Computer Networks. Wireless LANs
|
|
- Gyles Sherman
- 2 years ago
- Views:
Transcription
1 Computer Networks Wireless LANs
2 Mobile Communication Technology according to IEEE (examples) Local wireless networks WLAN Personal wireless nw WPAN WiFi a b h i/e/ /n/ /z/aa g ZigBee a/b/c/d/e/f/g ,.6 (WBAN) Bluetooth Wireless distribution networks WMAN (Broadband Wireless Access) WiMAX + Mobility [802.20(Mobile Broadband Wireless Access)] e (addition to.16 for mobile devices) b/c
3 Characteristics of wireless LANs Advantages very flexible Ad-hoc networks without previous planning possible (almost) no wiring difficulties (e.g. historic buildings, firewalls) more robust against disasters like earthquakes, fire,... Disadvantages typically very low bandwidth compared to wired networks (1-10 Mbit/s) due to shared medium many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE n) products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions
4 Design goals for wireless LANs global, seamless operation low power for battery use no special permissions or licenses needed to use the LAN robust transmission technology simplified spontaneous cooperation at meetings easy to use for everyone, simple management protection of investment in wired networks security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation) transparency concerning applications and higher layer protocols, but also location awareness if necessary
5 Comparison: infrared vs. radio Infrared uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.) Advantages simple, cheap, available in many mobile devices no licenses needed simple shielding possible Disadvantages interference by sunlight, heat sources etc. many things shield or absorb IR light low bandwidth Example IrDA (Infrared Data Association) interface available everywhere transmission Radio typically using the license free ISM band at 2.4 GHz Advantages experience from wireless WAN and mobile phones can be used coverage of larger areas possible (radio can penetrate walls, furniture etc.) Disadvantages very limited license free frequency bands shielding more difficult, interference with other electrical devices
6 Infrastructure vs. ad-hoc networks infrastructure network AP AP wired network AP: Access Point AP ad-hoc network
7 Architecture of an infrastructure network STA 1 ESS LAN BSS 1 Access Point BSS 2 Portal Distribution System Access Point 802.x LAN STA LAN STA 3 Station (STA) terminal with access mechanisms to the wireless medium and radio contact to the access point Basic Service Set (BSS) group of stations using the same radio frequency Access Point station integrated into the wireless LAN and the distribution system Portal bridge to other (wired) networks Distribution System interconnection network to form one logical network (EES: Extended Service Set) based on several BSS
8 Architecture of an ad-hoc network STA LAN IBSS 1 STA 2 STA 3 Direct communication within a limited range Station (STA): terminal with access mechanisms to the wireless medium Independent Basic Service Set (IBSS): group of stations using the same radio frequency IBSS 2 STA 5 STA LAN
9 IEEE standard mobile terminal fixed terminal application TCP IP access point infrastructure network application TCP IP LLC LLC LLC MAC MAC MAC MAC PHY PHY PHY PHY
10 Physical layer 3 versions: 2 radio (typ. 2.4 GHz), 1 IR data rates 1 or 2 Mbit/s FHSS (Frequency Hopping Spread Spectrum) spreading, despreading, signal strength, typ. 1 Mbit/s min. 2.5 frequency hops/s (USA), two-level GFSK modulation DSSS (Direct Sequence Spread Spectrum) DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK) preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code) max. radiated power 1 W (USA), 100 mw (EU), min. 1mW Infrared nm, diffuse light, typ. 10 m range carrier detection, energy detection, synchronization
11 FHSS PHY packet format Synchronization synch with pattern SFD (Start Frame Delimiter) start pattern PLW (PLCP_PDU Length Word) length of payload incl. 32 bit CRC of payload, PLW < 4096 PSF (PLCP Signaling Field) data of payload (1 or 2 Mbit/s) HEC (Header Error Check) CRC with x 16 +x 12 +x variable bits synchronization SFD PLW PSF HEC payload PLCP preamble PLCP header
12 DSSS PHY packet format Synchronization synch., gain setting, energy detection, frequency offset compensation SFD (Start Frame Delimiter) Signal data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK) Service future use, 00: compliant Length length of the payload HEC (Header Error Check) protection of signal, service and length, x 16 +x 12 +x variable bits synchronization SFD signal service length HEC payload PLCP preamble PLCP header
13 MAC layer I -DFWMAC Traffic services Asynchronous Data Service (mandatory) exchange of data packets based on best-effort support of broadcast and multicast Time-Bounded Service (optional) implemented using PCF (Point Coordination Function) Access methods DFWMAC-DCF CSMA/CA (mandatory) collision avoidance via randomized back-off mechanism minimum distance between consecutive packets ACK packet for acknowledgements (not for broadcasts) DFWMAC-DCF w/ RTS/CTS (optional) Distributed Foundation Wireless MAC avoids hidden terminal problem DFWMAC- PCF (optional) access point polls terminals according to a list
14 MAC layer II Priorities defined through different inter frame spaces no guaranteed, hard priorities SIFS (Short Inter Frame Spacing) highest priority, for ACK, CTS, polling response PIFS (PCF IFS) medium priority, for time-bounded service using PCF DIFS (DCF, Distributed Coordination Function IFS) lowest priority, for asynchronous data service DIFS medium busy DIFS PIFS SIFS contention next frame direct access if medium is free DIFS t
15 CSMA/CA access method I station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time) if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness) DIFS medium busy DIFS next frame contention window (randomized back-off mechanism) direct access if medium is free DIFS slot time (20µs) t
16 competing stations -simple version DIFS DIFS DIFS bo e bo r bo e bo r station 1 DIFS bo e busy station 2 bo e busy station 3 busy bo e busy bo e bo r station 4 bo e bo r bo e busy bo e bo r station 5 t busy medium not idle (frame, ack etc.) bo e elapsed backoff time packet arrival at MAC bo r residual backoff time
17 CSMA/CA access method II Sending unicast packets station has to wait for DIFS before sending data receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC) automatic retransmission of data packets in case of transmission errors sender receiver other stations DIFS data SIFS waiting time ACK DIFS contention data t
18 DFWMAC Sending unicast packets station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium) acknowledgement via CTS after SIFS by receiver (if ready to receive) sender can now send data at once, acknowledgement via ACK other stations store medium reservations distributed via RTS andcts sender DIFS RTS data receiver SIFS CTS SIFS SIFS ACK other stations NAV (RTS) NAV (CTS) defer access DIFS contention data t
19 Fragmentation sender receiver DIFS RTS frag 1 frag 2 SIFS SIFS CTS SIFS ACK SIFS SIFS 1 ACK2 other stations NAV (RTS) NAV (CTS) NAV (frag 1 ) NAV (ACK 1 ) DIFS contention data t
20 DFWMAC-PCF I (almost never used) t 0 t 1 SuperFrame medium busy point coordinator PIFS D 1 SIFS SIFS D2 SIFS SIFS wireless stations U 1 U 2 stations NAV NAV
21 DFWMAC-PCF II t 2 t 3 t 4 point coordinator D 3 PIFS D4 SIFS SIFS CFend wireless stations U 4 stations NAV NAV contention free period contention period t
22 Frame format Types control frames, management frames, data frames Sequence numbers important against duplicated frames due to lost ACKs Addresses receiver, transmitter (physical), BSS identifier, sender (logical) Miscellaneous sending time, checksum, frame control, data bytes Duration/ Address Address Address Sequence ID Control Frame Control Protocol version Type Subtype To DS More Frag Retry Power Mgmt Address Data 4 bits From DS More Data WEP Order CRC
23 MAC address format scenario to DS from address 1 address 2 address 3 address 4 DS ad-hoc network 0 0 DA SA BSSID - infrastructure 0 1 DA BSSID SA - network, from AP infrastructure 1 0 BSSID SA DA - network, to AP infrastructure network, within DS 1 1 RA TA DA SA DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address
24 Special Frames: ACK, RTS, CTS Acknowledgement ACK bytes Frame Duration Receiver Control Address CRC Request To Send Frame RTS bytes Duration Receiver Transmitter CRC Control Address Address Clear To Send CTS bytes Frame Duration Receiver Control Address CRC
25 Questions?
Data Communications. Data Link Layer Protocols Wireless LANs
Data Communications Data Link Layer Protocols Wireless LANs Wireless Networks Several different types of communications networks are using unguided media. These networks are generally referred to as wireless
Mobile Communications Chapter 7: Wireless LANs
Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy
Chapter 7: Wireless LANs
Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy
Chapter 7: Wireless LANs
Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 (PHY, MAC, Roaming,.11a, b, g, h, i, n z) Bluetooth / IEEE 802.15.x IEEE 802.16/.20/.21/.22 RFID Comparison Prof. Jó Ueyama courtesy
ICE 1332/0715 Mobile Computing (Summer, 2008)
ICE 1332/0715 Mobile Computing (Summer, 2008) IEEE 802.11 Prof. Chansu Yu http://academic.csuohio.edu/yuc/ Contents Overview of IEEE 802.11 Frame formats MAC frame PHY frame IEEE 802.11 IEEE 802.11b IEEE
Mobile Communications Chapter 7: Wireless LANs
Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Comparison: infrastructure vs.
Mobile & Wireless Networking. Lecture 7: Wireless LAN
192620010 Mobile & Wireless Networking Lecture 7: Wireless LAN [Schiller, Section 7.3] [Reader, Part 6] [Optional: "IEEE 802.11n Development: History, Process, and Technology", Perahia, IEEE Communications
Wireless Communication Session 4 Wi-Fi IEEE standard
Wireless Communication Session 4 Wi-Fi IEEE802.11 standard M. Daneshvar Farzanegan Soourosh.blogfa.com smdanesh@yahoo.com 1 Reminder on frequencies and wavelenghts twisted pair coax cable optical transmission
Mobile Communications Chapter 7: Wireless LANs
Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/ MC SS02 7.1 Characteristics of Wireless LANs
Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs
EEC173B/ECS152C, Winter 2006 Wireless LANs Evolution of Technology & Standards IEEE 802.11 Design Choices Architecture & Protocols PHY layer MAC layer design Acknowledgment: Selected slides from Prof.
Mobile Communications Chapter 7: Wireless LANs
Mobile Communications Chapter 7: Wireless LANs Characteristics IEEE 802.11 PHY MAC Roaming IEEE 802.11a, b, g, e HIPERLAN Bluetooth Comparisons Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/
4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.
4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data
WLAN 1 IEEE Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto
WLAN 1 IEEE 802.11 Basic Connectivity Manuel Ricardo Faculdade de Engenharia da Universidade do Porto WLAN 2 Acknowledgements Based on Jochen Schiller slides Supporting text» Jochen Schiller, Mobile Comunications,
standard. Acknowledgement: Slides borrowed from Richard Y. Yale
802.11 standard Acknowledgement: Slides borrowed from Richard Y. Yang @ Yale IEEE 802.11 Requirements Design for small coverage (e.g. office, home) Low/no mobility High data rate applications Ability to
WLAN 1 IEEE Basic Connectivity. Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto
WLAN 1 IEEE 802.11 Basic Connectivity Manuel Ricardo Faculdade de Engenharia da Universidade do Porto WLAN 2 Acknowledgements Based on Jochen Schiller slides Supporting text» Jochen Schiller, Mobile Comunications,
Chapter 4 WIRELESS LAN
Chapter 4 WIRELESS LAN Distributed Computing Group Mobile Computing Summer 2002 Overview Design goals Characteristics IEEE 802.11 Architecture Protocol PHY MAC Roaming Security a, b, d, etc. Short intermezzo
Wireless LANs. Characteristics Bluetooth. PHY MAC Roaming Standards
Wireless LANs Characteristics 802.11 PHY MAC Roaming Standards Bluetooth 1 Significant parts of slides are based on original material by Prof. Dr.-Ing. Jochen Schiller, FU-Berlin www.jochenschiller.de
MAC in /20/06
MAC in 802.11 2/20/06 MAC Multiple users share common medium. Important issues: Collision detection Delay Fairness Hidden terminals Synchronization Power management Roaming Use 802.11 as an example to
Lecture 16: QoS and "
Lecture 16: QoS and 802.11" CSE 123: Computer Networks Alex C. Snoeren HW 4 due now! Lecture 16 Overview" Network-wide QoS IntServ DifServ 802.11 Wireless CSMA/CA Hidden Terminals RTS/CTS CSE 123 Lecture
CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay
CS 348: Computer Networks - WiFi (contd.); 16 th Aug 2012 Instructor: Sridhar Iyer IIT Bombay Clicker-1: Wireless v/s wired Which of the following differences between Wireless and Wired affect a CSMA-based
Local Area Networks NETW 901
Local Area Networks NETW 901 Lecture 4 Wireless LAN Course Instructor: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220 1 Contents What is a Wireless LAN? Applications and Requirements Transmission
IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer
IEEE 802.11 WLANs (WiFi) Part II/III System Overview and MAC Layer Design goals for wireless LANs (WLANs) Global, seamless operation Low power for battery use No special permissions or licenses needed
Advanced Computer Networks WLAN
Advanced Computer Networks 263 3501 00 WLAN Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Last week Outlook Medium Access COPE Short Range Wireless Networks:
Introduction to IEEE
Introduction to IEEE 802.11 Characteristics of wireless LANs Advantages very flexible within the reception area Ad hoc networks without previous planning possible (almost) no wiring difficulties more robust
Computer Communication III
Computer Communication III Wireless Media Access IEEE 802.11 Wireless LAN Advantages of Wireless LANs Using the license free ISM band at 2.4 GHz no complicated or expensive licenses necessary very cost
Mohammad Hossein Manshaei 1393
Mohammad Hossein Manshaei manshaei@gmail.com 1393 1 802.11 History and Standardization 802.11 Architectures and Layers 802.11 Frame Format and Addressing 802.11 Mac Layer (CSMA/CA) 2 Wifi 3 twisted pair
Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl
Vehicle Networks Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless LAN Overview History IEEE 802.11-1997 MAC implementations PHY implementations
CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology
CSC344 Wireless and Mobile Computing Department of Computer Science COMSATS Institute of Information Technology Wireless Local Area Networks (WLANs) Part I Almost all wireless LANs now are IEEE 802.11
Wireless Local Area Networks (WLANs) Part I
Wireless Local Area Networks (WLANs) Part I Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/
Internet Protocol Stack
Internet Protocol Stack Application: supporting network applications FTP, SMTP, HTTP Transport: data transfer between processes TCP, UDP Network: routing of datagrams from source to destination IP, routing
Chapter 6 Medium Access Control Protocols and Local Area Networks
Chapter 6 Medium Access Control Protocols and Local Area Networks 802.11 Wireless LAN CSE 3213, Winter 2010 Instructor: Foroohar Foroozan Wireless Data Communications Wireless communications compelling
04/11/2011. Wireless LANs. CSE 3213 Fall November Overview
Wireless LANs CSE 3213 Fall 2011 4 November 2011 Overview 2 1 Infrastructure Wireless LAN 3 Applications of Wireless LANs Key application areas: LAN extension cross-building interconnect nomadic access
Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW
Lecture 25: 802.11 CSE 123: Computer Networks Alex C. Snoeren HW4 due NOW Lecture 25 Overview 802.11 Wireless PHY layer overview Hidden Terminals Basic wireless challenge RTS/CTS Virtual carrier sense
Mobile Communications I
Mobile Communications I Prof. Dr.-Ing. Rolf Kraemer chair owner telefon: 0335 5625 342 fax: 0335 5625 671 e-mail: kraemer [ at ] ihp-microelectronics.com web: Mobile Communications Chapter 4: Wireless
IEEE Technical Tutorial. Introduction. IEEE Architecture
IEEE 802.11 Technical Tutorial Introduction The purpose of this document is to give technical readers a basic overview of the new 802.11 Standard, enabling them to understand the basic concepts, principle
Mohammad Hossein Manshaei
Mohammad Hossein Manshaei manshaei@gmail.com Chapter 9: (secowinet.epfl.ch) operating principles of IEEE 802.11, detecting selfish behavior in hot spots, and selfish behavior in pure ad hoc networks 2
IEEE Characteristics System Architecture Protocol Architecture Physical Layer. Power Management Roaming Current Developments
TECHNISCHE UNIVERSITÄT ILMENAU IEEE 802.11 Integrated Hard- and Software Systems http://www.tu-ilmenau.de/ihs Characteristics System Architecture Protocol Architecture Physical Layer MAC Layer MAC Management
Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW
Lecture 24: 802.11 CSE 123: Computer Networks Stefan Savage HW4 due NOW About the final Similar in style to midterm Some combination of easy questions, short answer and more in-depth questions Sample final
Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du
Chapter 6 Wireless and Mobile Networks Csci 4211 David H.C. Du Wireless LAN IEEE 802.11 a, b, g IEEE 802.15 Buletooth Hidden Terminal Effect Hidden Terminal Problem Hidden terminals A, C cannot hear each
WIRELESS LAN (WLAN) Efthyvoulos C. Kyriacou (PhD) Assoc. Prof. Computer Science and Engineering Department
ACOE 422 Wireless Computer Networks WIRELESS LAN (WLAN) Efthyvoulos C. Kyriacou (PhD) Assoc. Prof. Computer Science and Engineering Department Resources: Mobile Communications, J. Schiller book slides
Wireless LANs. ITS 413 Internet Technologies and Applications
Wireless LANs ITS 413 Internet Technologies and Applications Aim: Aim and Contents Understand how IEEE 802.11 wireless LANs work Understand what influences the performance of wireless LANs Contents: IEEE
Guide to Wireless Communications, Third Edition. Objectives
Guide to Wireless Communications, Third Edition Chapter 7 Low-Speed Wireless Local Area Networks Objectives Describe how WLANs are used List the components and modes of a WLAN Describe how an RF WLAN works
MAC. Fall Data Communications II 1
802.11 MAC Fall 2005 91.564 Data Communications II 1 RF Quality (ACK) Fall 2005 91.564 Data Communications II 2 Hidden Terminal (RTS/CTS) Fall 2005 91.564 Data Communications II 3 MAC Coordination Functions
WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018
WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard
Investigation of WLAN
Investigation of WLAN Table of Contents Table of Contents...1 ABBREVIATIONS...II 1 Introduction...3 2 IEEE 802.11...3 2.1 Architecture...3 2.2 MAC layer...4 2.3 PHY layer...9 2.4 Mobility in IEEE 802.11...12
original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS
IEEE 802.11 The standard defines a wireless physical interface and the MAC layer while LLC layer is defined in 802.2. The standardization process, started in 1990, is still going on; some versions are:
MSIT 413: Wireless Technologies Week 8
MSIT 413: Wireless Technologies Week 8 Michael L. Honig Department of EECS Northwestern University November 2017 The Multiple Access Problem How can multiple mobiles access (communicate with) the same
Topic 4. Wireless LAN IEEE
Topic 4 Wireless LAN IEEE 802.11 What we will learn in this lecture: Basics of IEEE 802.11 MAC layer CSMA/CA Security WEP protocol Wireless LANs: Characteristics Types Infrastructure based Adhoc Advantages
Hands-On Exercises: IEEE Standard
Hands-On Exercises: IEEE 802.11 Standard Mohammad Hossein Manshaei and Jean-Pierre Hubaux {hossein.manshaei,jean-pierre.hubaux}@epfl.ch Laboratory for Computer Communications and Applications (LCA) March
Wireless# Guide to Wireless Communications. Objectives
Wireless# Guide to Wireless Communications Chapter 7 Low-Speed Wireless Local Area Networks Objectives Describe how WLANs are used List the components and modes of a WLAN Describe how an RF WLAN works
3.1. Introduction to WLAN IEEE
3.1. Introduction to WLAN IEEE 802.11 WCOM, WLAN, 1 References [1] J. Schiller, Mobile Communications, 2nd Ed., Pearson, 2003. [2] Martin Sauter, "From GSM to LTE", chapter 6, Wiley, 2011. [3] wiki to
Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.
Topics for Today More on Ethernet Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet Wireless LANs Readings 4.3 to 4.4 1 Original Ethernet Wiring Heavy coaxial cable, called thicknet,
Data and Computer Communications. Chapter 13 Wireless LANs
Data and Computer Communications Chapter 13 Wireless LANs Wireless LAN Topology Infrastructure LAN Connect to stations on wired LAN and in other cells May do automatic handoff Ad hoc LAN No hub Peer-to-peer
Chapter 3: Overview 802 Standard
Chapter 3: Overview 802 Standard IEEE - Institute of Electrical and Electronics Engineers What is the IEEE? international non-profit, professional organization for the advancement of technology related
Nomadic Communications WLAN MAC Fundamentals
Nomadic Communications WLAN 802.11 MAC Fundamentals Renato Lo Cigno ANS Group locigno@disi.unitn.it http://disi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications Copyright Quest opera è
Wireless Local Area Networks. Networks: Wireless LANs 1
Wireless Local Area Networks Networks: Wireless LANs 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices (PDAs and cell phones) created an obvious application
Advanced Computer Networks. WLAN, Cellular Networks
Advanced Computer Networks 263 3501 00 WLAN, Cellular Networks Patrick Stuedi Spring Semester 2013 Oriana Riva, Department of Computer Science ETH Zürich Last week Medium Access COPE Today Last week Short
WLAN (802.11) Nomadic Communications. Renato Lo Cigno - Tel: Dipartimento di Ingegneria e Scienza dell Informazione
Nomadic Communications WLAN (802.11) Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026 Dipartimento di Ingegneria e Scienza dell Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications
Wireless Protocols. Training materials for wireless trainers
Wireless Protocols Training materials for wireless trainers Goals The goal of this lecture is to introduce: IEEE wireless protocols coverage 802.11 radio protocols terminology WiFi modes of operation details
Mohamed Khedr.
Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing
Chapter 3.1 Acknowledgment:
Chapter 3.1 Acknowledgment: This material is based on the slides formatted by Dr Sunilkumar S. manvi and Dr Mahabaleshwar S. Kakkasageri, the authors of the textbook: Wireless and Mobile Networks, concepts
Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi
Overview 15-441 15-441: Computer Networking 15-641 Lecture 21: Wireless Justine Sherry Peter Steenkiste Fall 2017 www.cs.cmu.edu/~prs/15-441-f17 Link layer challenges and WiFi WiFi Basic WiFi design Some
IEEE Wireless LANs Part I: Basics
IEEE 802.11 Wireless LANs Part I: Basics Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this
Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1
Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1 Wireless Local Area Networks The proliferation of laptop computers and other mobile devices
Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands
Outline 18-759 : Wireless s Lecture 11: 80.11 Peter Steenkiste Dina Papagiannaki Spring Semester 009 http://www.cs.cmu.edu/~prs/wireless09/ Peter A. Steenkiste, CMU 1 80 protocol overview Wireless LANs
IEEE WLAN (802.11) Copyright. Nomadic Communications
Nomadic Communications WLAN (802.11) Renato Lo Cigno LoCigno@disi.unitn.it - Tel: 2026 Dipartimento di Ingegneria e Scienza dell Informazione Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications
CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1
CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala Fall 2018 CMSC417 Set 1 1 The Medium Access Control Sublayer November 18 Nov 6, 2018 2 Wireless Networking Technologies November 18
IEEE MAC Sublayer (Based on IEEE )
IEEE 802.11 MAC Sublayer (Based on IEEE 802.11-1999) Wireless Networking Sunghyun Choi, Associate Professor Multimedia & Wireless Networking Lab. (MWNL) School of Electrical Engineering Seoul National
Wireless and Mobile Networks
Wireless and Mobile Networks Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-11/
Wireless LANs. Outline. Outline II. Benefits Applications Technologies Issues Configurations Overview of Standard
Wireless LANs Outline Benefits Applications Technologies Issues Configurations Overview of 802.11 Standard Dr. Michael S. Boykin Spring 02-2 Local Area Networks 2 Outline II MAC layer protocols PHY layer
Internet Structure. network edge:
Midterm Review Internet Structure network edge: Hosts: clients and servers Server often in data centers access networks, physical media:wired, wireless communication links network core: interconnected
02/21/08 TDC Branch Offices. Headquarters SOHO. Hot Spots. Home. Wireless LAN. Customer Sites. Convention Centers. Hotel
TDC 363 Introductions to LANs Lecture 7 Wireless LAN 1 Outline WLAN Markets and Business Cases WLAN Standards WLAN Physical Layer WLAN MAC Layer WLAN Security WLAN Design and Deployment 2 The Mobile Environment
Lesson 2-3: The IEEE x MAC Layer
Module 2: Establishing Wireless Connectivity Lesson 2-3: The IEEE 802.11x MAC Layer Lesson Overview This lesson describes basic IEEE 802.11x MAC operation, beginning with an explanation of contention schemes
Multiple Access Links and Protocols
Multiple Access Links and Protocols Two types of links : point-to-point PPP for dial-up access point-to-point link between Ethernet switch and host broadcast (shared wire or medium) old-fashioned Ethernet
IEEE Integrated Communication Systems Group Ilmenau University of Technology
IEEE 802.11 Integrated Communication Systems Group Ilmenau University of Technology Characteristics of Wireless LANs Advantages very flexible alternative to wired LANs (almost) no wiring difficulties (e.g.
Wireless Networking & Mobile Computing
Wireless Networking & Mobile Computing CS 752/852 - Spring 2012 Lec #4: Medium Access Control - II Tamer Nadeem Dept. of Computer Science IEEE 802.11 Standards Page 2 Spring 2012 CS 752/852 - Wireless
Local Area Networks. Lecture 17 Fall Token Ring and FDDI
Local Area Networks Lecture 17 Fall 2010 Token Ring and FDDI IEEE 802.5 Ring LAN Unidirectional ring network 4 Mbps and 16 Mbps on twisted pair Differential Manchester line coding Token passing protocol
Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984
CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Outline IEEE 82 Architecture IEEE 82. Wireless LANs Based on Chapter 4 in Wireless Communications and Networks, William
Unit 7 Media Access Control (MAC)
Unit 7 Media Access Control (MAC) 1 Internet Model 2 Sublayers of Data Link Layer Logical link control (LLC) Flow control Error control Media access control (MAC) access control 3 Categorization of MAC
Architecture. Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change
802.11 Architecture Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change What is unique about wireless? Difficult media - interference and noise -
Wireless Local Area Network (IEEE )
Wireless Local Area Network (IEEE 802.11) -IEEE 802.11 Specifies a single Medium Access Control (MAC) sublayer and 3 Physical Layer Specifications. Stations can operate in two configurations : Ad-hoc mode
Overview. Wireless networks basics IEEE (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV
Wireless networks 1 Overview Wireless networks basics IEEE 802.11 (Wi-Fi) a/b/g/n ad Hoc MAC protocols ad Hoc routing DSR AODV 2 Wireless Networks Autonomous systems of mobile hosts connected by wireless
Data and Computer Communications
Data and Computer Communications Chapter 17 Wireless LANs Eighth Edition by William Stallings Overview of Wireless LANs use wireless transmission medium Wireless LAN were little used issues of high prices,
Laboratory of Nomadic Communication. Quick introduction to IEEE
Laboratory of Nomadic Communication Quick introduction to IEEE 802.11 Let s play 802.11 game Wireless LAN Standard A quick introduction to the IEEE 802.11 standard IEEE 802.11 standard! Definition of wireless
Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs
Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer 1 Wireless Local Area Networks (WLANs) The proliferation of laptop computers and other mobile devices (PDAs and cell phones)
Actual4Test. Actual4test - actual test exam dumps-pass for IT exams
Actual4Test http://www.actual4test.com Actual4test - actual test exam dumps-pass for IT exams Exam : PW0-205 Title : Certified wireless analusis professional(cwap) Vendors : CWNP Version : DEMO Get Latest
IEEE Characteristics System Architecture Protocol Architecture Physical Layer. Power Management Roaming Current Developments
TECHNISCHE UNIVERSITÄT ILMENAU IEEE 802.11 Integrated Hard- and Software Systems http://www.tu-ilmenau.de/ihs Characteristics System Architecture Protocol Architecture Physical Layer MAC Layer MAC Management
Wireless Data Networking IEEE & Overview of IEEE b
Wireless Data Networking IEEE 802.11 & Overview of IEEE 802.11b Dr. Arian Durresi The Ohio State University Columbus, OH 43210 durresi@cis.ohio-state.edu 1 Overview Wireless Application Market Wireless
Introduction to Wireless LAN
Introduction to Wireless LAN Po-Ning Chen, Professor Depart. Of Communications Engineering National Chiao-Tung University 1 Topologies of Wireless o Infrastructure versus ad hoc Infrastructure Portable-to-fixed
CHAPTER 11 WIRELESS LAN TECHNOLOGY AND THE IEEE WIRELESS LAN STANDARD
CHAPTER 11 WIRELESS LAN TECHNOLOGY AND THE IEEE 802.11 WIRELESS LAN STANDARD These slides are made available to faculty in PowerPoint form. Slides can be freely added, modified, and deleted to suit student
WLAN. Right, Gentlemen. The aim of our presentation is to give you detailed information on the topic WLAN (Wireless Local Area Network).
WLAN Right, Gentlemen. The aim of our presentation is to give you detailed information on the topic WLAN (Wireless Local Area Network). Our presentation is split into the following key areas. First I will
CHAPTER 8: LAN Standards
CHAPTER 8: LAN Standards DR. BHARGAVI GOSWAMI, ASSOCIATE PROFESSOR HEAD, DEPARTMENT OF COMPUTER SCIENCE, GARDEN CITY COLLEGE BANGALORE. LAN STRUCTURE NETWORK INTERFACE CARD MEDIUM ACCESS CONTROL SUB LAYER
CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless
CSCD 433 Network Programming Fall 2016 Lecture 7 Ethernet and Wireless 802.11 1 Topics 802 Standard MAC and LLC Sublayers Review of MAC in Ethernet MAC in 802.11 Wireless 2 IEEE Standards In 1985, Computer
IEEE Mobile Communication Networks (RCSE) Winter Semester 2011/12. Integrated Communication Systems Group Ilmenau University of Technology
IEEE 802.11 Mobile Communication Networks (RCSE) Winter Semester 2011/12 Integrated Communication Systems Group Ilmenau University of Technology Characteristics of Wireless LANs Advantages very flexible
IEEE Wireless LANs
Unit 11 IEEE 802.11 Wireless LANs Shyam Parekh IEEE 802.11 Wireless LANs References Standards Basics Physical Layer 802.11b 802.11a MAC Framing Details Management PCF QoS (802.11e) Security Take Away Points
Enabling Technologies
Enabling Technologies Part 4 Mobile Ad Hoc Networking Wuhan University Why Enable? Reliable point-to-point communication via media access control (MAC) Challenges in medium share Categories of MAC protocols
CSE 461: Wireless Networks
CSE 461: Wireless Networks Wireless IEEE 802.11 A physical and multiple access layer standard for wireless local area networks (WLAN) Ad Hoc Network: no servers or access points Infrastructure Network
Lecture 23 Overview. Last Lecture. This Lecture. Next Lecture ADSL, ATM. Wireless Technologies (1) Source: chapters 6.2, 15
Lecture 23 Overview Last Lecture ADSL, ATM This Lecture Wireless Technologies (1) Wireless LAN, CSMA/CA, Bluetooth Source: chapters 6.2, 15 Next Lecture Wireless Technologies (2) Source: chapter 16, 19.3
Wireless Communication and Networking CMPT 371
Wireless Communication and Networking CMPT 371 Wireless Systems: AM, FM Radio TV Broadcast Satellite Broadcast 2-way Radios Cordless Phones Satellite Links Mobile Telephony Systems Wireless Local Loop
Optional Point Coordination Function (PCF)
Optional Point Coordination Function (PCF) Time Bounded / Async Contention Free Service PCF Optional DCF (CSMA/CA ) Async Contention Service MAC PHY Contention Free Service uses Point Coordination Function