Deadlock: Part II. Reading Assignment. Deadlock: A Closer Look. Types of Deadlock

Size: px
Start display at page:

Download "Deadlock: Part II. Reading Assignment. Deadlock: A Closer Look. Types of Deadlock"

Transcription

1 Reading Assignment T. M. Pinkston, Deadlock Characterization and Resolution in Interconnection Networks, Chapter 13 in Deadlock Resolution in Computer Integrated Systems, CRC Press 2004 Deadlock: Part II V. Puente et.al, Adaptive Bubble Router: A Design to Improve Performance in Torus Networks, Proceedings of the 1999 International Conference on Parallel Processing Sudhakar Yalamanchili, Georgia Institute of Technology (except as indicated) ECE 8813a (2) Deadlock: A Closer Look Deadlock conditions arise from more than just routing packets, e.g., routing induced deadlock v Just making use of the topology in a deadlock free manner is insufficient Other solutions to deadlock freedom beyond strictly guaranteeing avoidance v Recovery vs. avoidance Types of Deadlock Routing induced v Created by the routing function v This is what we have studied so far, but are there weaker solutions? Message induced v Addition of dependencies to an existing routing function via message type dependencies at the endpoints Reconfiguration induced v Addition of dependencies when transitioning (reconfiguration) from one routing function to another ECE 8813a (3) ECE 8813a (4) 1

2 Routing Induced Approaches Deadlock freedom in the wide sense v Strict avoidance + routing freedom à Duato s protocol Deadlock freedom in the weak sense v Permitted resources (cycle or knot) are never filled o Injection limitation and bubble flow control o Two-phase routing protocols n Circuit switched and PCS networks v Deflection routing o SAF and VCT only Deadlock Avoidance: Weak Sense ECE 8813a (5) Sudhakar Yalamanchili, Georgia Institute of Technology (except as indicated) Key Idea: Move Empty Buffers Local Scheme: Injection Limitation Need to ensure that empty buffers exist in every potential cycle Couple with cycle detection? Randomize & influence propagation of bubbles? Key to deadlock avoidance is guaranteeing forward progress What if we ensured there would always be at least one buffer in any cycle? v Injection limitation at sources à O(PxM) buffers/ni For SAF and VCT only Many ways to ensure the bubble condition From T. Pinkston, Chapter 13: Deadlock Resolution in Computer Integrated Systems, Macel Dekker(pubs), M. C. Zhou and M. P. Fanti (eds), 2004 ECE 8813a (7) ECE 8813a (8) 2

3 Bubble Flow Control Extension to Multiple Dimensions Packet injection requires two free packet buffers v One empty buffer left after injection Selection function is biased towards adaptive channels Dimension traversal is treated as an injection Bubble flow control only apply to escape channels Priority is given to traversal over injection v Traversal to a new dimension must meet buffer requirements From V. Puente et.al, Adaptive Bubble Router: A Design to Improve Perfomance in Torus Networks, From V. Puente et.al, Adaptive Bubble Router: A Design to Improve Perfomance in Torus Networks, Proceedings of the 1999 International Conference on Parallel Processing ECE 8813a (9) Proceedings of the 1999 International Conference on Parallel Processing ECE 8813a (10) Behavior Under Load Some Consequences Number of VCs required for deadlock free routing reduced to 1 Number of VCs required for fully adaptive routing is 1 Behave as in a deterministically routed network Flow control overhead is less in VCT routers Simple fast routers v Applicable only to VCT and Packet switched routers From V. Puente et.al, Adaptive Bubble Router: A Design to Improve Perfomance in Torus Networks, Proceedings of the 1999 International Conference on Parallel Processing ECE 8813a (11) ECE 8813a (12) 3

4 Types of Deadlock Message & Reconfiguration Induced Deadlock Routing induced v Created by the routing function v This is what we have studied so far, but are there weaker solutions? Message induced v Addition of dependencies to an existing routing function via message type dependencies at the endpoints Reconfiguration induced v Addition of dependencies when transitioning (reconfiguration) from one routing function to another Sudhakar Yalamanchili, Georgia Institute of Technology (except as indicated) ECE 8813a (14) Message Induced Deadlock Directory-Based Coherence Protocols Consider that message types have dependencies between them v For example, request à reply v Dependencies are manifested at the end points Message sequences utilize resources Local node generates a memory reference P + C Generating the request Dir Memory Network Remote node has a copy of block P + C Dir Memory Message type dependencies are transferred to resource dependencies v Message dependencies or protocol dependencies v Remember the consumption assumption Observe the message sequence between local, remote and home nodes P + C Dir Memory Home node is the physical memory location of a memory reference ECE 8813a (15) ECE 8813a (16) 4

5 Message Induced Deadlock: Example Message Induced Deadlock: Example Consider the chain of dependencies between message types required to implement a transaction Key: dependencies prevent consumption! Consider the request-reply sequence from R1 à R3 From T. Pinkston, Chapter 13: Deadlock Resolution in Computer Integrated Systems, Macel From T. Pinkston, Chapter 13: Deadlock Resolution in Computer Integrated Systems, Marcel Dekker(pubs), M. C. Zhou and M. P. Fanti (eds), 2004 ECE 8813a (17) Dekker(pubs), M. C. Zhou and M. P. Fanti (eds), 2004 ECE 8813a (18) Message Induced Deadlock Avoidance Using Virtual Networks for Avoidance Deadlock Free in the weak sense v Knots/cycles exist but are never filled v Size total buffer space at end points O(PxM) buffers at each node Number of nodes Number of outstanding v Ensures knots/cycles are never filled messages from a node Separate message types by resource usage v Use virtual networks to avoid cycles v This can get expensive RQ & Reply Deadlock Avoidance in the Strict Sense RQ/Reply Reply RQ & Reply RQ RQ RQ ECE 8813a (19) ECE 8813a (20) 5

6 Example: Alpha Message dependency chain of length 7 Torus network Two VCs for deadlock freedom and one VC for adaptive routing à 3 VCs per network v For six networks Total number of VCs = 19 v Any message type can only use at most 2 VCs! Using Virtual Networks for Avoidance Channel dependencies when R1 and R3 are requester/responder Total #VCs/ channel Routing Freedom = Message dependency chain length 1 C E L + r Minimum #VCs for avoiding routing induced deadlock Note: C E = L m E r ECE 8813a (21) ECE 8813a (22) Types of Deadlock Reconfiguration Induced Deadlock Routing induced v Created by the routing function v This is what we have studied so far, but are there weaker solutions? Message induced v Addition of dependencies to an existing routing function via message type dependencies at the endpoints Reconfiguration induced v Addition of dependencies when transitioning (reconfiguration) from one routing function to another ECE 8813a (23) Messages are routed under two different routing functions Problem when packet holds resources provided under the old routing function Produces ghost dependencies From T. Pinkston, Chapter 13: Deadlock Resolution in Computer Integrated Systems, Marcel Dekker(pubs), M. C. Zhou and M. P. Fanti (eds), 2004 ECE 8813a (24) 6

7 Deadlock Freedom Solutions Static reconfiguration v Flush the network v Update the routing function v Resume message transmissions relying on upper layer protocols Dynamic reconfiguration v Incremental, partial and more difficult v Packet dropping schemes v Routing function update schemes o Partitioned resources such as virtual networks We will not cover this in detail (see paper) Deadlock Recovery ECE 8813a (25) Sudhakar Yalamanchili, Georgia Institute of Technology (except as indicated) Formation of Deadlocked Configurations Approach Routing Freedom Topology Employ recovery mechanisms to break deadlocked configurations of messages Buffer Resources Packet injection What are the opportunities to create cycles? What determines the likelihood that cycles will occur? v Routing freedom + resources + injection rate Relationship between hardware complexity and routing function Predicated on the following hypothesis v Deadlocks are rare à make them rare v Therefore recovery costs are acceptable v Recovery is less resource intensive than avoidance ECE 8813a (27) ECE 8813a (28) 7

8 Key Questions Probability of Occurrence Probability of occurrence Characterization On-line detection Recovery techniques Influential factors v Routing freedom o Exponential decrease in probability of occurrence v Number of blocked packets o Correlated blocking patterns v Number of resource dependency cycles o Increases with routing freedom v Presence of virtual channels o Reduces the probability of blocking ECE 8813a (29) ECE 8813a (30) Characterization of Deadlocks Deadlock set v Set of messages that are deadlocked Resource set v Set of buffer resources occupied by the deadlocked set Knot cycle density v Number of unique cycles within a knot o Captures complexity of formation of deadlocked message configurations On-Line Deadlock Detection Discovery of Cycles v Typically use some form of flooding protocol v Exact detection vs. heuristics Local vs. centralized detection Use of time-outs v At nodes with packet headers o Counter + comparator v Optimal value depends on message length ECE 8813a (31) ECE 8813a (32) 8

9 Deadlock Recovery Principles Progressive deadlock Recovery v Robin hood approach de-allocate resources from normal packets and assign to the recovery packet o Remove any message from a deadlocked cycle o Ensure its progress towards the destination Regressive deadlock recovery v De-allocate resources from deadlocked packets v Typically destroy packets v Need some recovery mechanism, for example, endto-end flow control Trade-offs Deadlock recovery at the source is typically regressive v De-allocate and re-inject Deadlock recovery in the network can be both v Regressive propagate de-allocation signals upstream to release resources and abort the packet v Progressive re-allocation of resources from normal to deadlocked packets ECE 8813a (33) ECE 8813a (34) Progressive Deadlock Recovery Recovering from Deadlock Important to be on the output side Forms the recovery lane across routers Floating virtual channel can be used by all VCs Utilized via a separate control path v Effectively cycle stealing on the physical channels Use of recovery lanes must be deadlock free control to steal physical channel cycles ECE 8813a (35) ECE 8813a (36) 9

10 Number of deadlock buffers v Impact on crossbar size Location Implementation Issues v Centralized vs. edge o Rate at which deadlocked packets can drain v At the switch output vs. switch input Optimizations Sequential progressive recovery v Only one packet is permitted to enter the deadlock recovery lane v Mutual exclusion via a circulating token v Recovery lane implements a connected routing subfunction with no cyclic dependencies Concurrent recovery v Hamiltonian path based v Spanning tree based ECE 8813a (37) ECE 8813a (38) Ping and Bubble Scheme Ping and Bubble Scheme: Example Ping propagation to trace cycles Bubble insertion to permit progress Performance issues v Each insertion will permit forward progress by at least one step v Routing freedom increases the probability that deadlocks are broken quickly v Minimal adaptive routing ensures all messages are eventually delivered Permits True Fully Adaptive Routing ECE 8813a (39) From T. Pinkston, Chapter 13: Deadlock Resolution in Computer Integrated Systems, Marcel Dekker(pubs), M. C. Zhou and M. P. Fanti (eds), 2004 ECE 8813a (40) 10

11 Performance of Recovery Protocols Extends the range of achievable performance Resources devoted to deadlock management is minimized in recovery more resources available for performance enhancement Performance Issues Cyclic non-deadlocks can form v Extended blocking sludgelock v Occurs when available routing freedom is being extensively exploited at high loads Deadlock avoidance places acyclic dependency guarantees before routing freedom Deadlock recovery emphasizes routing freedom first, and hence can have a performance advantage From T. Pinkston, Chapter 13: Deadlock Resolution in Computer Integrated Systems, Marcel Dekker(pubs), M. C. Zhou and M. P. Fanti (eds), 2004 ECE 8813a (41) ECE 8813a (42) Routing protocols must be designed to be correct v Applications to fault tolerance and multicast Summary Recovery vs. Avoidance v Resource commitment vs. latency impact Customized solutions can favor recovery ECE 8813a (43) 11

Deadlock. Reading. Ensuring Packet Delivery. Overview: The Problem

Deadlock. Reading. Ensuring Packet Delivery. Overview: The Problem Reading W. Dally, C. Seitz, Deadlock-Free Message Routing on Multiprocessor Interconnection Networks,, IEEE TC, May 1987 Deadlock F. Silla, and J. Duato, Improving the Efficiency of Adaptive Routing in

More information

EE 6900: Interconnection Networks for HPC Systems Fall 2016

EE 6900: Interconnection Networks for HPC Systems Fall 2016 EE 6900: Interconnection Networks for HPC Systems Fall 2016 Avinash Karanth Kodi School of Electrical Engineering and Computer Science Ohio University Athens, OH 45701 Email: kodi@ohio.edu 1 Acknowledgement:

More information

Lecture: Interconnection Networks. Topics: TM wrap-up, routing, deadlock, flow control, virtual channels

Lecture: Interconnection Networks. Topics: TM wrap-up, routing, deadlock, flow control, virtual channels Lecture: Interconnection Networks Topics: TM wrap-up, routing, deadlock, flow control, virtual channels 1 TM wrap-up Eager versioning: create a log of old values Handling problematic situations with a

More information

EE482, Spring 1999 Research Paper Report. Deadlock Recovery Schemes

EE482, Spring 1999 Research Paper Report. Deadlock Recovery Schemes EE482, Spring 1999 Research Paper Report Deadlock Recovery Schemes Jinyung Namkoong Mohammed Haque Nuwan Jayasena Manman Ren May 18, 1999 Introduction The selected papers address the problems of deadlock,

More information

Generalized Theory for Deadlock-Free Adaptive Wormhole Routing and its Application to Disha Concurrent

Generalized Theory for Deadlock-Free Adaptive Wormhole Routing and its Application to Disha Concurrent Generalized Theory for Deadlock-Free Adaptive Wormhole Routing and its Application to Disha Concurrent Anjan K. V. Timothy Mark Pinkston José Duato Pyramid Technology Corp. Electrical Engg. - Systems Dept.

More information

Interconnection Networks: Flow Control. Prof. Natalie Enright Jerger

Interconnection Networks: Flow Control. Prof. Natalie Enright Jerger Interconnection Networks: Flow Control Prof. Natalie Enright Jerger Switching/Flow Control Overview Topology: determines connectivity of network Routing: determines paths through network Flow Control:

More information

Lecture: Transactional Memory, Networks. Topics: TM implementations, on-chip networks

Lecture: Transactional Memory, Networks. Topics: TM implementations, on-chip networks Lecture: Transactional Memory, Networks Topics: TM implementations, on-chip networks 1 Summary of TM Benefits As easy to program as coarse-grain locks Performance similar to fine-grain locks Avoids deadlock

More information

Basic Low Level Concepts

Basic Low Level Concepts Course Outline Basic Low Level Concepts Case Studies Operation through multiple switches: Topologies & Routing v Direct, indirect, regular, irregular Formal models and analysis for deadlock and livelock

More information

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E)

Lecture 12: Interconnection Networks. Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) Lecture 12: Interconnection Networks Topics: communication latency, centralized and decentralized switches, routing, deadlocks (Appendix E) 1 Topologies Internet topologies are not very regular they grew

More information

Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom

Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom ISCA 2018 Session 8B: Interconnection Networks Synchronized Progress in Interconnection Networks (SPIN) : A new theory for deadlock freedom Aniruddh Ramrakhyani Georgia Tech (aniruddh@gatech.edu) Tushar

More information

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control

Lecture 24: Interconnection Networks. Topics: topologies, routing, deadlocks, flow control Lecture 24: Interconnection Networks Topics: topologies, routing, deadlocks, flow control 1 Topology Examples Grid Torus Hypercube Criteria Bus Ring 2Dtorus 6-cube Fully connected Performance Bisection

More information

Deadlock and Livelock. Maurizio Palesi

Deadlock and Livelock. Maurizio Palesi Deadlock and Livelock 1 Deadlock (When?) Deadlock can occur in an interconnection network, when a group of packets cannot make progress, because they are waiting on each other to release resource (buffers,

More information

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control

Lecture 12: Interconnection Networks. Topics: dimension/arity, routing, deadlock, flow control Lecture 12: Interconnection Networks Topics: dimension/arity, routing, deadlock, flow control 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees, butterflies,

More information

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus)

Routing Algorithm. How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Routing Algorithm How do I know where a packet should go? Topology does NOT determine routing (e.g., many paths through torus) Many routing algorithms exist 1) Arithmetic 2) Source-based 3) Table lookup

More information

Flow Control can be viewed as a problem of

Flow Control can be viewed as a problem of NOC Flow Control 1 Flow Control Flow Control determines how the resources of a network, such as channel bandwidth and buffer capacity are allocated to packets traversing a network Goal is to use resources

More information

4. Networks. in parallel computers. Advances in Computer Architecture

4. Networks. in parallel computers. Advances in Computer Architecture 4. Networks in parallel computers Advances in Computer Architecture System architectures for parallel computers Control organization Single Instruction stream Multiple Data stream (SIMD) All processors

More information

Interconnection Networks: Routing. Prof. Natalie Enright Jerger

Interconnection Networks: Routing. Prof. Natalie Enright Jerger Interconnection Networks: Routing Prof. Natalie Enright Jerger Routing Overview Discussion of topologies assumed ideal routing In practice Routing algorithms are not ideal Goal: distribute traffic evenly

More information

udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults

udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults 1/45 1/22 MICRO-46, 9 th December- 213 Davis, California udirec: Unified Diagnosis and Reconfiguration for Frugal Bypass of NoC Faults Ritesh Parikh and Valeria Bertacco Electrical Engineering & Computer

More information

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background

Lecture 15: PCM, Networks. Today: PCM wrap-up, projects discussion, on-chip networks background Lecture 15: PCM, Networks Today: PCM wrap-up, projects discussion, on-chip networks background 1 Hard Error Tolerance in PCM PCM cells will eventually fail; important to cause gradual capacity degradation

More information

Characterization of Deadlocks in Interconnection Networks

Characterization of Deadlocks in Interconnection Networks Characterization of Deadlocks in Interconnection Networks Sugath Warnakulasuriya Timothy Mark Pinkston SMART Interconnects Group EE-System Dept., University of Southern California, Los Angeles, CA 90089-56

More information

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms

Recall: The Routing problem: Local decisions. Recall: Multidimensional Meshes and Tori. Properties of Routing Algorithms CS252 Graduate Computer Architecture Lecture 16 Multiprocessor Networks (con t) March 14 th, 212 John Kubiatowicz Electrical Engineering and Computer Sciences University of California, Berkeley http://www.eecs.berkeley.edu/~kubitron/cs252

More information

Switching/Flow Control Overview. Interconnection Networks: Flow Control and Microarchitecture. Packets. Switching.

Switching/Flow Control Overview. Interconnection Networks: Flow Control and Microarchitecture. Packets. Switching. Switching/Flow Control Overview Interconnection Networks: Flow Control and Microarchitecture Topology: determines connectivity of network Routing: determines paths through network Flow Control: determine

More information

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance

Lecture 13: Interconnection Networks. Topics: lots of background, recent innovations for power and performance Lecture 13: Interconnection Networks Topics: lots of background, recent innovations for power and performance 1 Interconnection Networks Recall: fully connected network, arrays/rings, meshes/tori, trees,

More information

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics

Lecture 16: On-Chip Networks. Topics: Cache networks, NoC basics Lecture 16: On-Chip Networks Topics: Cache networks, NoC basics 1 Traditional Networks Huh et al. ICS 05, Beckmann MICRO 04 Example designs for contiguous L2 cache regions 2 Explorations for Optimality

More information

Lecture 3: Flow-Control

Lecture 3: Flow-Control High-Performance On-Chip Interconnects for Emerging SoCs http://tusharkrishna.ece.gatech.edu/teaching/nocs_acaces17/ ACACES Summer School 2017 Lecture 3: Flow-Control Tushar Krishna Assistant Professor

More information

Software-Based Deadlock Recovery Technique for True Fully Adaptive Routing in Wormhole Networks

Software-Based Deadlock Recovery Technique for True Fully Adaptive Routing in Wormhole Networks Software-Based Deadlock Recovery Technique for True Fully Adaptive Routing in Wormhole Networks J. M. Martínez, P. López, J. Duato T. M. Pinkston Facultad de Informática SMART Interconnects Group Universidad

More information

Dynamic Network Reconfiguration for Switch-based Networks

Dynamic Network Reconfiguration for Switch-based Networks Dynamic Network Reconfiguration for Switch-based Networks Ms. Deepti Metri 1, Prof. A. V. Mophare 2 1Student, Computer Science and Engineering, N. B. N. Sinhgad College of Engineering, Maharashtra, India

More information

Module 17: "Interconnection Networks" Lecture 37: "Introduction to Routers" Interconnection Networks. Fundamentals. Latency and bandwidth

Module 17: Interconnection Networks Lecture 37: Introduction to Routers Interconnection Networks. Fundamentals. Latency and bandwidth Interconnection Networks Fundamentals Latency and bandwidth Router architecture Coherence protocol and routing [From Chapter 10 of Culler, Singh, Gupta] file:///e /parallel_com_arch/lecture37/37_1.htm[6/13/2012

More information

Generic Methodologies for Deadlock-Free Routing

Generic Methodologies for Deadlock-Free Routing Generic Methodologies for Deadlock-Free Routing Hyunmin Park Dharma P. Agrawal Department of Computer Engineering Electrical & Computer Engineering, Box 7911 Myongji University North Carolina State University

More information

EECS 570. Lecture 19 Interconnects: Flow Control. Winter 2018 Subhankar Pal

EECS 570. Lecture 19 Interconnects: Flow Control. Winter 2018 Subhankar Pal Lecture 19 Interconnects: Flow Control Winter 2018 Subhankar Pal http://www.eecs.umich.edu/courses/eecs570/ Slides developed in part by Profs. Adve, Falsafi, Hill, Lebeck, Martin, Narayanasamy, Nowatzyk,

More information

Boosting the Performance of Myrinet Networks

Boosting the Performance of Myrinet Networks IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH 22 1 Boosting the Performance of Myrinet Networks J. Flich, P. López, M. P. Malumbres, and J. Duato Abstract Networks of workstations

More information

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21!

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21! CSE 123: Computer Networks Alex C. Snoeren HW 2 due Thursday 10/21! Finishing up media access Contention-free methods (rings) Moving beyond one wire Link technologies have limits on physical distance Also

More information

Lecture 9: Bridging & Switching"

Lecture 9: Bridging & Switching Lecture 9: Bridging & Switching" CSE 123: Computer Networks Alex C. Snoeren HW 2 due Wednesday! Lecture 9 Overview" Finishing up media access Contention-free methods (rings) Moving beyond one wire Link

More information

EE 382C Interconnection Networks

EE 382C Interconnection Networks EE 8C Interconnection Networks Deadlock and Livelock Stanford University - EE8C - Spring 6 Deadlock and Livelock: Terminology Deadlock: A condition in which an agent waits indefinitely trying to acquire

More information

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network

This Lecture. BUS Computer Facilities Network Management. Switching Network. Simple Switching Network This Lecture BUS0 - Computer Facilities Network Management Switching networks Circuit switching Packet switching gram approach Virtual circuit approach Routing in switching networks Faculty of Information

More information

NOC Deadlock and Livelock

NOC Deadlock and Livelock NOC Deadlock and Livelock 1 Deadlock (When?) Deadlock can occur in an interconnection network, when a group of packets cannot make progress, because they are waiting on each other to release resource (buffers,

More information

TDT Appendix E Interconnection Networks

TDT Appendix E Interconnection Networks TDT 4260 Appendix E Interconnection Networks Review Advantages of a snooping coherency protocol? Disadvantages of a snooping coherency protocol? Advantages of a directory coherency protocol? Disadvantages

More information

Curriculum 2013 Knowledge Units Pertaining to PDC

Curriculum 2013 Knowledge Units Pertaining to PDC Curriculum 2013 Knowledge Units Pertaining to C KA KU Tier Level NumC Learning Outcome Assembly level machine Describe how an instruction is executed in a classical von Neumann machine, with organization

More information

A Simple and Efficient Mechanism to Prevent Saturation in Wormhole Networks Λ

A Simple and Efficient Mechanism to Prevent Saturation in Wormhole Networks Λ A Simple and Efficient Mechanism to Prevent Saturation in Wormhole Networks Λ E. Baydal, P. López and J. Duato Depto. Informática de Sistemas y Computadores Universidad Politécnica de Valencia, Camino

More information

Lecture: Interconnection Networks

Lecture: Interconnection Networks Lecture: Interconnection Networks Topics: Router microarchitecture, topologies Final exam next Tuesday: same rules as the first midterm 1 Packets/Flits A message is broken into multiple packets (each packet

More information

True fully adaptive routing employing deadlock detection and congestion control.

True fully adaptive routing employing deadlock detection and congestion control. True fully adaptive routing employing deadlock detection and congestion control. 16 May, 2001 Dimitris Papadopoulos, Arjun Singh, Kiran Goyal, Mohamed Kilani. {fdimitri, arjuns, kgoyal, makilani}@stanford.edu

More information

Input Buffering (IB): Message data is received into the input buffer.

Input Buffering (IB): Message data is received into the input buffer. TITLE Switching Techniques BYLINE Sudhakar Yalamanchili School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, GA. 30332 sudha@ece.gatech.edu SYNONYMS Flow Control DEFITION

More information

Routing Algorithms. Review

Routing Algorithms. Review Routing Algorithms Today s topics: Deterministic, Oblivious Adaptive, & Adaptive models Problems: efficiency livelock deadlock 1 CS6810 Review Network properties are a combination topology topology dependent

More information

ECE 669 Parallel Computer Architecture

ECE 669 Parallel Computer Architecture ECE 669 Parallel Computer Architecture Lecture 21 Routing Outline Routing Switch Design Flow Control Case Studies Routing Routing algorithm determines which of the possible paths are used as routes how

More information

Distributed System Chapter 16 Issues in ch 17, ch 18

Distributed System Chapter 16 Issues in ch 17, ch 18 Distributed System Chapter 16 Issues in ch 17, ch 18 1 Chapter 16: Distributed System Structures! Motivation! Types of Network-Based Operating Systems! Network Structure! Network Topology! Communication

More information

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 26: Interconnects. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 26: Interconnects James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L26 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Housekeeping Your goal today get an overview of parallel

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

Dynamic Packet Fragmentation for Increased Virtual Channel Utilization in On-Chip Routers

Dynamic Packet Fragmentation for Increased Virtual Channel Utilization in On-Chip Routers Dynamic Packet Fragmentation for Increased Virtual Channel Utilization in On-Chip Routers Young Hoon Kang, Taek-Jun Kwon, and Jeff Draper {youngkan, tjkwon, draper}@isi.edu University of Southern California

More information

Lecture 25: Interconnection Networks, Disks. Topics: flow control, router microarchitecture, RAID

Lecture 25: Interconnection Networks, Disks. Topics: flow control, router microarchitecture, RAID Lecture 25: Interconnection Networks, Disks Topics: flow control, router microarchitecture, RAID 1 Virtual Channel Flow Control Each switch has multiple virtual channels per phys. channel Each virtual

More information

General Objectives: To understand the process management in operating system. Specific Objectives: At the end of the unit you should be able to:

General Objectives: To understand the process management in operating system. Specific Objectives: At the end of the unit you should be able to: F2007/Unit5/1 UNIT 5 OBJECTIVES General Objectives: To understand the process management in operating system Specific Objectives: At the end of the unit you should be able to: define program, process and

More information

Lecture 7: Flow Control - I

Lecture 7: Flow Control - I ECE 8823 A / CS 8803 - ICN Interconnection Networks Spring 2017 http://tusharkrishna.ece.gatech.edu/teaching/icn_s17/ Lecture 7: Flow Control - I Tushar Krishna Assistant Professor School of Electrical

More information

Interconnection Networks: Topology. Prof. Natalie Enright Jerger

Interconnection Networks: Topology. Prof. Natalie Enright Jerger Interconnection Networks: Topology Prof. Natalie Enright Jerger Topology Overview Definition: determines arrangement of channels and nodes in network Analogous to road map Often first step in network design

More information

Combining In-Transit Buffers with Optimized Routing Schemes to Boost the Performance of Networks with Source Routing?

Combining In-Transit Buffers with Optimized Routing Schemes to Boost the Performance of Networks with Source Routing? Combining In-Transit Buffers with Optimized Routing Schemes to Boost the Performance of Networks with Source Routing? J. Flich 1,P.López 1, M. P. Malumbres 1, J. Duato 1, and T. Rokicki 2 1 Dpto. Informática

More information

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali

Self Stabilization. CS553 Distributed Algorithms Prof. Ajay Kshemkalyani. by Islam Ismailov & Mohamed M. Ali Self Stabilization CS553 Distributed Algorithms Prof. Ajay Kshemkalyani by Islam Ismailov & Mohamed M. Ali Introduction There is a possibility for a distributed system to go into an illegitimate state,

More information

NEtwork-on-Chip (NoC) [3], [6] is a scalable interconnect

NEtwork-on-Chip (NoC) [3], [6] is a scalable interconnect 1 A Soft Tolerant Network-on-Chip Router Pipeline for Multi-core Systems Pavan Poluri and Ahmed Louri Department of Electrical and Computer Engineering, University of Arizona Email: pavanp@email.arizona.edu,

More information

Switching and Forwarding Reading: Chapter 3 1/30/14 1

Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any

More information

Deadlock and Router Micro-Architecture

Deadlock and Router Micro-Architecture 1 EE482: Advanced Computer Organization Lecture #8 Interconnection Network Architecture and Design Stanford University 22 April 1999 Deadlock and Router Micro-Architecture Lecture #8: 22 April 1999 Lecturer:

More information

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

Evaluation of NOC Using Tightly Coupled Router Architecture

Evaluation of NOC Using Tightly Coupled Router Architecture IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 1, Ver. II (Jan Feb. 2016), PP 01-05 www.iosrjournals.org Evaluation of NOC Using Tightly Coupled Router

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture On-chip Networking Prof. Michel A. Kinsy Virtual Channel Router VC 0 Routing Computation Virtual Channel Allocator Switch Allocator Input Ports VC x VC 0 VC x It s a system

More information

Deadlock-Free Connection-Based Adaptive Routing with Dynamic Virtual Circuits

Deadlock-Free Connection-Based Adaptive Routing with Dynamic Virtual Circuits Computer Science Department Technical Report #TR050021 University of California, Los Angeles, June 2005 Deadlock-Free Connection-Based Adaptive Routing with Dynamic Virtual Circuits Yoshio Turner and Yuval

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

Adaptive Routing. Claudio Brunelli Adaptive Routing Institute of Digital and Computer Systems / TKT-9636

Adaptive Routing. Claudio Brunelli Adaptive Routing Institute of Digital and Computer Systems / TKT-9636 1 Adaptive Routing Adaptive Routing Basics Minimal Adaptive Routing Fully Adaptive Routing Load-Balanced Adaptive Routing Search-Based Routing Case Study: Adapted Routing in the Thinking Machines CM-5

More information

Lecture 3: Directory Protocol Implementations. Topics: coherence vs. msg-passing, corner cases in directory protocols

Lecture 3: Directory Protocol Implementations. Topics: coherence vs. msg-passing, corner cases in directory protocols Lecture 3: Directory Protocol Implementations Topics: coherence vs. msg-passing, corner cases in directory protocols 1 Future Scalable Designs Intel s Single Cloud Computer (SCC): an example prototype

More information

DUE to the increasing computing power of microprocessors

DUE to the increasing computing power of microprocessors IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 7, JULY 2002 693 Boosting the Performance of Myrinet Networks José Flich, Member, IEEE, Pedro López, M.P. Malumbres, Member, IEEE, and

More information

NOW Handout Page 1. Outline. Networks: Routing and Design. Routing. Routing Mechanism. Routing Mechanism (cont) Properties of Routing Algorithms

NOW Handout Page 1. Outline. Networks: Routing and Design. Routing. Routing Mechanism. Routing Mechanism (cont) Properties of Routing Algorithms Outline Networks: Routing and Design Routing Switch Design Case Studies CS 5, Spring 99 David E. Culler Computer Science Division U.C. Berkeley 3/3/99 CS5 S99 Routing Recall: routing algorithm determines

More information

Primary-Backup Replication

Primary-Backup Replication Primary-Backup Replication CS 240: Computing Systems and Concurrency Lecture 7 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. Simplified Fault Tolerance

More information

Switched Network Latency Problems Solved

Switched Network Latency Problems Solved 1 Switched Network Latency Problems Solved A Lightfleet Whitepaper by the Lightfleet Technical Staff Overview The biggest limiter to network performance is the control plane the array of processors and

More information

Chapter 10. Circuits Switching and Packet Switching 10-1

Chapter 10. Circuits Switching and Packet Switching 10-1 Chapter 10 Circuits Switching and Packet Switching 10-1 Content Switched communication networks Circuit switching networks Circuit-switching concepts Packet-switching principles X.25 (mentioned but not

More information

Deadlock- and Livelock-Free Routing Protocols for Wave Switching

Deadlock- and Livelock-Free Routing Protocols for Wave Switching Deadlock- and Livelock-Free Routing Protocols for Wave Switching José Duato,PedroLópez Facultad de Informática Universidad Politécnica de Valencia P.O.B. 22012 46071 - Valencia, SPAIN E-mail:jduato@gap.upv.es

More information

Module 16: Distributed System Structures. Operating System Concepts 8 th Edition,

Module 16: Distributed System Structures. Operating System Concepts 8 th Edition, Module 16: Distributed System Structures, Silberschatz, Galvin and Gagne 2009 Chapter 16: Distributed System Structures Motivation Types of Network-Based Operating Systems Network Structure Network Topology

More information

Concurrency Control. Chapter 17. Comp 521 Files and Databases Spring

Concurrency Control. Chapter 17. Comp 521 Files and Databases Spring Concurrency Control Chapter 17 Comp 521 Files and Databases Spring 2010 1 Conflict Serializable Schedules Recall conflicts (WW, RW, WW) were the cause of sequential inconsistency Two schedules are conflict

More information

Module 16: Distributed System Structures

Module 16: Distributed System Structures Chapter 16: Distributed System Structures Module 16: Distributed System Structures Motivation Types of Network-Based Operating Systems Network Structure Network Topology Communication Structure Communication

More information

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management

OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management Marina Garcia 22 August 2013 OFAR-CM: Efficient Dragonfly Networks with Simple Congestion Management M. Garcia, E. Vallejo, R. Beivide, M. Valero and G. Rodríguez Document number OFAR-CM: Efficient Dragonfly

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

Portland State University ECE 588/688. Directory-Based Cache Coherence Protocols

Portland State University ECE 588/688. Directory-Based Cache Coherence Protocols Portland State University ECE 588/688 Directory-Based Cache Coherence Protocols Copyright by Alaa Alameldeen and Haitham Akkary 2018 Why Directory Protocols? Snooping-based protocols may not scale All

More information

Characteristics of Mult l ip i ro r ce c ssors r

Characteristics of Mult l ip i ro r ce c ssors r Characteristics of Multiprocessors A multiprocessor system is an interconnection of two or more CPUs with memory and input output equipment. The term processor in multiprocessor can mean either a central

More information

Goal of Concurrency Control. Concurrency Control. Example. Solution 1. Solution 2. Solution 3

Goal of Concurrency Control. Concurrency Control. Example. Solution 1. Solution 2. Solution 3 Goal of Concurrency Control Concurrency Control Transactions should be executed so that it is as though they executed in some serial order Also called Isolation or Serializability Weaker variants also

More information

William Stallings Data and Computer Communications. Chapter 10 Packet Switching

William Stallings Data and Computer Communications. Chapter 10 Packet Switching William Stallings Data and Computer Communications Chapter 10 Packet Switching Principles Circuit switching designed for voice Resources dedicated to a particular call Much of the time a data connection

More information

A Survey of Routing Techniques in Store-and-Forward and Wormhole Interconnects

A Survey of Routing Techniques in Store-and-Forward and Wormhole Interconnects SANDIA REPORT SAND2008-0068 Unlimited Release Printed January 2008 A Survey of Routing Techniques in Store-and-Forward and Wormhole Interconnects David M. Holman and David S. Lee Prepared by Sandia National

More information

Distributed Systems. Pre-Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. Pre-Exam 1 Review. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems Pre-Exam 1 Review Paul Krzyzanowski Rutgers University Fall 2015 October 2, 2015 CS 417 - Paul Krzyzanowski 1 Selected Questions From Past Exams October 2, 2015 CS 417 - Paul Krzyzanowski

More information

Distributed Systems Fault Tolerance

Distributed Systems Fault Tolerance Distributed Systems Fault Tolerance [] Fault Tolerance. Basic concepts - terminology. Process resilience groups and failure masking 3. Reliable communication reliable client-server communication reliable

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.1: Internetworking Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer

More information

Bandwidth Aware Routing Algorithms for Networks-on-Chip

Bandwidth Aware Routing Algorithms for Networks-on-Chip 1 Bandwidth Aware Routing Algorithms for Networks-on-Chip G. Longo a, S. Signorino a, M. Palesi a,, R. Holsmark b, S. Kumar b, and V. Catania a a Department of Computer Science and Telecommunications Engineering

More information

CSE120 Principles of Operating Systems. Prof Yuanyuan (YY) Zhou Deadlock

CSE120 Principles of Operating Systems. Prof Yuanyuan (YY) Zhou Deadlock CSE120 Principles of Operating Systems Prof Yuanyuan (YY) Zhou Using Semaphore to Share Resource 2 3 4 5 Process P(); { A.Down(); B.Down(); 0 6 use both resource B.Up(); A.Up(); } Process Q(); { A.Down();

More information

Routing and Deadlock

Routing and Deadlock 3.5-1 3.5-1 Routing and Deadlock Routing would be easy...... were it not for possible deadlock. Topics For This Set: Routing definitions. Deadlock definitions. Resource dependencies. Acyclic deadlock free

More information

Connection-oriented Multicasting in Wormhole-switched Networks on Chip

Connection-oriented Multicasting in Wormhole-switched Networks on Chip Connection-oriented Multicasting in Wormhole-switched Networks on Chip Zhonghai Lu, Bei Yin and Axel Jantsch Laboratory of Electronics and Computer Systems Royal Institute of Technology, Sweden fzhonghai,axelg@imit.kth.se,

More information

Interconnection Network

Interconnection Network Interconnection Network Recap: Generic Parallel Architecture A generic modern multiprocessor Network Mem Communication assist (CA) $ P Node: processor(s), memory system, plus communication assist Network

More information

NoC Test-Chip Project: Working Document

NoC Test-Chip Project: Working Document NoC Test-Chip Project: Working Document Michele Petracca, Omar Ahmad, Young Jin Yoon, Frank Zovko, Luca Carloni and Kenneth Shepard I. INTRODUCTION This document describes the low-power high-performance

More information

Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies. Admin

Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies. Admin Networks: Routing, Deadlock, Flow Control, Switch Design, Case Studies Alvin R. Lebeck CPS 220 Admin Homework #5 Due Dec 3 Projects Final (yes it will be cumulative) CPS 220 2 1 Review: Terms Network characterized

More information

Routing in packet-switching networks

Routing in packet-switching networks Routing in packet-switching networks Circuit switching vs. Packet switching Most of WANs based on circuit or packet switching Circuit switching designed for voice Resources dedicated to a particular call

More information

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5. Rahem Abri Content 1. Introduction 2. The Ad-hoc On-Demand Distance Vector Algorithm Path Discovery Reverse Path Setup Forward Path Setup Route Table Management Path Management Local Connectivity Management

More information

Module 15: Network Structures

Module 15: Network Structures Module 15: Network Structures Background Topology Network Types Communication Communication Protocol Robustness Design Strategies 15.1 A Distributed System 15.2 Motivation Resource sharing sharing and

More information

Chapter 5. Multiprocessors and Thread-Level Parallelism

Chapter 5. Multiprocessors and Thread-Level Parallelism Computer Architecture A Quantitative Approach, Fifth Edition Chapter 5 Multiprocessors and Thread-Level Parallelism 1 Introduction Thread-Level parallelism Have multiple program counters Uses MIMD model

More information

Replication in Distributed Systems

Replication in Distributed Systems Replication in Distributed Systems Replication Basics Multiple copies of data kept in different nodes A set of replicas holding copies of a data Nodes can be physically very close or distributed all over

More information

The Adaptive Bubble Router 1

The Adaptive Bubble Router 1 The Adaptive Bubble Router 1 V. Puente, C. Izu y, R. Beivide, J.A. Gregorio, F. Vallejo and J.M. Prellezo Universidad de Cantabria, 395 Santander, Spain y University of Adelaide, SA 55 Australia The design

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance 1 Fault Tolerance Basic Concepts Being fault tolerant is strongly related to

More information