The Basics of Wireless Communication Octav Chipara

Size: px
Start display at page:

Download "The Basics of Wireless Communication Octav Chipara"

Transcription

1 The asics of Wireless ommunication Octav hipara

2 genda hannel model: the protocol model High-level media access TM, SM hidden/exposed terminal problems WLN Fundamentals of routing proactive on-demand 2

3 hannel models hannel models - document assumptions of wireless properties the basis upon which we build and analyze network protocols good model is one that is simple - reason effectively about the properties of protocols accurate - capture prevalent properties of wireless channels these requirements are often conflicting Must provide insight into fundamental problems media access routing congestion Today, simple channel model..., next lecture more realistic models 3

4 Protocol model Network is modeled as a graph vertices - all nodes in a graph edges - connect nodes that may communicate Properties: captures connectivity information packet collisions (collisions happen only at the receiver) radios are half-duplex 4

5 Protocol model Network is modeled as a graph vertices - all nodes in a graph edges - connect nodes that may communicate Properties: captures connectivity information packet collisions (collisions happen only at the receiver) radios are half-duplex 4

6 Protocol model Network is modeled as a graph vertices - all nodes in a graph edges - connect nodes that may communicate Properties: captures connectivity information packet collisions (collisions happen only at the receiver) radios are half-duplex 4

7 Media ccess and ontrol (M) Problem: multiple nodes want to transmit concurrently nodes transmitting concurrently packet collisions Metrics for characterizing M performance throughput - number of packets delivered per second latency - time to deliver a packet energy efficiency - energy consumed for tx and rx fairness - each node gets its fair share of the channel flexibility - how does the M handle changes in workload pproaches SM - arrier Sense Multiple ccess TM - Time ivision Multiple ccess 5

8 SM SM - arrier Sense Multiple ccess pproach: 1: node will attempt to transmit after a random delay t W 2: check if channel is available free perform packet transmission busy W = W * 2, go to step 1 Notes: nodes operate independently! the underlying performance is highly dependent on selecting W W - reflects the expected number of contenders for the channel W increases exponentially [the rate depends on protocol] assumption: the sender can accurately check if channel is free/busy usually holds because: receiver sensibility << channel quality required for communication 6

9 SM SM - arrier Sense Multiple ccess pproach: 1: node will attempt to transmit after a random delay t W 2: check if channel is available free perform packet transmission busy W = W * 2, go to step 1 Notes: nodes operate independently! the underlying performance is highly dependent on selecting W W - reflects the expected number of contenders for the channel W increases exponentially [the rate depends on protocol] assumption: the sender can accurately check if channel is free/busy usually holds because: receiver sensibility << channel quality required for communication 6

10 Signal propagation ranges Transmission range communication possible low error rate etection range detection of the signal possible no communication possible Interference range signal may not be detected signal adds to the background noise sender transmission detection interference distance 7

11 TM TM - Time ivision Multiple ccess pproach: 1: construct a frame in which each node gets a slot to transmit F - frame size, fn - slot in which node n is assigned to transmit 2: a node n will transmit at time (t mod F) = fn Notes: time synchronization is required frame construction requires a global agreement among nodes underlying performance depends on matching a node s workload demand with its slot allocations hard to do due to dynamic workloads and channel properties assumption: only one successful transmission per slot 8

12 TM TM - Time ivision Multiple ccess pproach: 1: construct a frame in which each node gets a slot to transmit F - frame size, fn - slot in which node n is assigned to transmit 2: a node n will transmit at time (t mod F) = fn Notes: time synchronization is required frame construction requires a global agreement among nodes underlying performance depends on matching a node s workload demand with its slot allocations hard to do due to dynamic workloads and channel properties assumption: only one successful transmission per slot 8

13 Single-hop vs. multiple hops Single-hop networks both SM and TM protocols are easy to implement Multi-hop networks important challenges arise due to asymmetrical views of the networks hidden-terminal problem exposed-terminal problem 9

14 Hidden terminal problem Node and are hidden (edge () is not in the graph) they cannot sense their packet transmissions onsequences for M protocols SM protocols will never increase W TM protocols will have to agree on a frame over multiple hops 10

15 Hidden terminal problem Node and are hidden (edge () is not in the graph) they cannot sense their packet transmissions onsequences for M protocols SM protocols will never increase W TM protocols will have to agree on a frame over multiple hops 10

16 Hidden terminal problem undetected collisions Node and are hidden (edge () is not in the graph) they cannot sense their packet transmissions onsequences for M protocols SM protocols will never increase W TM protocols will have to agree on a frame over multiple hops 10

17 Exposed terminal problem Node and can communicate () and () can occur currently (collisions at receivers) onsequences for M protocols SM will increase W unnecessarily 11

18 Exposed terminal problem false positives Node and can communicate () and () can occur currently (collisions at receivers) onsequences for M protocols SM will increase W unnecessarily 11

19 RTS/TS a solution for SM protocols dd two additional messages to the TM protocol RTS - request to send TS - clear to send lgorithm node n wants to send packet to m transmit RTS(n, m) node a1, a2,..., an, m receive RTS(n, m) node m replies with TS(n, m) if its channel is free node b1, b2,..., bn, n receives TS(n, m) node n transmits the data packet The algorithm signals access requests over 2-hops 12

20 Hidden terminal problem 13

21 Hidden terminal problem send RTS(,) 13

22 Hidden terminal problem recv RTS(,) send RTS(,) 13

23 Hidden terminal problem recv RTS(,) send RTS(,) send TS(,) 13

24 Hidden terminal problem recv RTS(,) send RTS(,) recv TS(,) send TS(,) recv TS(,) 13

25 Exposed terminal problem send RTS(,) 14

26 Exposed terminal problem send RTS(,) send TS 14

27 Exposed terminal problem send RTS(,) ready to tx send TS 14

28 Exposed terminal problem send RTS(,) ready to tx send TS send RTS(, ) ready to tx 14

29 Exposed terminal problem send RTS(,) ready to tx send TS send RTS(, ) ready to tx send TS ready to tx 14

30 Exposed terminal problem send RTS(,) ready to tx send TS send RTS(, ) ready to tx send TS ready to tx ready to tx 14

31 WLN technology Protocol soup: Local wireless networks WLN WiFi a h i/e/ /w b g Goals: seamless operation leverage on existing wired infrastructure low-power operation on stations Two architectures: infrastructure + ad-hoc 15

32 802.11: rchitecture of an infrastructure network ST 1 ESS SS LN ccess Point istribution System SS 2 ccess Point 802.x LN Portal ST LN ST 3 Station (ST) terminal with wireless access mechanisms to contact the access point asic Service Set (SS) group of stations using the same radio frequency ccess Point station integrated into the wireless LN and the distribution system Portal bridge to other (wired) networks istribution System interconnection network to/form one logical network 16

33 802.11: rchitecture of an ad-hoc network SS 1 ST LN ST 3 irect communication within a limited range Station (ST): terminal with access mechanisms to the wireless medium Independent asic Service Set (ISS): group of stations using the same radio frequency When no direct link is feasible between two station, a third station may act as a relay (multihop communications) ST LN 17

34 802.11b - istributed oordination Function Exponential back-off hosen for uniformly from (0, W-1), W increase exponentially with the number of failed attempts Wmin minimum contention window Wmax = 2 m Wmin maximum contention window 18

35 802.11b - istributed oordination Function Message resent when the backoff counter reaches zero ackoff counter decremented only when the channel is idle ackoff counter is reset to zero after a successful transmission 19

36 Routing Routing consists of two fundamental steps Forwarding packets to the next hop (from an input interface to an output interface in a traditional wired network) etermining how to forward packets (building a routing table or specifying a route) Forwarding packets is easy, but knowing where to forward packets (especially efficiently) is hard Reach the destination Minimize the number of hops (path length) Minimize delay Minimize packet loss Minimize cost 20

37 Routing ecision Point Source routing Sender determines a route and specifies it in the packet header Hop-by-hop (datagram) routing routing decision is made at each forwarding point (at each router) Standard routing scheme for IP Virtual circuit routing etermine and configure a path prior to sending first packet Used in TM (and analogous to voice telephone system) 21

38 Routing Table routing table contains information to determine how to forward packets Source routing: Routing table is used to determine route to the destination to be specified in the packet Hop-by-hop routing: Routing table is used to determine the next hop for a given destination Virtual circuit routing: Routing table used to determine path to configure through the network 22

39 Routing pproaches Reactive (On-demand) protocols discover routes when needed source-initiated route discovery Proactive protocols traditional distributed shortest-path protocols based on periodic updates. High routing overhead Tradeoff state maintenance traffic vs. route discovery traffic route via maintained route vs. delay for route discovery

40 istance Vector lgorithms (1) istance of each link in the network is a metric that is to be minimized each link may have distance 1 to minimize hop count algorithm attempts to minimize distance The routing table at each node specifies the next hop for each destination specifies the distance to that destination Neighbors can exchange routing table information to find a route (or a better route) to a destination 24

41 istance Vector lgorithms (2) est Next Metric est Next Metric est Next Metric est Next Metric

42 istance Vector lgorithms (3) Node will learn of Node s shorter path to Node and update its routing table est Next Metric est Next Metric

43 Reactive Routing Source initiated Source floods the network with a route request packet when a route is required to a destination flood is propagated outwards from the source pure flooding = every node transmits the request only once estination replies to request reply uses reversed path of route request sets up the forward path 27

44 Route iscovery RREQ FORMT G Initiator Initiator seq # estination I Partial Route E H -- Route Request (RREQ) F -- Route Reply (RREP) 28

45 Route iscovery RREQ FORMT G Initiator Initiator seq # estination I Partial Route -- E H Route Request (RREQ) F -- Route Reply (RREP) 28

46 Route iscovery RREQ FORMT - G Initiator Initiator seq # estination I Partial Route -- E H Route Request (RREQ) F -- Route Reply (RREP) 28

47 Route iscovery RREQ FORMT - G Initiator Initiator seq # estination I Partial Route -- E H Route Request (RREQ) - -- F Route Reply (RREP) 28

48 Route iscovery RREQ FORMT - G Initiator Initiator seq # estination I Partial Route --E -- - E --E --E H Route Request (RREQ) -- F Route Reply (RREP) 28

49 Route iscovery RREQ FORMT - -- G Initiator Initiator seq # estination I Partial Route --E -- - E --E --E H Route Request (RREQ) -- F Route Reply (RREP) 28

50 Route iscovery RREQ FORMT - --E -- G --E-H Initiator Initiator seq # estination I Partial Route -- - E --E --E H Route Request (RREQ) -- F Route Reply (RREP) 28

51 Route iscovery RREQ FORMT ---G - ---G ---G --E -- G --E-H Initiator Initiator seq # estination I Partial Route -- - E --E --E H Route Request (RREQ) -- F Route Reply (RREP) 28

52 Route iscovery: at source need to send to G Lookup ache for route to G Start Route iscovery Protocol wait uffer packet ontinue normal processing yes no Route found? yes Write route in packet header Route iscovery finished Packet in buffer? no done Send packet to next-hop 29

53 Route iscovery: t an intermediate node ccept route request packet <src,id> in recent requests list? yes iscard route request no ppend myddr to partial route Store <src,id> in list no Host already in partial route no myddr =target Send route reply packet yes iscard route request roadcast packet done 30

54 Route iscovery Route Reply message containing path information is sent back to the source either by the destination, or intermediate nodes that have a route to the destination reverse the order of the route record, and include it in Route Reply. unicast, source routing Each node maintains a Route ache which records routes it has learned and overheard over time 31

55 Route Maintenance Route maintenance performed only while route is in use Error detection: monitors the validity of existing routes by passively listening to data packets transmitted at neighboring nodes When problem detected, send Route Error packet to original sender to perform new route discovery Host detects the error and the host it was attempting; Route Error is sent back to the sender the packet original src 32

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5 ynamic Source Routing (SR) [Johnson96] S 6811 : Lecture 5 d Hoc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation Loop freedom

More information

Dynamic Source Routing (DSR) [Johnson96]

Dynamic Source Routing (DSR) [Johnson96] ynamic Source Routing (SR) [ohnson96] S 6811 : ecture 5 d oc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation oop freedom

More information

Outline. MAC (Medium Access Control) General MAC Requirements. Typical MAC protocols. Typical MAC protocols

Outline. MAC (Medium Access Control) General MAC Requirements. Typical MAC protocols. Typical MAC protocols Outline Medium ccess ontrol With oordinated daptive Sleeping for Wireless Sensor Networks Presented by: rik rooks Introduction to M S-M Overview S-M Evaluation ritique omparison to MW Washington University

More information

Links. Error Detection. Link Layer. Multiple access protocols. Nodes Links Frame. Shared channel Problem: collisions How nodes share a channel

Links. Error Detection. Link Layer. Multiple access protocols. Nodes Links Frame. Shared channel Problem: collisions How nodes share a channel Link Layer Error Detection Nodes Links Frame R yclic Redundancy hecksum Parity its More about this in exercise! Data Link Layer -1 Data Link Layer -2 Links Two types of links : point-to-point broadcast

More information

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5. Rahem Abri Content 1. Introduction 2. The Ad-hoc On-Demand Distance Vector Algorithm Path Discovery Reverse Path Setup Forward Path Setup Route Table Management Path Management Local Connectivity Management

More information

Local Area Networks NETW 901

Local Area Networks NETW 901 Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission

More information

Lecture 13: Routing in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 3, Monday

Lecture 13: Routing in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 3, Monday Lecture 13: Routing in multihop wireless networks Mythili Vutukuru CS 653 Spring 2014 March 3, Monday Routing in multihop networks Figure out a path from source to destination. Basic techniques of routing

More information

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols Link Layer: Introduction daptors ommunicating hosts and routers are nodes links connect nodes wired links wireless links layer-2 packet is a frame, encapsulates datagram datagram controller sending host

More information

Wireless Networking & Mobile Computing

Wireless Networking & Mobile Computing Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Network Layer: Ad Hoc Routing Tamer Nadeem Dept. of Computer Science The OSI Communication Model Page 2 Spring 2012 CS 752/852 - Wireless

More information

CSE/EE 461 Section 2

CSE/EE 461 Section 2 CSE/EE 461 Section 2 Latency in a store-and-forward network 4ms, 10MB/s B How long does it take to send a 2kB packet from to B? 2ms, 10MB/s C 2ms, 10MB/s B What if it has to pass through a node C? Plan

More information

SENSOR-MAC CASE STUDY

SENSOR-MAC CASE STUDY SENSOR-MAC CASE STUDY Periodic Listen and Sleep Operations One of the S-MAC design objectives is to reduce energy consumption by avoiding idle listening. This is achieved by establishing low-duty-cycle

More information

CS 268: Computer Networking. Taking Advantage of Broadcast

CS 268: Computer Networking. Taking Advantage of Broadcast CS 268: Computer Networking L-12 Wireless Broadcast Taking Advantage of Broadcast Opportunistic forwarding Network coding Assigned reading XORs In The Air: Practical Wireless Network Coding ExOR: Opportunistic

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

CSE 461: Wireless Networks

CSE 461: Wireless Networks CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network

More information

Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1

Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1 Mobile Ad-hoc and Sensor Networks Lesson 04 Mobile Ad-hoc Network (MANET) Routing Algorithms Part 1 Oxford University Press 2007. All rights reserved. 1 Ad-hoc networks deployment For routing, target detection,

More information

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols Link Layer: Introduction daptors ommunicating Terminology: hosts and routers are nodes communication channels that connect adjacent nodes along communication path are links wired links wireless links LNs

More information

Lecture 6: Bridging & Switching. Last time. Today. CSE 123: Computer Networks Chris Kanich. How do multiple hosts share a single channel?

Lecture 6: Bridging & Switching. Last time. Today. CSE 123: Computer Networks Chris Kanich. How do multiple hosts share a single channel? Lecture 6: ridging & Switching SE 3: omputer Networks hris Kanich Project countdown: 5 days Last time How do multiple hosts share a single channel? Medium ccess ontrol (M) protocols hannel partitioning

More information

Routing in Ad-hoc Networks

Routing in Ad-hoc Networks 0/3/ COMP 635: WIRELESS & MOILE COMMUNICTIONS Routing in d-hoc Networks Jasleen Kaur Fall 0 Infrastructure-less Wireless Networks Standard Mobile IP needs an infrastructure Ø Home gent/foreign gent in

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 3 CMPE 257 Winter'11 1 Announcements Accessing secure part of the class Web page: User id: cmpe257.

More information

MAC protocols. Lecturer: Dmitri A. Moltchanov

MAC protocols. Lecturer: Dmitri A. Moltchanov MAC protocols Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2616/ OUTLINE: Problems for MAC to deal with; Design goals; Classification of MAC protocols Contention-based

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 5 CMPE 257 Winter'11 1 Announcements Project proposals. Student presentations. 10 students so

More information

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15

Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15 Lecture 23 Overview Last Lecture ADSL, ATM This Lecture Wireless Technologies (1) Wireless LAN, CSMA/CA, Bluetooth Source: chapters 6.2, 15 Next Lecture Wireless Technologies (2) Source: chapter 16, 19.3

More information

Overview : Computer Networking. IEEE MAC Protocol: CSMA/CA. TCP over noisy links. Link layer challenges. Wireless deployments

Overview : Computer Networking. IEEE MAC Protocol: CSMA/CA. TCP over noisy links. Link layer challenges. Wireless deployments Overview 15-441: omputer Networking Lecture 25: Wireless Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 Internet t mobility TP over noisy links Link layer challenges Wireless deployments 2 IEEE

More information

Mobile Communications. Ad-hoc and Mesh Networks

Mobile Communications. Ad-hoc and Mesh Networks Ad-hoc+mesh-net 1 Mobile Communications Ad-hoc and Mesh Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto Ad-hoc+mesh-net 2 What is an ad-hoc network? What are differences between

More information

Unicast Routing in Mobile Ad Hoc Networks

Unicast Routing in Mobile Ad Hoc Networks Unicast Routing in obile d oc etworks Routing problem 1 2 Responsibility of a routing protocol etermining an optimal way to find optimal routes etermining a feasible path to a destination based on a certain

More information

CS551 Ad-hoc Routing

CS551 Ad-hoc Routing CS551 Ad-hoc Routing Bill Cheng http://merlot.usc.edu/cs551-f12 1 Mobile Routing Alternatives Why not just assume a base station? good for many cases, but not some (military, disaster recovery, sensor

More information

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing Algorithms Link- State algorithm Each node maintains a view of the whole network topology Find the shortest path

More information

Admission Control in Time-Slotted Multihop Mobile Networks

Admission Control in Time-Slotted Multihop Mobile Networks dmission ontrol in Time-Slotted Multihop Mobile Networks Shagun Dusad and nshul Khandelwal Information Networks Laboratory Department of Electrical Engineering Indian Institute of Technology - ombay Mumbai

More information

Medium Access Control. CSCI370 Lecture 5 Michael Hutt New York Institute of Technology

Medium Access Control. CSCI370 Lecture 5 Michael Hutt New York Institute of Technology Medium Access Control CSCI370 Lecture 5 Michael Hutt New York Institute of Technology The Data Link Layer Logical Link Control (LLC) IEEE 802.2 Standard RFC 1042 Provides three service options Unreliable

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-10 Wireless Broadcast Fall 1390 Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

Subject: Adhoc Networks

Subject: Adhoc Networks ISSUES IN AD HOC WIRELESS NETWORKS The major issues that affect the design, deployment, & performance of an ad hoc wireless network system are: Medium Access Scheme. Transport Layer Protocol. Routing.

More information

Mobile Ad-Hoc Networks & Routing Algorithms

Mobile Ad-Hoc Networks & Routing Algorithms Mobile Ad-Hoc Networks & Routing Algorithms EMMANOUIL G. SPANAKIS, PhD. spanakis@csd.uoc.gr COLLABORATING RESEARCHER, COMPUTATIONAL BIOMEDICINE LABORATORY, FORTH-ICS VISITING LECTURER, COMPUTER SCIENCE

More information

Ad Hoc Routing. Ad-hoc Routing. Problems Using DV or LS. DSR Concepts. DSR Components. Proposed Protocols

Ad Hoc Routing. Ad-hoc Routing. Problems Using DV or LS. DSR Concepts. DSR Components. Proposed Protocols d oc Routing d-hoc Routing rvind Krishnamurthy all 2003 Create multi-hop connectivity among set of wireless, possibly moving, nodes Mobile, wireless hosts act as forwarding nodes as well as end systems

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Reminder: Datalink Functions Computer Networking. Datalink Architectures Reminder: Datalink Functions 15-441 15 441 15-641 Computer Networking Lecture 5 Media Access Control Peter Steenkiste Fall 2015 www.cs.cmu.edu/~prs/15-441-f15 Framing: encapsulating a network layer datagram

More information

Wireless Protocols. Training materials for wireless trainers

Wireless Protocols. Training materials for wireless trainers Wireless Protocols Training materials for wireless trainers Goals The goal of this lecture is to introduce: IEEE wireless protocols coverage 802.11 radio protocols terminology WiFi modes of operation details

More information

Page 1. EEC173B/ECS152C, Winter Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols

Page 1. EEC173B/ECS152C, Winter Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols 173/S152, Winter 2006 Proactive Protocols MNT Unicast Routing Proactive Protocols OLSR SV Hybrid Protocols Most of the schemes discussed so far are reactive Proactive schemes based on distance vector and

More information

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions Fundamentals of Network Media Local Area Networks Ursula Holmström Goals Learn the basic concepts related to LAN technologies, for example use of shared media medium access control topologies Know the

More information

ECE/CSC 570 Section 001. Final test. December 11, 2006

ECE/CSC 570 Section 001. Final test. December 11, 2006 ECE/CSC 570 Section 001 Final test December 11, 2006 Questions 1 10 each carry 2 marks. Answer only by placing a check mark to indicate whether the statement is true of false in the appropriate box, and

More information

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer

More information

Ad Hoc Networks. Advanced Mobile Communication Networks. Integrated Communication Systems Group Ilmenau University of Technology

Ad Hoc Networks. Advanced Mobile Communication Networks. Integrated Communication Systems Group Ilmenau University of Technology Ad Hoc Networks Advanced Mobile Communication Networks Integrated Communication Systems Group Ilmenau University of Technology Outline Introduction Medium Access Control (MAC) in Multi-Channel Scenario

More information

Multiple Access Protocols

Multiple Access Protocols Multiple Access Protocols Computer Networks Lecture 2 http://goo.gl/pze5o8 Multiple Access to a Shared Channel The medium (or its sub-channel) may be shared by multiple stations (dynamic allocation) just

More information

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks.

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks. 18759 Wireless Networks (2012-pring) urvey Routing Protocols for d Hoc Networks Jiun-RenLin and Yi-hun hou lectrical and omputer ngineering arnegie Mellon University Outline d-hoc networks Unicast d-hoc

More information

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University

Lecture 4: Wireless MAC Overview. Hung-Yu Wei National Taiwan University Lecture 4: Wireless MAC Overview Hung-Yu Wei National Taiwan University Medium Access Control Topology 3 Simplex and Duplex 4 FDMA TDMA CDMA DSSS FHSS Multiple Access Methods Notice: CDMA and spread spectrum

More information

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types

Kapitel 5: Mobile Ad Hoc Networks. Characteristics. Applications of Ad Hoc Networks. Wireless Communication. Wireless communication networks types Kapitel 5: Mobile Ad Hoc Networks Mobilkommunikation 2 WS 08/09 Wireless Communication Wireless communication networks types Infrastructure-based networks Infrastructureless networks Ad hoc networks Prof.

More information

Ad hoc On-demand Distance Vector Routing (AODV) [Perkins99] CSE 6811 : Lecture 7

Ad hoc On-demand Distance Vector Routing (AODV) [Perkins99] CSE 6811 : Lecture 7 d hoc On-demand istance Vector Routing (OV) [Perkins99] 6811 : Lecture 7 d Hoc On-emand istance Vector Routing (OV) R includes source routes in packet headers G ata. Header Large headers can sometimes

More information

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks Unicast Routing in Mobile Ad Hoc Networks 1 Routing problem 2 Responsibility of a routing protocol Determining an optimal way to find optimal routes Determining a feasible path to a destination based on

More information

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging)

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging) S/ 461 Lecture 7 ridging LNs Last Two Times Medium ccess ontrol (M) protocols Part of the Link Layer t the heart of Local rea Networks (LNs) ow do multiple parties share a wire or the air? Random access

More information

ECE 158A: Lecture 13. Fall 2015

ECE 158A: Lecture 13. Fall 2015 ECE 158A: Lecture 13 Fall 2015 Random Access and Ethernet! Random Access! Basic idea: Exploit statistical multiplexing Do not avoid collisions, just recover from them When a node has packet to send Transmit

More information

AODV Route Requests (RREQ) are forwarded in a manner similar to DSR

AODV Route Requests (RREQ) are forwarded in a manner similar to DSR d oc On-emand istance Vector (OV) R includes source routes in packet headers Resulting large headers can sometimes degrade performance particularly when data contents of a packet are small OV attempts

More information

Ad Hoc Networks: Issues and Routing

Ad Hoc Networks: Issues and Routing Ad Hoc Networks: Issues and Routing Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Wireless Mesh Networks

Wireless Mesh Networks Wireless Mesh Networks COS 463: Wireless Networks Lecture 6 Kyle Jamieson [Parts adapted from I. F. Akyildiz, B. Karp] Wireless Mesh Networks Describes wireless networks in which each node can communicate

More information

Nomadic Communications. Copyright. Ad-Hoc and WMN. Wireless Mesh Networks. Quest operaèprotettadallalicenza:

Nomadic Communications. Copyright. Ad-Hoc and WMN. Wireless Mesh Networks. Quest operaèprotettadallalicenza: Nomadic ommunications Wireless Mesh Networks Renato Lo igno Loigno@disi.unitn.it - Tel: 2026 Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications opyright Quest operaèprotettadallalicenza:

More information

Power aware Multi-path Routing Protocol for MANETS

Power aware Multi-path Routing Protocol for MANETS Power aware Multi-path Routing Protocol for MANETS Shruthi P Murali 1,Joby John 2 1 (ECE Dept, SNGCE, India) 2 (ECE Dept, SNGCE, India) Abstract: Mobile Adhoc Network consists of a large number of mobile

More information

Multipath Routing Protocol for Congestion Control in Mobile Ad-hoc Network

Multipath Routing Protocol for Congestion Control in Mobile Ad-hoc Network 1 Multipath Routing Protocol for Congestion Control in Mobile Ad-hoc Network Nilima Walde, Assistant Professor, Department of Information Technology, Army Institute of Technology, Pune, India Dhananjay

More information

Announcements. CS 5565 Network Architecture and Protocols. Ethernet. Ethernet. Ethernet Model. Ideal Multiple Access Protocol

Announcements. CS 5565 Network Architecture and Protocols. Ethernet. Ethernet. Ethernet Model. Ideal Multiple Access Protocol nnouncements CS 5565 Network rchitecture and Protocols Lecture 4 odmar ack Project due in parts: pr 5 and May xtra Credit Opportunities: xpand simulator (and your implementation) to introduce multiple

More information

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV

Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV Medium Access Control (MAC) Protocols for Ad hoc Wireless Networks -IV CS: 647 Advanced Topics in Wireless Networks Drs. Baruch Awerbuch & Amitabh Mishra Department of Computer Science Johns Hopkins University

More information

Lecture 16: QoS and "

Lecture 16: QoS and Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture

More information

MAC LAYER. Murat Demirbas SUNY Buffalo

MAC LAYER. Murat Demirbas SUNY Buffalo MAC LAYER Murat Demirbas SUNY Buffalo MAC categories Fixed assignment TDMA (Time Division), CDMA (Code division), FDMA (Frequency division) Unsuitable for dynamic, bursty traffic in wireless networks Random

More information

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless LANs. ITS 413 Internet Technologies and Applications Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE

More information

Energy Efficient EE-DSR Protocol for MANET

Energy Efficient EE-DSR Protocol for MANET Energy Efficient EE- Protocol for MANET 1 Mr. Prakash Patel, 2 Ms. Tarulata Chauhan 1 Department of Computer engineering, 1 LJ Institute of Technology, Ahmedabad, India 1 prakashpmp1990@gmail.com, 2 taruchauhan114@gmail.com

More information

IEEE s ESS Mesh Networking

IEEE s ESS Mesh Networking IEEE 802.11s ESS Mesh Networking Prof. Young-Bae Ko (youngko@ajou.ac.kr) Ubiquitous Networked Systems (UbiNeS) Lab (http://uns.ajou.ac.kr) KRnet 2006 Contents Introduction - Wireless Mesh Networks IEEE

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

Medium Access Control

Medium Access Control Medium Access Control Fundamental Problem N nodes in vicinity want to transmit (to, say, N other nodes). How to do this interference free? Interference free means SINR Otherwise, we say that packets collide.

More information

Telecommunication Protocols Laboratory Course. Lecture 3

Telecommunication Protocols Laboratory Course. Lecture 3 Telecommunication Protocols Laboratory Course Lecture 3 Course map Last time: we discussed protocols of the Medium Access Control (MAC) sub-layer Deal with broadcast channels and their (multi-party) protocols

More information

Outline. CS5984 Mobile Computing. Taxonomy of Routing Protocols AODV 1/2. Dr. Ayman Abdel-Hamid. Routing Protocols in MANETs Part I

Outline. CS5984 Mobile Computing. Taxonomy of Routing Protocols AODV 1/2. Dr. Ayman Abdel-Hamid. Routing Protocols in MANETs Part I CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Part I Outline Routing Protocols for Ad hoc Networks Example of a reactive routing protocol AODV: Ad hoc On-demand

More information

UCS-805 MOBILE COMPUTING Jan-May,2011 TOPIC 8. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala.

UCS-805 MOBILE COMPUTING Jan-May,2011 TOPIC 8. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala. Mobile Ad Hoc Networks: Routing TOPIC 8 UCS-805 MOBILE COMPUTING Jan-May,2011 ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala Email-alakroy.nerist@gmail.com Mobile Ad Hoc Networks (MANET) Introduction

More information

A Routing Protocol for Utilizing Multiple Channels in Multi-Hop Wireless Networks with a Single Transceiver

A Routing Protocol for Utilizing Multiple Channels in Multi-Hop Wireless Networks with a Single Transceiver 1 A Routing Protocol for Utilizing Multiple Channels in Multi-Hop Wireless Networks with a Single Transceiver Jungmin So Dept. of Computer Science, and Coordinated Science Laboratory University of Illinois

More information

Virtual University of Pakistan. Describe the Hidden Node and Exposed Node problems in Standard? VUSR. [Larry L. Peterson]

Virtual University of Pakistan. Describe the Hidden Node and Exposed Node problems in Standard? VUSR. [Larry L. Peterson] www..net Solution Assignment No. 2 Question No. 1 Describe the Hidden Node and Exposed Node problems in 802.11 Standard? Hidden Node Problem: Consider the figure below. [Larry L. Peterson] B can exchange

More information

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang

Intelligent Transportation Systems. Medium Access Control. Prof. Dr. Thomas Strang Intelligent Transportation Systems Medium Access Control Prof. Dr. Thomas Strang Recap: Wireless Interconnections Networking types + Scalability + Range Delay Individuality Broadcast o Scalability o Range

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

2013, IJARCSSE All Rights Reserved Page 85

2013, IJARCSSE All Rights Reserved Page 85 Volume 3, Issue 12, December 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Overview of

More information

6367(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJCET)

6367(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJCET) INTERNATIONAL International Journal of Computer JOURNAL Engineering OF COMPUTER and Technology ENGINEERING (IJCET), ISSN 0976- & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 4,

More information

15-441: Computer Networking. Lecture 24: Ad-Hoc Wireless Networks

15-441: Computer Networking. Lecture 24: Ad-Hoc Wireless Networks 15-441: Computer Networking Lecture 24: Ad-Hoc Wireless Networks Scenarios and Roadmap Point to point wireless networks (last lecture) Example: your laptop to CMU wireless Challenges: Poor and variable

More information

Ad Hoc Networks. Mobile Communication Networks (RCSE) Winter Semester 2012/13. Integrated Communication Systems Group Ilmenau University of Technology

Ad Hoc Networks. Mobile Communication Networks (RCSE) Winter Semester 2012/13. Integrated Communication Systems Group Ilmenau University of Technology Ad Hoc Networks Mobile Communication Networks (RCSE) Winter Semester 2012/13 Integrated Communication Systems Group Ilmenau University of Technology Outline Introduction Medium Access Control (MAC) Routing

More information

AODV-PA: AODV with Path Accumulation

AODV-PA: AODV with Path Accumulation -PA: with Path Accumulation Sumit Gwalani Elizabeth M. Belding-Royer Department of Computer Science University of California, Santa Barbara fsumitg, ebeldingg@cs.ucsb.edu Charles E. Perkins Communications

More information

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point Chapter 6 outline 6.1 Introduction Wireless 6.2 Wireless links, characteristics CDMA 6.3 IEEE 802.11 wireless LANs ( wi-fi ) 6.4 Cellular Internet Access architecture standards (e.g., GSM) Mobility 6.5

More information

MAC protocols for ad hoc networks

MAC protocols for ad hoc networks MAC protocols for ad hoc networks Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2756/ OUTLINE: Problems for MAC to deal with; Design goals; Classification of

More information

Performance Evaluation of AODV and DSR routing protocols in MANET

Performance Evaluation of AODV and DSR routing protocols in MANET Performance Evaluation of AODV and DSR routing protocols in MANET Naresh Dobhal Diwakar Mourya ABSTRACT MANETs are wireless temporary adhoc networks that are being setup with no prior infrastructure and

More information

Ad Hoc Networks: Introduction

Ad Hoc Networks: Introduction Ad Hoc Networks: Introduction Module A.int.1 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Ad Hoc networks: introduction A.int.1-2

More information

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications

Data and Computer Communications. Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based Applications Data and Computer Communications Chapter 2 Protocol Architecture, TCP/IP, and Internet-Based s 1 Need For Protocol Architecture data exchange can involve complex procedures better if task broken into subtasks

More information

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks 1 Ravindra.E, 2 Pooja Agraharkar Asst Prof, Dept. of Electronics & Communication Engg, Mtech Student, Dept. of Electronics & Communication

More information

ECSE 414 Fall 2014 Final Exam Solutions

ECSE 414 Fall 2014 Final Exam Solutions ECSE 414 Fall 2014 Final Exam Solutions Question 1 a. The five main layers of the internet protocol stack, along with the service provided by each, and the place where each is implemented are as follows:

More information

Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power

Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power , pp.1-6 http://dx.doi.org/10.14257/ijsacs.2015.3.1.01 Performance Analysis of Wireless Mobile ad Hoc Network with Varying Transmission Power Surabhi Shrivastava, Laxmi Shrivastava and Sarita Singh Bhadauria

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

IEEE Medium Access Control. Medium Access Control

IEEE Medium Access Control. Medium Access Control IEEE 802.11 Medium Access Control EECS3214 3 April 2018 Medium Access Control reliable data delivery access control MAC layer covers three functional areas: security 2 1 MAC Requirements To avoid interference

More information

Mobile & Wireless Networking. Lecture 10: Mobile Transport Layer & Ad Hoc Networks. [Schiller, Section 8.3 & Section 9] [Reader, Part 8]

Mobile & Wireless Networking. Lecture 10: Mobile Transport Layer & Ad Hoc Networks. [Schiller, Section 8.3 & Section 9] [Reader, Part 8] 192620010 Mobile & Wireless Networking Lecture 10: Mobile Transport Layer & Ad Hoc Networks [Schiller, Section 8.3 & Section 9] [Reader, Part 8] Geert Heijenk Outline of Lecture 10 Mobile transport layer

More information

Page 1. Mobile Ad Hoc Networks. EEC173B/ECS152C, Winter Mobile Ad Hoc Networks (MANET)

Page 1. Mobile Ad Hoc Networks. EEC173B/ECS152C, Winter Mobile Ad Hoc Networks (MANET) 173/152, Winter 2006 obile d oc etworks (T) obile d oc etworks (T) ntroduction Unicast Routing Properties ormed by wireless hosts which may be mobile Without (necessarily) using a pre existing infrastructure

More information

Sensor Network Protocols

Sensor Network Protocols EE360: Lecture 15 Outline Sensor Network Protocols Announcements 2nd paper summary due March 7 Reschedule Wed lecture: 11-12:15? 12-1:15? 5-6:15? Project poster session March 15 5:30pm? Next HW posted

More information

DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks

DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks DSR: The Dynamic Source Routing Protocol for Multi-Hop Wireless Ad Hoc Networks David B. Johnson David A. Maltz Josh Broch Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213-3891

More information

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network

Chapter 6 Wireless and Mobile Networks. Chapter 6 outline. Chapter 6: Wireless and Mobile Networks. Elements of a wireless network Chapter 6 Wireless and Mobile Networks Computer Networking: Top Down pproach 5 th edition. Jim Kurose, Keith Ross ddison-wesley, pril 009. Chapter 6: Wireless and Mobile Networks ackground: # wireless

More information

ECS-087: Mobile Computing

ECS-087: Mobile Computing ECS-087: Mobile Computing Mobile Adhoc Networks and Routing in MANETS (most of the slides borrowed from Prof. Sridhar Iyer) Diwakar Yagyasen 1 Index Mobile Ad Hoc Networks (MANET) MAC in MANET MANET routing

More information

Final Exam: Mobile Networking (Part II of the course Réseaux et mobilité )

Final Exam: Mobile Networking (Part II of the course Réseaux et mobilité ) Final Exam: Mobile Networking (Part II of the course Réseaux et mobilité ) Prof. J.-P. Hubaux February 12, 2004 Duration: 2 hours, all documents allowed Please write your answers on these sheets, at the

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem

Medium Access Control. IEEE , Token Rings. CSMA/CD in WLANs? Ethernet MAC Algorithm. MACA Solution for Hidden Terminal Problem Medium Access Control IEEE 802.11, Token Rings Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 9/15/06 CS/ECE 438 - UIUC, Fall 2006 1 9/15/06 CS/ECE

More information

G 364: Mobile and Wireless Networking. CLASS 2, Wed. Jan Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob

G 364: Mobile and Wireless Networking. CLASS 2, Wed. Jan Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob G 364: Mobile and Wireless Networking CLASS 2, Wed. Jan 7 2004 Stefano Basagni Spring 2004 M-W, 11:40am-1:20pm, 109 Rob Wireless Issues Architecture, communication model and duplexing define the framework

More information

A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS

A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS A REVERSE AND ENHANCED AODV ROUTING PROTOCOL FOR MANETS M. Sanabani 1, R. Alsaqour 2 and S. Kurkushi 1 1 Faculty of Computer Science and Information Systems, Thamar University, Thamar, Republic of Yemen

More information

Last Lecture: Data Link Layer

Last Lecture: Data Link Layer Last Lecture: Data Link Layer 1. Design goals and issues 2. (More on) Error Control and Detection 3. Multiple Access Control (MAC) 4. Ethernet, LAN Addresses and ARP 5. Hubs, Bridges, Switches 6. Wireless

More information