Landmark-based routing

Size: px
Start display at page:

Download "Landmark-based routing"

Transcription

1 Landmark-based routing [Kleinberg04] J. Kleinberg, A. Slivkins, T. Wexler. Triangulation and Embedding using Small Sets of Beacons. Proc. 45th IEEE Symposium on Foundations of Computer Science, Using the distances to landmarks and triangle inequality, one can approximate the distance for most of pairs. [Fang05a] Qing Fang, Jie Gao, Leonidas Guibas, Vin de Silva, Li Zhang, GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks, Proc. of the 24th Conference of the IEEE Communication Society (INFOCOM'05), March, Route around holes. Use combinatorial Delaunay graph to capture the global topology. [Fonseca05] Rodrigo Fonseca, Sylvia Ratnasamy, Jerry Zhao, Cheng Tien Ee and David Culler, Scott Shenker, Ion Stoica, Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets, NSDI'05. Landmark-based routing scheme. [Mao07] Yun Mao, Feng Wang, Lili Qiu, Simon S. Lam, Jonathan M. Smith, S4: Small State and Small Stretch Routing Protocol for Large Wireless Sensor Networks, NSDI 07. Landmark-based routing with constant stretch, and \sqrt{n} routing table size.

2 Landmark-based schemes k nodes are selected as landmarks (beacons) that flood the network. Each node records hop distances to these landmarks. estimate pair-wise distances, point-to-point routing. Pros: simplicity, location-free, independent of dimensionality (works for 3D networks). No unit disk graph assumption

3 Use landmarks to estimate pair-wise distances Triangulation: estimate via triangle inequality (u,v), beacon b : d(u,b)-d(v,b) d(u,v) d(u,b) +d(v,b) lower bound: d - (u, v) = max beacons b d(u,b)-d(v,b) upper bound: d + (u,v) = min beacons b d(u,b)+d(v,b) Internet setting, IDMaps [Francis+ 01], etc magic: relative error <1 on 90% node pairs 900 random nodes, 15 beacons relative error(x,y) = x-y / min(x,y)

4 A simple case With O(1) random landmarks, d + (u,v) 3d(u,v) for all but εfraction of pairs with prob 1-γ. At least one beacon inside B(u). For any point v outside B(u), d(v,b) d(u,b)+d(u,v) 2d(u,v) d + (u,v) d(u,b)+d(v,b) 3d(u,v) u b v B(u): ball with εn nodes inside.

5 Sensor networks, doubling metric A metric space has doubling dimension s if any ball of radius r can be covered by s balls of radius r/2. Geometric growth. Binary trees do not have constant doubling dimension. Euclidean space has constant doubling dimension Many practical networks fit in this model: Internet delay distance, sensor network (not too fragmented), VSLI layout, etc.

6 Improved bound on triangulation With O(1) random landmarks, d + (u,v) (1+δ) d + (u,v) for all but ε fraction of pairs with prob 1-γ.

7 Landmark-based embedding Global Network Positioning (GNP) [Ng+Zhang 02] select small #nodes as beacons users measure latencies to beacons embed into low-dim Euclidian space embed the beacons embed non-beacons one by one magic: 90% node pairs are embedded with relative error < random nodes, 15 beacons, 7 dimensions Proof omitted.

8 Discussion With distances estimation, potentially we can do greedy routing. Next: different ways to implement landmark-based routing schemes. Beacon Vector Routing GLIDER S4: compact routing

9 Beacon Vector Routing (BVR) A heuristic landmark-based routing. Every node remembers hop counts to a total of r landmarks. Move towards a beacon when the destination is closer to the beacon than the current node Move away from a beacon when the destination is further from the beacon than the current node 2/27/09 Jie Gao, CSE595-spring09 9

10 Beacon Vector Routing (BVR) A heuristic landmark-based routing. Every node remembers hop counts to a total of r landmarks. Routing metric: Pulling landmarks (those closer to destination). Dist from d to landmark i. Dist from p to landmark i. Pushing landmarks (further to destination) 2/27/09 Jie Gao, CSE595-spring09 10

11 Beacon Vector Routing (BVR) Routing metric: Choose a neighbor that minimizes Dist from d to landmark i. Dist from p to landmark i. No theoretical understanding of the performance. 2/27/09 Jie Gao, CSE595-spring09 11

12 Fall back mode If greedy routing with the routing metric gets stuck, then send to the closest beacon. The closest beacon does a scoped flooding.

13 Simulations Assumptions for high level simulation Fixed circular radio range Ignore the network capacity and congestion Ignore packet losses Place nodes uniformly at random in a square planner region 3200 nodes uniformly distributed in a 200 * 200 unit area Radio range is 8 units Average node degree is 16 Vary #total beacons and #routing beacons

14 Greedy success rate

15 Greedy routing with 10 beacons

16 Obstacles

17 Routing around holes Real-world deployment is not uniform, has holes (due to buildings, landscape variation). Face routing is too Short-sighted and greedy. Boundary nodes get overloaded. 2/27/09 Jie Gao, CSE595-spring09 17

18 GLIDER 2-level infrastructure Top-level: capture the global topology. Where the holes are (e.g., CS building, Javitz center, etc). General routing guidance (e.g., get around the Javitz center, go straight to SAC). Bottom-level: capture the local connectivity. Gradient descent to realize the routing path. 2/27/09 Jie Gao, CSE595-spring09 18

19 2-level infrastructure Why this makes sense? Global topology is stable (the position of buildings are unlikely to change often). Global topology is compact (a small number of buildings) From each node s point of view: A rough guidance. Local greedy rule. 2/27/09 Jie Gao, CSE595-spring09 19

20 Combinatorial Delaunay graph Given a communication graph on sensor nodes, with path length in shortest path hop counts Select a set of landmarks Landmarks flood the network. Each node learns the hop count to each landmark. Construct Landmark Voronoi Complex (LVC) 2/27/09 Jie Gao, CSE595-spring09 20

21 Combinatorial Delaunay graph Construct Landmark Voronoi Complex (LVC) Each sensor identifies its closest landmark. A sensor is on the boundary if it has 2 closest landmarks. If flooding are synchronized, then restricted flooding up to the boundary nodes is enough. 2/27/09 Jie Gao, CSE595-spring09 21

22 Combinatorial Delaunay graph Construct Combinatorial Delaunay Triangulation (CDT) on landmarks If there is at least one boundary node between landmark i and j, then there is an edge ij in CDT. Holes in the sensor field map to holes in CDT. CDT is broadcast to the whole network. 2/27/09 Jie Gao, CSE595-spring09 22

23 Virtual coordinates Each node stores virtual coordinates (d 1, d 2, d 3, d k ), d k = hop count to the kth reference landmark (home+neighboring landmarks) home landmark (think about post-office) resident tile p reference landmarks Boundary nodes 2/27/09 Jie Gao, CSE595-spring09 23

24 Combinatorial Delaunay graph Theorem: If G is connected, then the Combinatorial Delaunay graph D(L) for any subset of landmarks is also connected. 1. Compact and stable 2. Abstract the connectivity graph: Each edge can be mapped to a path that uses only the nodes in the two corresponding Voronoi tiles; Each path in G can be lifted to a path in D(L) 2/27/09 Jie Gao, CSE595-spring09 24

25 Information Stored at Each Node The shortest path tree on D(L) rooted at its home landmark Its coordinates and those of its neighbors for greedy routing 2/27/09 Jie Gao, CSE595-spring09 25

26 Virtual coordinates With the virtual coordinates, a node can test if It is on the boundary (two closest landmarks). A neighbor who is closer to a reference landmark. 2/27/09 Jie Gao, CSE595-spring09 26

27 Local Routing with Global Guidance Global Guidance: routing on tiles the D(L) that encodes global connectivity information is accessible to every node for proactive route planning on tiles. Local Routing: how to go from tile to tile. high-level routes on tiles are realized as actual paths in the network by using reactive protocols. 2/27/09 Jie Gao, CSE595-spring09 27

28 GLIDER -- Routing 1. Global planning 2. Local routing Inter-tile routing u 1 u 2 u 3 q Intra-tile routing p 2/27/09 Jie Gao, CSE595-spring09 28

29 Intra-tile routing L5 L1 How to route from one node to the other inside a tile? p q Each node knows the hop count to home landmark and neighboring landmarks. L4 L3 L0 L2 No idea where the landmarks are. A bogus proposal: p routes to the home landmark then routes to q. 2/27/09 Jie Gao, CSE595-spring09 29

30 Centered Landmark-Distance Coordinates and Greedy Routing L5 L1 Reference landmarks: L 0, L k T(p) = L 0 p L0 q Let s = mean(pl 0 2,, pl k 2 ) Local virtual coordinates: c(p)= (pl 0 2 s,, pl k 2 s) L4 L2 L3 (centered metric) Distance function: d(p, q) = c(p) c(q) 2 Greedy strategy: to reach q, do gradient descent on the function d(p, q) 2/27/09 Jie Gao, CSE595-spring09 30

31 Local Landmark Coordinates No Local Minimum Theorem: In the continuous Euclidean plane, gradient descent on the function d(p, q) always converges to the destination q, for at least three non-collinear landmarks. Landmark-distance coordinates Centered coordinates Landmark i The function is a linear function! 2/27/09 Jie Gao, CSE595-spring09 31

32 Node Density vs. Success Rate of Greedy Routing In the discrete case, we empirically observe that landmark gradient descending does not get stuck on networks with reasonable density (each node has on average six neighbors or more) nodes distributed on a perturbed grid. Perturbation ~ Gaussian(0, 0.5r), where r is the radio range 2/27/09 Jie Gao, CSE595-spring09 32

33 u 3 u 1 u 2 q p 2/27/09 Jie Gao, CSE595-spring09 33

34 Examples Each node on average has 6 one-hop neighbors. 2/27/09 Jie Gao, CSE595-spring09 34

35 Simulations Path Length and Load Balancing GLIDER 41 hops GPSR 52 hops Each node on average has 6 one-hop neighbors. 2/27/09 Jie Gao, CSE595-spring09 35

36 Simulations Hot Spots Comparison Randomly pick 45 source and destination pairs, each separated by more than 30 hops. GLIDER GPSR Blue (6-8 transit paths), orange (9-11 transit paths), black (>11 transit paths) 2/27/09 Jie Gao, CSE595-spring09 36

37 Stability Landmark failure. Not a big problem as the landmark is simply a point of reference. Not like gateway. Combinatorial Delaunay edge change? Requires big change in the network topology (merge of holes, disconnect a band of nodes, etc). 2/27/09 Jie Gao, CSE595-spring09 37

38 S4: small state small stretch Landmark-based Each node knows how to route to the landmark. Use additional routing table entries to keep the routes to other nodes. Routing: first route to the landmark closest to t, when the message gets close, use local routing tables.

39 S4: small state small stretch Node clusters Each regular node d has a cluster, in which each node knows how to route to d. Radius is the distance to the closest beacon. Claim: this guarantees delivery.

40 Stretch is 3 Path = ux + xv = ux + bv ub + bv uv +2 bv 3 uv //shortcut //triangle inequality // u is outside cluster x b v u

41 Routing table size? Take \sqrt{n} random landmarks such that the number of nodes inside cluster is roughly \sqrt{n}.

42 Comparison with BVR

43 Routing states

44 Summary Landmark failure? Landmark is for reference, and do not necessarily carry messages. Design principles: Global routing -- route to somewhere close to the destination v.s local routing route to the destination. Gradient-based or routing table based. Landmarks are global or local: accurate distances to far away landmarks.

45 Summary BVR: global landmarks, global potential function, gradient based. GLIDER: Global routing: routing table; local routing: gradient based. Landmarks are local: the distances to far away landmarks do not need to be accurate. S4: global landmarks, global routing: gradient-based; local routing: routing table.

[Kleinberg04] J. Kleinberg, A. Slivkins, T. Wexler. Triangulation and Embedding using Small Sets of Beacons. Proc. 45th IEEE Symposium on Foundations

[Kleinberg04] J. Kleinberg, A. Slivkins, T. Wexler. Triangulation and Embedding using Small Sets of Beacons. Proc. 45th IEEE Symposium on Foundations Landmark-based routing Landmark-based routing [Kleinberg04] J. Kleinberg, A. Slivkins, T. Wexler. Triangulation and Embedding using Small Sets of Beacons. Proc. 45th IEEE Symposium on Foundations of Computer

More information

GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks. Stanford University. HP Labs

GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks. Stanford University. HP Labs GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks Qing Fang Jie Gao Leonidas J. Guibas Vin de Silva Li Zhang Stanford University HP Labs Point-to-Point Routing in Sensornets Routing

More information

GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks

GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks GLIDER: Gradient Landmark-Based Distributed Routing for Sensor Networks Qing Fang Jie Gao Leonidas J. Guibas Vin de Silva Li Zhang Department of Electrical Engineering, Stanford University. jqfang@stanford.edu

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Fractional Cascading in Wireless. Jie Gao Computer Science Department Stony Brook University

Fractional Cascading in Wireless. Jie Gao Computer Science Department Stony Brook University Fractional Cascading in Wireless Sensor Networks Jie Gao Computer Science Department Stony Brook University 1 Sensor Networks Large number of small devices for environment monitoring 2 My recent work Lightweight,

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

Networking Sensors, II

Networking Sensors, II Networking Sensors, II Sensing Networking Leonidas Guibas Stanford University Computation CS321 ZG Book, Ch. 3 1 Class Administration Paper presentation preferences due today, by class time Project info

More information

Routing in Sensor Networks

Routing in Sensor Networks Routing in Sensor Networks Routing in Sensor Networks Large scale sensor networks will be deployed, and require richer inter-node communication In-network storage (DCS, GHT, DIM, DIFS) In-network processing

More information

Spatial Distribution in Routing Table Design for Sensor Networks

Spatial Distribution in Routing Table Design for Sensor Networks Spatial Distribution in Routing Table Design for Sensor Networks Rik Sarkar Xianjin Zhu Jie Gao Department of Computer Science, Stony Brook University. {rik, xjzhu, jgao}@cs.sunysb.edu Abstract We propose

More information

Data-Centric Query in Sensor Networks

Data-Centric Query in Sensor Networks Data-Centric Query in Sensor Networks Jie Gao Computer Science Department Stony Brook University 10/27/05 Jie Gao, CSE590-fall05 1 Papers Chalermek Intanagonwiwat, Ramesh Govindan and Deborah Estrin, Directed

More information

Naming and Routing Using Global Topology Discovery

Naming and Routing Using Global Topology Discovery Naming and Routing Using Global Topology Discovery Qing Fang Department of Electrical Engineering Stanford University Stanford, CA 94305 E-mail: jqfang@stanford.edu Jie Gao, Leonidas J. Guibas Department

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Map: Medial axis based geometric routing in sensor networks

Map: Medial axis based geometric routing in sensor networks DOI.7/s11276-6-9857-z Map: Medial axis based geometric routing in sensor networks Jehoshua Bruck Jie Gao Anxiao (Andrew) Jiang Published online: 23 October 6 C Science + Business Media, LLC 6 Abstract

More information

We noticed that the trouble is due to face routing. Can we ignore the real coordinates and use virtual coordinates for routing?

We noticed that the trouble is due to face routing. Can we ignore the real coordinates and use virtual coordinates for routing? Geographical routing in practice We noticed that the trouble is due to face routing. Is greedy routing robust to localization noise? Can we ignore the real coordinates and use virtual coordinates for routing?

More information

A Scalable Content- Addressable Network

A Scalable Content- Addressable Network A Scalable Content- Addressable Network In Proceedings of ACM SIGCOMM 2001 S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker Presented by L.G. Alex Sung 9th March 2005 for CS856 1 Outline CAN basics

More information

Geographic Routing Without Location Information. AP, Sylvia, Ion, Scott and Christos

Geographic Routing Without Location Information. AP, Sylvia, Ion, Scott and Christos Geographic Routing Without Location Information AP, Sylvia, Ion, Scott and Christos Routing in Wireless Networks Distance vector DSDV On-demand DSR, TORA, AODV Discovers and caches routes on demand Geographic

More information

Networking Sensors, I

Networking Sensors, I Networking Sensors, I Sensing Networking Leonidas Guibas Stanford University Computation CS428 Networking Sensors Networking is a crucial capability for sensor networks -- networking allows: Placement

More information

Geographic Routing in Simulation: GPSR

Geographic Routing in Simulation: GPSR Geographic Routing in Simulation: GPSR Brad Karp UCL Computer Science CS M038/GZ06 23 rd January 2013 Context: Ad hoc Routing Early 90s: availability of off-the-shelf wireless network cards and laptops

More information

Localization of Sensor Networks II

Localization of Sensor Networks II Localization of Sensor Networks II Jie Gao Computer Science Department Stony Brook University 2/3/09 Jie Gao CSE595-spring09 1 Rigidity theory Given a set of rigid bars connected by hinges, rigidity theory

More information

Geographical routing 1

Geographical routing 1 Geographical routing 1 Routing in ad hoc networks Obtain route information between pairs of nodes wishing to communicate. Proactive protocols: maintain routing tables at each node that is updated as changes

More information

Geometric Spanners for Routing in Mobile Networks

Geometric Spanners for Routing in Mobile Networks 1 Geometric Spanners for Routing in Mobile Networks Jie Gao, Leonidas J Guibas, John Hershberger, Li Zhang, An Zhu Abstract We propose a new routing graph, the Restricted Delaunay Graph (RDG), for mobile

More information

Load Balanced Short Path Routing in Wireless Networks Jie Gao, Stanford University Li Zhang, Hewlett-Packard Labs

Load Balanced Short Path Routing in Wireless Networks Jie Gao, Stanford University Li Zhang, Hewlett-Packard Labs Load Balanced Short Path Routing in Wireless Networks Jie Gao, Stanford University Li Zhang, Hewlett-Packard Labs Aravind Ranganathan University of Cincinnati February 22, 2007 Motivation Routing in wireless

More information

AN AD HOC network consists of a collection of mobile

AN AD HOC network consists of a collection of mobile 174 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2005 Geometric Spanners for Routing in Mobile Networks Jie Gao, Member, IEEE, Leonidas J. Guibas, John Hershberger, Li Zhang,

More information

Networks: A Deterministic Approach with Constant Overhead

Networks: A Deterministic Approach with Constant Overhead Trace-Routing in 3D Wireless Sensor Networks: A Deterministic Approach with Constant Overhead Su Xia, Hongyi Wu, and Miao Jin! School of Computing and Informatics! University of Louisiana at Lafayette

More information

Mobile Wireless Sensor Network Connectivity Repair with K-Redundanc

Mobile Wireless Sensor Network Connectivity Repair with K-Redundanc Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2007-48 2007 Mobile Wireless

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

Chapter 7 TOPOLOGY CONTROL

Chapter 7 TOPOLOGY CONTROL Chapter 7 TOPOLOGY CONTROL Distributed Computing Group Mobile Computing Winter 2005 / 2006 Overview Topology Control Gabriel Graph et al. XTC Interference SINR & Scheduling Complexity Distributed Computing

More information

Guaranteed-delivery Geographic Routing under Uncertain Node Locations

Guaranteed-delivery Geographic Routing under Uncertain Node Locations Guaranteed-delivery Geographic Routing under Uncertain Node Locations Stefan Funke Max-Planck-Institut für Informatik Stuhlsatzenhausweg 85 66123 Saarbrücken, Germany Email: funke@mpi-inf.mpg.de Nikola

More information

Ad hoc and Sensor Networks Topology control

Ad hoc and Sensor Networks Topology control Ad hoc and Sensor Networks Topology control Goals of this chapter Networks can be too dense too many nodes in close (radio) vicinity This chapter looks at methods to deal with such networks by Reducing/controlling

More information

Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning

Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Challenges in Geographic Routing: Sparse Networks, Obstacles, and Traffic Provisioning Brad Karp Berkeley, CA bkarp@icsi.berkeley.edu DIMACS Pervasive Networking Workshop 2 May, 2 Motivating Examples Vast

More information

Cut Graph Based Information Storage and Retrieval in 3D Sensor Networks with General Topology

Cut Graph Based Information Storage and Retrieval in 3D Sensor Networks with General Topology 213 Proceedings IEEE INFOCOM Cut Graph Based Information Storage and Retrieval in 3D Sensor Networks with General Topology Yang Yang, Miao Jin, Yao Zhao, and Hongyi Wu Abstract We address the problem of

More information

FOLLOWING their success in 2-D environments, sensor

FOLLOWING their success in 2-D environments, sensor IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 14, NO. 1, JANUARY 2015 57 OnionMap: A Scalable Geometric Addressing and Routing Scheme for 3D Sensor Networks Kechao Cai, Zhimeng Yin, Hongbo Jiang,

More information

Light-weight Contour Tracking in Wireless Sensor Networks

Light-weight Contour Tracking in Wireless Sensor Networks Light-weight Contour Tracking in Wireless Sensor Networks Xianjin Zhu Rik Sarkar Jie Gao Joseph S. B. Mitchell INFOCOM 08 1 Motivation Sensor network: sense and monitor the physical world (temperature,

More information

3D Wireless Sensor Networks: Challenges and Solutions

3D Wireless Sensor Networks: Challenges and Solutions 3D Wireless Sensor Networks: Challenges and Solutions Hongyi Wu Old Dominion University Ph.D., CSE, UB, 2002 This work is partially supported by NSF CNS-1018306 and CNS-1320931. 2D PLANE, 3D VOLUME, AND

More information

Routing. Geo-Routing. Thanks to Stefan Schmid for slides

Routing. Geo-Routing. Thanks to Stefan Schmid for slides Routing Geo-Routing Thanks to Stefan Schmid for slides 1 Overview Classic routing overview Geo-routing Greedy geo-routing Euclidean and Planar graphs Face Routing Greedy and Face Routing 2 Shortest path

More information

An efficient implementation of the greedy forwarding strategy

An efficient implementation of the greedy forwarding strategy An efficient implementation of the greedy forwarding strategy Hannes Stratil Embedded Computing Systems Group E182/2 Technische Universität Wien Treitlstraße 3 A-1040 Vienna Email: hannes@ecs.tuwien.ac.at

More information

Jie Gao Computer Science Department Stony Brook University

Jie Gao Computer Science Department Stony Brook University Localization of Sensor Networks II Jie Gao Computer Science Department Stony Brook University 1 Rigidity theory Given a set of rigid bars connected by hinges, rigidity theory studies whether you can move

More information

CS 229 Final Report: Location Based Adaptive Routing Protocol(LBAR) using Reinforcement Learning

CS 229 Final Report: Location Based Adaptive Routing Protocol(LBAR) using Reinforcement Learning CS 229 Final Report: Location Based Adaptive Routing Protocol(LBAR) using Reinforcement Learning By: Eunjoon Cho and Kevin Wong Abstract In this paper we present an algorithm for a location based adaptive

More information

Vivaldi: A Decentralized Network Coordinate System. Authors: Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris MIT. Published at SIGCOMM 04

Vivaldi: A Decentralized Network Coordinate System. Authors: Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris MIT. Published at SIGCOMM 04 Vivaldi: A Decentralized Network Coordinate System Authors: Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris MIT Published at SIGCOMM 04 Presented by: Emmanouel Kyriakakis Key tool: Synthetic Coordinates

More information

Ad hoc and Sensor Networks Chapter 10: Topology control

Ad hoc and Sensor Networks Chapter 10: Topology control Ad hoc and Sensor Networks Chapter 10: Topology control Holger Karl Computer Networks Group Universität Paderborn Goals of this chapter Networks can be too dense too many nodes in close (radio) vicinity

More information

Geometric Routing: Of Theory and Practice

Geometric Routing: Of Theory and Practice Geometric Routing: Of Theory and Practice PODC 03 F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger [KWZ 02] [KWZ 03] [KK 00] Asymptotically Optimal Geometric Mobile Ad-Hoc Routing Worst-Case Optimal and

More information

Lecture 6: Vehicular Computing and Networking. Cristian Borcea Department of Computer Science NJIT

Lecture 6: Vehicular Computing and Networking. Cristian Borcea Department of Computer Science NJIT Lecture 6: Vehicular Computing and Networking Cristian Borcea Department of Computer Science NJIT GPS & navigation system On-Board Diagnostic (OBD) systems DVD player Satellite communication 2 Internet

More information

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions

Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions Using Hybrid Algorithm in Wireless Ad-Hoc Networks: Reducing the Number of Transmissions R.Thamaraiselvan 1, S.Gopikrishnan 2, V.Pavithra Devi 3 PG Student, Computer Science & Engineering, Paavai College

More information

XLR: Tackling the Inefficiency of Landmark-based Routing in Large Wireless Sensor Networks

XLR: Tackling the Inefficiency of Landmark-based Routing in Large Wireless Sensor Networks XLR: Tackling the Inefficiency of Landmark-based Routing in Large Wireless Sensor Networks Xuetao Wei, Nicholas C. Valler, Michalis Faloutsos, Harsha V. Madhyastha, and Ting-Kai Huang Department of Computer

More information

Midpoint Routing algorithms for Delaunay Triangulations

Midpoint Routing algorithms for Delaunay Triangulations Midpoint Routing algorithms for Delaunay Triangulations Weisheng Si and Albert Y. Zomaya Centre for Distributed and High Performance Computing School of Information Technologies Prologue The practical

More information

Starburst SSD: An Efficient Protocol for Selective Dissemination

Starburst SSD: An Efficient Protocol for Selective Dissemination Starburst SSD: An Efficient Protocol for Selective Dissemination Tahir Azim Stanford University Stanford, California 9435 Email:tazim@cs.stanford.edu Qasim Mansoor National University of Sciences and Technology

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch

Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch Simon S. Lam and Chen Qian Department of Computer Science, The University of Texas at Austin Austin, Texas, 7872 {lam,

More information

Flat Routing on Curved Spaces

Flat Routing on Curved Spaces Flat Routing on Curved Spaces Dmitri Krioukov (CAIDA/UCSD) dima@caida.org Berkeley April 19 th, 2006 Clean slate: reassess fundamental assumptions Information transmission between nodes in networks that

More information

arxiv: v1 [cs.ni] 28 Apr 2015

arxiv: v1 [cs.ni] 28 Apr 2015 Succint greedy routing without metric on planar triangulations Pierre Leone, Kasun Samarasinghe Computer Science Department, University of Geneva, Battelle A, route de Drize 7, 1227 Carouge, Switzerland

More information

Graph Algorithms. Many problems in networks can be modeled as graph problems.

Graph Algorithms. Many problems in networks can be modeled as graph problems. Graph Algorithms Graph Algorithms Many problems in networks can be modeled as graph problems. - The topology of a distributed system is a graph. - Routing table computation uses the shortest path algorithm

More information

CS644 Advanced Networks

CS644 Advanced Networks Outline CS644 Advanced Networks Lecture 9 Intra Domain Routing Andreas Terzis Spring 2004 1 So far we have talked about E2E mechanisms Routing is the other big component of the network Largest distributed

More information

Connectivity-based Localization of Large Scale Sensor Networks with Complex Shape

Connectivity-based Localization of Large Scale Sensor Networks with Complex Shape Connectivity-based Localization of Large Scale Sensor Networks with Complex Shape Sol Lederer and Yue Wang and Jie Gao We study the problem of localizing a large sensor network having a complex shape,

More information

Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets

Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets Beacon Vector Routing: Scalable Point-to-Point Routing in Wireless Sensornets Rodrigo Fonseca Sylvia Ratnasamy Jerry Zhao Cheng Tien Ee David Culler Scott Shenker, Ion Stoica University of California,

More information

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Computer Science 336 http://www.cs.jhu.edu/~hager/teaching/cs336 Professor Hager http://www.cs.jhu.edu/~hager Recall Earlier Methods

More information

Node-Disjoint Multipath Routing with Group Mobility in MANETs

Node-Disjoint Multipath Routing with Group Mobility in MANETs Node-Disjoint Multipath Routing with Group Mobility in MANETs Yun Ge 1,2, Guojun Wang 1,, and Jie Wu 3 1 School of Information Science and Engineering Central South University Changsha 410083, China 2

More information

Geo-Routing. Chapter 2. Ad Hoc and Sensor Networks Roger Wattenhofer

Geo-Routing. Chapter 2. Ad Hoc and Sensor Networks Roger Wattenhofer Geo-Routing Chapter 2 Ad Hoc and Sensor Networks Roger Wattenhofer 2/1 Application of the Week: Mesh Networking (Roofnet) Sharing Internet access Cheaper for everybody Several gateways fault-tolerance

More information

Energy aware geographic routing in wireless sensor networks with anchor nodes. Mircea Cretu Stancu Utrecht University Computing Science May 2013

Energy aware geographic routing in wireless sensor networks with anchor nodes. Mircea Cretu Stancu Utrecht University Computing Science May 2013 Energy aware geographic routing in wireless sensor networks with anchor nodes Mircea Cretu Stancu Utrecht University Computing Science May 2013 Overview Introduction Current paradigm EAGR preliminaries

More information

I. INTRODUCTION. Keywords: Novelty Filter, Routing, Singular Value Decomposition, Wireless Sensor Networks, Virtual Coordinates

I. INTRODUCTION. Keywords: Novelty Filter, Routing, Singular Value Decomposition, Wireless Sensor Networks, Virtual Coordinates Dimension Reduction of Virtual Coordinate Systems in Wireless Sensor Networks * Dulanjalie C. Dhanapala and Anura P. Jayasumana Department of Electrical and Computer Engineering, Colorado State University,

More information

Greedy Virtual Coordinates for Geographic Routing

Greedy Virtual Coordinates for Geographic Routing Greedy Virtual Coordinates for Geographic Routing Ben Leong Department of Computer Science National University of Singapore benleong@comp.nus.edu.sg Barbara Liskov and Robert Morris MIT Computer Science

More information

Probabilistic Modeling of Leach Protocol and Computing Sensor Energy Consumption Rate in Sensor Networks

Probabilistic Modeling of Leach Protocol and Computing Sensor Energy Consumption Rate in Sensor Networks Probabilistic Modeling of Leach Protocol and Computing Sensor Energy Consumption Rate in Sensor Networks Dezhen Song CS Department, Texas A&M University Technical Report: TR 2005-2-2 Email: dzsong@cs.tamu.edu

More information

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research

Tiling Three-Dimensional Space with Simplices. Shankar Krishnan AT&T Labs - Research Tiling Three-Dimensional Space with Simplices Shankar Krishnan AT&T Labs - Research What is a Tiling? Partition of an infinite space into pieces having a finite number of distinct shapes usually Euclidean

More information

Dynamics of Hot-Potato Routing in IP Networks

Dynamics of Hot-Potato Routing in IP Networks Dynamics of Hot-Potato Routing in IP Networks Jennifer Rexford AT&T Labs Research http://www.research.att.com/~jrex Joint work with Renata Teixeira (UCSD), Aman Shaikh (AT&T), and Timothy Griffin (Intel)

More information

Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model

Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks under Physical Interference Model Hongxing Li Department of Computer Science The University of Hong Kong Pokfulam Road, Hong Kong hxli@cs.hku.hk

More information

A Polynomial Time Algorithm for Multivariate Interpolation in Arbitrary Dimension via the Delaunay Triangulation

A Polynomial Time Algorithm for Multivariate Interpolation in Arbitrary Dimension via the Delaunay Triangulation A Polynomial Time Algorithm for Multivariate Interpolation in Arbitrary Dimension via the Delaunay Triangulation Tyler Chang, Layne Watson, Thomas Lux, Bo Li, Li Xu, Ali Butt, Kirk Cameron, and Yili Hong

More information

On Greedy Geographic Routing Algorithms in Sensing-Covered Networks

On Greedy Geographic Routing Algorithms in Sensing-Covered Networks On Greedy Geographic Routing Algorithms in Sensing-Covered Networks Guoliang Xing; Chenyang Lu; Robert Pless Department of Computer Science and Engineering Washington University in St. Louis St. Louis,

More information

Locating and Bypassing Holes in Sensor Networks

Locating and Bypassing Holes in Sensor Networks Locating and Bypassing Holes in Sensor Networks Qing Fang Jie Gao Leonidas J. Guibas April 8, 2005 Abstract In real sensor network deployments, spatial distributions of sensors are usually far from being

More information

LORP : A Load-balancing Based Optimal Routing Protocol for Sensor Networks with Bottlenecks

LORP : A Load-balancing Based Optimal Routing Protocol for Sensor Networks with Bottlenecks LORP : A Load-balancing Based Optimal Routing Protocol for Sensor Networks with Bottlenecks Liie Xu, Guihai Chen, Xinchun Yin, Panlong Yang and Baiian Yang Institute of Information Engineering, Yangzhou

More information

Routing. Chapter 12. Ad Hoc and Sensor Networks Roger Wattenhofer

Routing. Chapter 12. Ad Hoc and Sensor Networks Roger Wattenhofer Routing Chapter 12 12/1 Application of the Week: Games / Art Uncountable possibilities, below, e.g., a beer coaster that can interact with other coasters [sentilla] 12/2 Rating Area maturity First steps

More information

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees

Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees Pouya Ostovari Department of Computer and Information Siences Temple University Philadelphia, Pennsylvania, USA Email: ostovari@temple.edu

More information

1 Proximity via Graph Spanners

1 Proximity via Graph Spanners CS273: Algorithms for Structure Handout # 11 and Motion in Biology Stanford University Tuesday, 4 May 2003 Lecture #11: 4 May 2004 Topics: Proximity via Graph Spanners Geometric Models of Molecules, I

More information

QoS-Enabled Video Streaming in Wireless Sensor Networks

QoS-Enabled Video Streaming in Wireless Sensor Networks QoS-Enabled Video Streaming in Wireless Sensor Networks S. Guo and T.D.C. Little Department of Electrical and Computer Engineering Boston University, Boston, MA 02215 {guosong, tdcl}@bu.edu MCL Technical

More information

Greedy Routing by Network Distance Embedding

Greedy Routing by Network Distance Embedding IEEE/ACM TRANSACTIONS ON NETWORKING, VOL., NO., MON YEAR Greedy Routing by Network Distance Embedding Chen Qian, Member, IEEE, Member, ACM and Simon S. Lam, Fellow, IEEE, Fellow, ACM Abstract Greedy routing

More information

Topological Hole Detection in Wireless Sensor Networks and its Applications

Topological Hole Detection in Wireless Sensor Networks and its Applications Topological Hole Detection in Wireless Sensor Networks and its Applications Stefan Funke Computer Science Department Gates Bldg. 375 Stanford University, CA 94305, U.S.A. ABSTRACT The identification of

More information

GPS-Free Greedy Routing with Delivery Guarantee and Low Stretch Factor on 2D and 3D Surfaces

GPS-Free Greedy Routing with Delivery Guarantee and Low Stretch Factor on 2D and 3D Surfaces GPS-Free Greedy Routing with Delivery Guarantee and Low Stretch Factor on 2D and 3D Surfaces Su Xia, Hongyi Wu, and Miao Jin Abstract This paper focuses on greedy routing in wireless networks deployed

More information

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016

Informed search. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Informed search CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, Chapter 3 Outline Best-first search Greedy

More information

On Quantifying Performance Enhancement of Distributed SDN Architecture

On Quantifying Performance Enhancement of Distributed SDN Architecture On Quantifying Performance Enhancement of Distributed SDN Architecture Ziyao (Spike) Zhang Imperial College London Liang Ma IBM US Kin K. Leung Imperial College London September 2017 DAIS-ITA Annual Fall

More information

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning

Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Algorithms for Sensor-Based Robotics: Sampling-Based Motion Planning Computer Science 336 http://www.cs.jhu.edu/~hager/teaching/cs336 Professor Hager http://www.cs.jhu.edu/~hager Recall Earlier Methods

More information

Distributed Hash Table

Distributed Hash Table Distributed Hash Table P2P Routing and Searching Algorithms Ruixuan Li College of Computer Science, HUST rxli@public.wh.hb.cn http://idc.hust.edu.cn/~rxli/ In Courtesy of Xiaodong Zhang, Ohio State Univ

More information

Maintaining Approximate Minimum Steiner Tree and k-center for Mobile Agents in a Sensor Network

Maintaining Approximate Minimum Steiner Tree and k-center for Mobile Agents in a Sensor Network Maintaining Approximate Minimum Steiner Tree and k-center for Mobile Agents in a Sensor Network Dengpan Zhou Jie Gao Department of Computer Science, Stony Brook University. {dpzhou, jgao}@cs.sunysb.edu

More information

Routing. Chapter 11. Ad Hoc and Sensor Networks Roger Wattenhofer 11/1

Routing. Chapter 11. Ad Hoc and Sensor Networks Roger Wattenhofer 11/1 Routing Chapter 11 Ad Hoc and Sensor Networks Roger Wattenhofer 11/1 Application of the Week: Games / Art Uncountable possibilities, below, e.g., a beer coaster that can interact with other coasters [sentilla]

More information

GEOGRAPHIC routing (also known as location-based or

GEOGRAPHIC routing (also known as location-based or IEEE/ACM TRANSACTIONS ON NETWORKING, VOL., NO., Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch Simon S. Lam, Fellow, IEEE, and Chen Qian, Student Member, IEEE Abstract

More information

Oblivious Routing on Geometric Networks

Oblivious Routing on Geometric Networks Oblivious Routing on Geometric Networks Costas Busch, Malik Magdon-Ismail and Jing Xi {buschc,magdon,xij2}@cs.rpi.edu July 20, 2005. Outline Oblivious Routing: Background and Our Contribution The Algorithm:

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS NORTHEASTERN UNIVERSITY Lecture 20: Bridging Prof. Alan Mislove (amislove@ccs.neu.edu) Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui

More information

Draft Notes 1 : Scaling in Ad hoc Routing Protocols

Draft Notes 1 : Scaling in Ad hoc Routing Protocols Draft Notes 1 : Scaling in Ad hoc Routing Protocols Timothy X Brown University of Colorado April 2, 2008 2 Introduction What is the best network wireless network routing protocol? This question is a function

More information

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University Course website: http://snap.stanford.edu/na09 Slides will be available online Reading material will be posted online:

More information

Given a graph, find an embedding s.t. greedy routing works

Given a graph, find an embedding s.t. greedy routing works Given a graph, find an embedding s.t. greedy routing works Greedy embedding of a graph 99 Greedy embedding Given a graph G, find an embedding of the vertices in R d, s.t. for each pair of nodes s, t, there

More information

Approximately Uniform Random Sampling in Sensor Networks

Approximately Uniform Random Sampling in Sensor Networks Approximately Uniform Random Sampling in Sensor Networks Boulat A. Bash, John W. Byers and Jeffrey Considine Motivation Data aggregation Approximations to COUNT, SUM, AVG, MEDIAN Existing work does not

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

ROUTING is an important issue that affects wireless

ROUTING is an important issue that affects wireless 1 Virtual-Coordinate-Based Delivery-Guaranteed Routing Protocol in Wireless Sensor Networks Ming-Jer Tsai, Hong-Yen Yang, Bing-Hong Liu, and Wen-Qian Huang Abstract In this paper, we first propose a method,,

More information

Convex Partition of Sensor Networks and Its Use in Virtual Coordinate Geographic Routing

Convex Partition of Sensor Networks and Its Use in Virtual Coordinate Geographic Routing Author manuscript, published in "INFOCOM 2009 (2009)" Convex Partition of Sensor Networks and Its Use in Virtual Coordinate Geographic Routing Guang Tan Marin Bertier Anne-Marie Kermarrec INRIA/IRISA,

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch

Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch Geographic Routing in d-dimensional Spaces with Guaranteed Delivery and Low Stretch Simon S. Lam and Chen Qian Department of Computer Science The University of Texas at Austin {lam, cqian}@cs.utexas.edu

More information

SFM: An Energy Efficient Algorithm based on Reducing Control Messages in Wireless Sensor Networks

SFM: An Energy Efficient Algorithm based on Reducing Control Messages in Wireless Sensor Networks RESEARCH ARTICLE OPEN ACCESS SFM: An Energy Efficient Algorithm based on Reducing Control Messages in Wireless Sensor Networks M.Christina Ranjitham1, Mrs.M.Thiruchelvi2 1PG Scholar, Department of CSE,

More information

Lecture 13: Routing in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 3, Monday

Lecture 13: Routing in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 3, Monday Lecture 13: Routing in multihop wireless networks Mythili Vutukuru CS 653 Spring 2014 March 3, Monday Routing in multihop networks Figure out a path from source to destination. Basic techniques of routing

More information

Charm: A charming network coordinate system

Charm: A charming network coordinate system Charm: A charming network coordinate system Çağatay Demiralp December 5, 27 Abstract We present a new network coordinate system, Charm, embedding round-trip time latencies into the Euclidean space. Charm

More information

Hole Detection and Boundary Recognition in Wireless Sensor Networks

Hole Detection and Boundary Recognition in Wireless Sensor Networks Hole Detection and Boundary Recognition in Wireless Sensor Networks Kun-Ying Hsieh Dept. of Computer Science and Information Engineering National Central University Jhongli, 32054, Taiwan E-mail: rocky@axp1.csie.ncu.edu.tw

More information

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set

TOSSIM simulation of wireless sensor network serving as hardware platform for Hopfield neural net configured for max independent set Available online at www.sciencedirect.com Procedia Computer Science 6 (2011) 408 412 Complex Adaptive Systems, Volume 1 Cihan H. Dagli, Editor in Chief Conference Organized by Missouri University of Science

More information

Analysis of Multiple Trees on Path Discovery for Beacon-Based Routing Protocols

Analysis of Multiple Trees on Path Discovery for Beacon-Based Routing Protocols Analysis of Multiple Trees on Path Discovery for Beacon-Based Routing Protocols Baruch Awerbuch, David Holmer and Herbert Rubens Johns Hopkins University Department of Computer Science Baltimore, MD, USA

More information

Locating and Bypassing Holes in Sensor Networks

Locating and Bypassing Holes in Sensor Networks Mobile Networks and Applications 11, 187 200, 2006 C 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands. DOI: 10.1007/s11036-006-4471-y Locating and Bypassing Holes in Sensor

More information