Cases n Multiple Transits n Multi-exit backbone n Disconnected Backbone n IDC Multihoming

More information

IP Routing: BGP Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches)

IP Routing: BGP Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches) IP Routing: BGP Command Reference, Cisco IOS XE Release 3SE (Catalyst 3850 Switches) First Published: January 22, 2013 Last Modified: January 22, 2013 Americas Headquarters Cisco Systems, Inc. 170 West

More information

Implementing BGP on Cisco ASR 9000 Series Router

Implementing BGP on Cisco ASR 9000 Series Router Implementing BGP on Cisco ASR 9000 Series Router Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free interdomain routing between autonomous systems.

More information

Cisco BGP Overview. Finding Feature Information. Prerequisites for Cisco BGP

Cisco BGP Overview. Finding Feature Information. Prerequisites for Cisco BGP Border Gateway Protocol (BGP) is an interdomain routing protocol designed to provide loop-free routing between separate routing domains that contain independent routing policies (autonomous systems). The

More information

IP Routing Tecnologie e Protocolli per Internet II rev 1

IP Routing Tecnologie e Protocolli per Internet II rev 1 IP Routing Tecnologie e Protocolli per Internet II rev 1 Andrea Detti Electronic Engineering dept. E-mail: andrea.detti@uniroma2.it Some sources: Cisco CCNA Routing and Switching ICND1 and ICND2 Routing

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 5565 Network Architecture and Protocols Lecture 20 Godmar Back Project 2B due in 2 parts: Apr 29 and May 6 Extra Credit Opportunities: Expand simulator (and your implementation) to introduce

More information

CSE 461 Interdomain routing. David Wetherall

CSE 461 Interdomain routing. David Wetherall CSE 461 Interdomain routing David Wetherall djw@cs.washington.edu Interdomain routing Focus: Routing across internetworks made up of different parties Route scaling Application Route policy Transport The

More information

BGP Techniques for ISP. Terutaka Komorizono

BGP Techniques for ISP. Terutaka Komorizono BGP Techniques for ISP Terutaka Komorizono Introduction Presentation has many configuration examples Using Cisco IOS CLI Aimed at Service Providers Techniques can be used by many enterprises

More information

CS Networks and Distributed Systems. Lecture 8: Inter Domain Routing

CS Networks and Distributed Systems. Lecture 8: Inter Domain Routing CS 3700 Networks and Distributed Systems Lecture 8: Inter Domain Routing Revised 2/4/2014 Network Layer, Control Plane 2 Data Plane Application Presentation Session Transport Network Data Link Physical

More information

Other Developments: CIDR

Other Developments: CIDR Other Developments: CIDR CIDR (classless Inter domain routing) Too many small networks requiring multiple class C addresses Running out of class B addresses, not enough nets in class A Assign contiguous

More information

Network Working Group Request for Comments: 1998 Category: Informational cisco Systems August 1996

Network Working Group Request for Comments: 1998 Category: Informational cisco Systems August 1996 Network Working Group Request for Comments: 1998 Category: Informational E. Chen MCI T. Bates cisco Systems August 1996 An Application of the BGP Community Attribute in Multi-home Routing Status of This

More information

Routing Protocols. Autonomous System (AS)

Routing Protocols. Autonomous System (AS) Routing Protocols Two classes of protocols: 1. Interior Routing Information Protocol (RIP) Open Shortest Path First (OSPF) 2. Exterior Border Gateway Protocol (BGP) Autonomous System (AS) What is an AS?

More information

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Winter 2002 John Kristoff - DePaul University 1 IP routing Performed by routers Table (information base) driven Forwarding decision on a hop-by-hop basis Route determined

More information