John E. Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. May QUALCOMM Technologies, Inc. and/or its affiliates.

Size: px
Start display at page:

Download "John E. Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. May QUALCOMM Technologies, Inc. and/or its affiliates."

Transcription

1 John E. Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. May 2015

2 This presentation addresses potential use cases and views on characteristics of 5G technology and is not intended to reflect a commitment to the characteristics or commercialization of any product or service of Qualcomm Technologies, Inc. or its affiliates. 2

3 5G targets a range of services and devices Wide Area IOE Mobile broadband Enhanced mobile broadband Smart homes/ buildings Sensing what s around, autonomous vehicles Health & fitness, medical response Smart city, smart grid and infrastructure High reliability services Increased Indoor/ outdoor hotspot capacity Remote control, process automation 3

4 Technology enablers for improved system designs Technology Improved RF/antenna capabilities Improved radio processing Air Interface Impact New mmwave bands, and Massive MIMO with new PHY/MAC design across bands Faster narrow/wide bandwidth switching and TDD switching Improved baseband processing Virtualized Network Elements Lower latency and faster turn around, new PHY/MAC algorithms Dynamically move processing between cloud and edge Drive fundamental improvements in user experience, coverage, and cost efficiency Deliver high quality of experience and new services across topologies and cell sizes New designs below 6 GHz and above 6 GHz including mmwave 4

5 Unified 5G design across spectrum types and bands From narrowband to wideband, licensed & unlicensed, TDD & FDD Band Single component carrier channel Bandwidth examples Target Characteristics Range of application requirements Diverse spectrum types FDD/TDD <3 GHz 1, 5, 10, 20MHz Deep coverage, mobility, high spectral efficiency, High reliability, wide area IoE TDD 3GHz (e.g , ) 80, 160MHz Outdoor & indoor, mesh, Peak rates up to 10gbps 5G TDD 5GHz 160, 320MHz Unlicensed TDD mmwave 250, 500 MHz, 1, 2 GHz Indoor & outdoor small cell, access & backhaul 5

6 5G design across services Enabling phased feature rollout based on spectrum and applications 5G Enhanced Broadband Lower latency scalable numerology across bands and bandwidths, e.g. 160 MHz Integrated TDD subframe for licensed, unlicensed TDD fast SRS design for e.g. 4GHz massive MIMO Device centric MAC with minimized broadcast Wide area IoE Low energy waveform Optimized link budget Decreased overheads Managed mesh mmwave Sub6 GHz & mmwave Integrated MAC Access and backhaul mmwave beam tracking High reliability Low latency bounded delay Optimized PHY/pilot/HARQ Efficient multiplexing of low latency with nominal 6

7 high reliability High reliability Designing Forward Compatibility into 5G Enabling flexible feature phasing Blank subframes and blank frequency resources Minimized broadcast Enable future features to be deployed on the same frequency in a synchronous and asynchronous manner WAN D2D WAN Vertical service multiplexing on the same carrier mmwave & 5Gsub6 5Gsub6 mmwave Compatible frame structure design for multiple modes (5Gsub6, high reliability, D2D, mmw, etc.) Enable future features to be deployed on a different frequency in a tightly integrated manner, e.g. 5Gsub6 control for mmw 7

8 Multi connectivity across bands & technologies 4G+5G multi-connectivity improves coverage and mobility Urban area 5G carrier aggregation with integrated MAC across sub-6ghz & above 6GHz Macro Small cell 4G & 5G small cell coverage multimode device Simultaneous connectivity across 5G, 4G and Wi-Fi 4G+5G Sub-urban area 4G+5G Rural area 4G & 5G macro coverage Leverage 4G investments to enable phased 5G rollout 8

9 5G targeting enhanced mobile broadband requirements Key requirements Uniform user experience Increased network capacity Higher peak rates Improved cost & energy efficiency Technical considerations Scalable numerology and TTI to support various spectrum and QoS requirements Massive MIMO to achieve high capacity, better coverage, and low network power consumption Self-contained TDD subframes to enable massive MIMO and other deployment scenarios Device centric MAC to reduce network energy consumption & improve mobility management 9

10 5G scalable numerology to meet varied deployment/application/complexity requirements Normal CP (e.g. outdoor picocell) Indoor Wideband (e.g. unlicensed) mmwave Sub-carrier spacing = 2N 80MHz Sub-carrier spacing = 8N 160MHz bandwidth Note: not drawn to scale Sub-carrier spacing = 16N Numerology Multiplexing ECP ECP FG ECP FG NCP NCP TTI k TTI k+1 TTI k+2 500MHz bandwidth 5G mmw synchronized to 5Gsub6 at e.g. 125us TTI level for common MAC, along with scaled subcarrier spacing, and timing alignment with 1ms LTE subframes 10

11 Driving down air-interface latency & enabling service multiplexing FDD Data ACK TTI ACK 0 ACK 1 ACK 0 High reliability High reliability High reliability 2 N scaling of TTI TDD HARQ RTT Data TTI G P ACK Nominal short Nominal medium Nominal long Order of magnitude lower HARQ RTT Faster processing time and shorter TTI Driving down HARQ latency and storage Self-contained TDD subframes Integrated approach to licensed spectrum, Massive MIMO, unlicensed spectrum, D2D Decoupling UL/DL data ratio from latency Very low application layer latency Provides various levels of QoS, hence bundled TTI design for latency/efficiency tradeoff Short TTI traffic with low latency and high reliability Long TTI for low latency and higher spectral efficiency Service aware TTI multiplexing 11

12 Guard Period Guard Period Self-contained TDD subframes Decouple HARQ processing timeline from uplink/downlink configuration Cellular DL or mesh/d2d transmission scheduled subframe Enhanced subframe Additional headers/trailers for advanced deployment scenarios Control (Tx) Data (Tx) Uplink (Rx) PDCCH (Tx) Data (Tx) Uplink (Rx) To transmit control, data and pilots To receive ACK and other uplink control channels To support massive MIMO/ unlicensed/d2d/mesh/comp E.g. headers associated with Clear Channel Assessment (CCA), hidden node discovery protocol for 5G unlicensed spectrum access Note: Multiple users are typically multiplexed over each control/data region in FDM/TDM/SDM manner 12

13 5G modulation and access techniques OFDM for enhanced mobile broadband access 5G broadband access requires the following Low latency Wide channel bandwidth and high data rate Low complexity per bit OFDM is well suited to meet these requirements due to the following characteristics Scalable symbol duration and subcarrier spacing Low complexity receiver for wide bandwidth Efficiently supports MIMO spatial multiplexing and multiuser SDMA OFDM implementations allow for additional transmit/receiver filtering based on link and adjacent channel requirements In addition, resource spread multiple access (RSMA) waveforms have advantages for uplink short data bursts such as low power IoE Supports asynchronous, non-orthogonal, contention based access Reduces IoE device power overhead 13

14 CDF 5G coverage layer improvements (1.7km intra-site distance) with 4GHz massive MIMO & new TDD SF design 100% 90% 80% 2Rx devices 80MHz bandwidth, 24x2 20MHz bandwidth, 2x2 100% 90% 80% 4Rx devices 80MHz bandwidth, 24x4 20MHz bandwidth, 2x4 70% 60% 50% 40% 30% 20% 10% 0% User Throughput (Mbps) Gains of 4 GHz Massive MIMO with 80MHz compared to 2GHz with 2Tx DL over 20 MHz Leverage same cell tower locations and same transmit power as legacy systems (no new cell planning) Cell-edge 1km cell radius still able to scale up throughput with bandwidth (for ~80 Mbps) 70% 60% 50% 40% 30% 20% 10% 0% User Throughput (Mbps) Assumptions: 46 dbm Tx power 14

15 mmw deployment scenarios Stand alone mmw access Collocated mmw + 5Gsub6 access Non-collocated mmw + 5Gsub6 access mmw integrated access & backhaul relay 5Gsub6 mmw 15

16 Advanced multicell scheduling algorithms improve mmwave user experience 100% 80% 60% No coordination Limited coordination Full coordination 40% 20% 0 0 db 5 db 10 db 15 db 20 db 25 db 30 db Interference measure (SNR - SINR) Coordinated scheduling techniques reduce interference and improve user experience Non-trivial interference from neighboring cell transmissions in mmw bands for small cell radii of ~100m 16

17 5G device centric MAC Control plane improvements for energy efficiency and mobility Zone 1 coverage Serving cluster Zone 3 coverage Device side: light weight mobility Transparent mobility within a device centric zone Coordinated control plane processing for tightly coupled cluster Transmit periodic sync Transmit SIB SIB transmission request Coverage for zone 2 No SIB Transmission Network energy saving with less broadcast No SIB transmission request On-demand system info. transmission When no devices are around, base station only provides a low periodicity beacon for initial discovery When a few devices enter coverage, base station provides system information via on demand unicast When many devices are present (or SI changes), base station can revert to broadcast 17

18 5G targeting high reliability service requirements Key requirements High reliability and availability Low end-to-end latency Minimal impacts to nominal traffic while meeting reliability and latency requirements Technical considerations Integrated nominal/high-reliability system design - New PHY coding, New FEC, and link-adaptation framework for efficient traffic multiplexing Low latency design - Efficient HARQ structure for fast turn-around - Scalable TTI for latency, reliability & efficiency tradeoff High reliability design - Large diversity orders to support bursty high-reliability traffic - New link adaptation paradigm for lower error rates 18

19 Hard latency bound and PHY/MAC design Single-cell multi-user evaluation/queueing model Poisson arrivals Failed 1 st Tx Failed 2 nd Tx Failed (n-1) th Tx 1st tx queue 2nd tx queue 3rd tx queue... nth tx queue Packet loss at Tx Lowest priority Highest priority freq. 1 st Tx HARQ 2 nd Tx HARQ 3 rd Tx HARQ time n th Tx HARQ... Successful transmission Residual RTT Causes of packet drop 1. Last transmission fails at Rx 2. Delay exceeds deadline at Tx queues Failed transmission Packet drop at Rx 19

20 High reliability capacity (Mbps) High reliability capacity (Mbps) Increased reliability benefits from wideband multiplexing Reliability, Capacity, Latency, Bandwidth Tradeoff Reliability = 1e BW = 10 MHz 2.5 Reliability = 1e ~3X gain total BW = 20MHz total BW = 10MHz Asymptotic capacity reliability 1e-2 reliability 1e ms 1ms 1.5 2ms 2.5ms 3ms Hard delay bound Wider bandwidth provides significant capacity benefits FDM of high-reliability/nominal traffic is sub-optimal ms 1ms 1.5ms 2ms 2.5ms 3ms Hard delay bound At lower bandwidth, achieving very low latency bound requires drop in reliability Notes: e.g. 256 bit control every 10ms: 40 machines is 1 Mbps. Packet Error Rate (PER) results based on -3dB cell edge worse case scenario. 20

21 5G targeting wide area IOE requirements Key requirements Superior coverage for supporting remote and deep indoor nodes Low power consumption to enable longer battery life Better support low rate bursty communications from multiple device types including smartphone bursty traffic Scalability to enable massive number of connections Technical Approaches Non-orthogonal RSMA Resource spread multiple access Avoids energy cost of establishing synchronism Distributed scheduling Uplink IOE Non-Orthogonal Distributed Scheduling Downlink IOE Orthogonal Centralized Scheduling Uplink mesh downlink direct Leverage DL sync Coverage extension IOE Direct access on licensed e.g. FDD IOE IOE IOE Mesh on unlicensed or partitioned with uplink FDD IOE 21

22 5G design across services Enabling phased feature rollout based on spectrum and applications 5G Enhanced Broadband Lower latency scalable numerology across bands and bandwidths, e.g. 160 MHz Integrated TDD subframe for licensed, unlicensed TDD fast SRS design for e.g. 4GHz massive MIMO Device centric MAC with minimized broadcast Wide area IoE Low energy waveform Optimized link budget Decreased overheads Managed mesh mmwave Sub6 GHz & mmwave Integrated MAC Access and backhaul mmwave beam tracking High reliability Low latency bounded delay Optimized PHY/pilot/HARQ Efficient multiplexing of low latency with nominal 22

23 Thank you Follow us on: For more information on Qualcomm, visit us at: & All Rights Reserved. Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries, used with permission. Other products or brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to Qualcomm may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm s licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm s engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business, QCT. 23

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc.

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc. Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc. This presentation addresses potential use cases and views on characteristics of 5G technology and is not intended to reflect

More information

5G: The Next Generation (Big Wave) of Wireless

5G: The Next Generation (Big Wave) of Wireless Ed Tiedemann Sr. VP, Engineering, Qualcomm Technologies Inc. 5G: The Next Generation (Big Wave) of Wireless 5G Tokyo Bay Summit 22 July 2015 Mobile has made a leap every ~10 years AMPS, NMT, TACS, JTACS

More information

5G Design and Technology. Durga Malladi SVP Engineering Qualcomm Technologies, Inc. October 19 th, 2016

5G Design and Technology. Durga Malladi SVP Engineering Qualcomm Technologies, Inc. October 19 th, 2016 5G Design and Technology Durga Malladi SVP Engineering Qualcomm Technologies, Inc. October 19 th, 2016 Mobile fueled the last 30 years interconnecting people 1980s Analog voice 1990s Digital voice 2000s

More information

Making 5G NR a reality

Making 5G NR a reality Making 5G NR a reality Laurent Fournier Sr. Director Technology Development Europe Qualcomm Technologies, Inc. November 17, 2016 DigiWorld Congress Scalability to address diverse service and devices Ultra-low

More information

John Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. North American School of Information Theory August 2015

John Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. North American School of Information Theory August 2015 John Smee, Ph.D. Sr. Director, Engineering Qualcomm Technologies, Inc. North American School of Information Theory August 2015 1 This presentation addresses potential use cases and views on characteristics

More information

The promise of higher spectrum bands for 5G. Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc.

The promise of higher spectrum bands for 5G. Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc. The promise of higher spectrum bands for 5G Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc. June 30, 2016 Our 5G vision: a unifying connectivity fabric Enhanced mobile

More information

Making 5G NR a reality

Making 5G NR a reality Making 5G NR a reality Silicon Valley 5G Summit Mountain View, CA October 19 th, 2017 Tingfang Ji Senior Director, Engineering Qualcomm Technologies, Inc. @qualcomm_tech NR Designing a unified, more capable

More information

Etienne Chaponniere Sr. Director, Technical Standards. Introduction to 5G. DASH-IF August 20 th 2015

Etienne Chaponniere Sr. Director, Technical Standards. Introduction to 5G. DASH-IF August 20 th 2015 Etienne Chaponniere Sr. Director, Technical Standards Introduction to 5G DASH-IF August 20 th 2015 Mobile has made a leap every ~10 years AMPS, NMT, TACS D-AMPS, GSM, IS-95 (CDMA) WCDMA/HSPA+, CDMA2000/EV-DO

More information

5G NR to high capacity and

5G NR to high capacity and July 11, 2018 @qualcomm Webinar How can CoMP extend 5G NR to high capacity and ultra-reliable communications? Dr. Durga Malladi SVP, Engineering & GM, 4G/5G Qualcomm Technologies, Inc. Enabler to the factory

More information

November, Qualcomm s 5G vision Qualcomm Technologies, Inc. and/or its affiliates.

November, Qualcomm s 5G vision Qualcomm Technologies, Inc. and/or its affiliates. November, 2014 Qualcomm s 5G vision 1 Mobile is the largest technology platform in history ~7 billion connections, almost as many as people on earth 1 Evolving into Internet of Everything: cars, meters,

More information

5G Techniques for Ultra Reliable Low Latency Communication. Dr. Janne Peisa Principal Researcher, Ericsson Research

5G Techniques for Ultra Reliable Low Latency Communication. Dr. Janne Peisa Principal Researcher, Ericsson Research 5G Techniques for Ultra Reliable Low Latency Communication Dr. Janne Peisa Principal Researcher, Ericsson Research 5G is use case driven Massive MTC Critical MTC LOGISTICS TRAFFIC SAFETY & CONTROL SMART

More information

Making Mobile 5G a Commercial Reality. Peter Carson Senior Director Product Marketing Qualcomm Technologies, Inc.

Making Mobile 5G a Commercial Reality. Peter Carson Senior Director Product Marketing Qualcomm Technologies, Inc. Making Mobile 5G a Commercial Reality Peter Carson Senior Director Product Marketing Qualcomm Technologies, Inc. Insatiable global data demand First phase of 5G NR will focus on enhanced MBB Enhanced mobile

More information

Making 5G NR a commercial reality

Making 5G NR a commercial reality Making 5G NR a commercial reality Ultra-high fidelity media anywhere Immersive entertainment Safer, more autonomous transportation Connectivity is the new Electricity Reliable access to remote healthcare

More information

Way-Shing Lee Vice President, Technology Qualcomm Technologies, Inc. July 16, Expanding mobile technologies for the Internet of Things

Way-Shing Lee Vice President, Technology Qualcomm Technologies, Inc. July 16, Expanding mobile technologies for the Internet of Things Way-Shing Lee Vice President, Technology Qualcomm Technologies, Inc. July 16, 2015 Expanding mobile technologies for the Internet of Things TM 1 The evolution of wireless Redefined Computing By mobilizing

More information

Leading the Path to 5G

Leading the Path to 5G www.atis.org/5g2016 Follow us on Twitter @atisupdates Leading the Path to 5G Sanjeev Athalye Senior Director, Product Management, Qualcomm Dr. Arun Ghosh Director, Advanced Radio Group, AT&T 5G: From Concept

More information

NTT DOCOMO s Views on 5G

NTT DOCOMO s Views on 5G NTT DOCOMO s Views on 5G NTT DOCOMO, INC. NTT DOCOMO, INC., Copyright 2014, All rights reserved. 1 Network/Communication Society in 2020 and Beyond Everything Connected by Wireless Monitor/collect information

More information

Towards 5G NR Commercialization

Towards 5G NR Commercialization Towards 5G NR Commercialization Accelerating 5G NR for Enhanced Mobile Broadband May 25 2017 5G NR will deliver new levels of capability and efficiency For enhanced mobile broadband and beyond Multi-Gigabit

More information

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015

Towards 5G: Advancements from IoT to mmwave Communcations. Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 Towards 5G: Advancements from IoT to mmwave Communcations Next Generation and Standards Princeton IEEE 5G Summit May 26, 2015 5G requirements and challenges 1000x network capacity 10x higher data rate,

More information

New business opportunities for 5G NR

New business opportunities for 5G NR October, 2018 @qualcomm 4G/5G summit New business opportunities for 5G NR A unifying connectivity fabric for future innovations Like electricity, you will just expect it everywhere Scalable to extreme

More information

Network Vision: Preparing Telefónica for the next generation of services. Enrique Blanco Systems and Network Global Director

Network Vision: Preparing Telefónica for the next generation of services. Enrique Blanco Systems and Network Global Director Network Vision: Preparing Telefónica for the next generation of services Enrique Blanco Systems and Network Global Director 19.09.2017 Mobile Access Vision Increasing 4G coverage, features and network

More information

Best use of unlicensed spectrum. Durga Malladi VP, Engineering Qualcomm Technologies, Inc. February 3, 2016

Best use of unlicensed spectrum. Durga Malladi VP, Engineering Qualcomm Technologies, Inc. February 3, 2016 Best use of unlicensed spectrum Durga Malladi VP, Engineering Qualcomm Technologies, Inc. February 3, 2016 Agenda Overview Making the best use of licensed and unlicensed spectrum Higher efficiency For

More information

802.11ax: Meeting the demands of modern networks. Gopi Sirineni, Vice President Qualcomm Technologies, Inc. April 19,

802.11ax: Meeting the demands of modern networks. Gopi Sirineni, Vice President Qualcomm Technologies, Inc. April 19, 802.11ax: Meeting the demands of modern networks Gopi Sirineni, Vice President Qualcomm Technologies, Inc. April 19, 2017 @qualcomm The Wi-Fi landscape has changed More devices & data Diverse apps & services

More information

Smartphone-powered future

Smartphone-powered future Matt Grob EVP & Chief Technology Officer, Qualcomm Technologies, Inc. Smartphone-powered future @GrobMatt 1 Energy Enough to lift an adult several stories high Utility Replaces 6+ devices Power More computing

More information

5G is viewed as new ecosystem from end-to-end, harnessing both evolutionary as well as revolutionary technologies to:

5G is viewed as new ecosystem from end-to-end, harnessing both evolutionary as well as revolutionary technologies to: Who Needs 5G? 2 Why 5G? 3 5G Has Many Facets 5G is viewed as new ecosystem from end-to-end, harnessing both evolutionary as well as revolutionary technologies to: Expand capabilities, performance, and

More information

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research 5G in Reality Mikael Höök, Director Radio Research Ericsson Research FORECAST ~29 billion connected devices, 18 billion related to IoT 2018 2019 2020 2022 2021 ~550 million 5G subscriptions IoT devices

More information

Global 5G spectrum update

Global 5G spectrum update Global 5G spectrum update Luigi Ardito Director, Government Affairs Qualcomm Incorporated European Commission driving a Gigabit Society 1 Deploying 5G across Europe by 2020 with pre-commercial trials starting

More information

5 GHz for consumers. Guillaume Lebrun Director 7 th June 2016

5 GHz for consumers. Guillaume Lebrun Director 7 th June 2016 5 GHz for consumers Guillaume Lebrun Director 7 th June 2016 More data to more devices in more places ~75% 25-50B Mobile traffic that will be rich content & video 1 by 2020 Connected devices 2 and IoT

More information

5G Spectrum Access. Wassim Chourbaji. Vice President, Government Affairs and Public Policy EMEA Qualcomm Technologies Inc.

5G Spectrum Access. Wassim Chourbaji. Vice President, Government Affairs and Public Policy EMEA Qualcomm Technologies Inc. 5G Spectrum Access Wassim Chourbaji Vice President, Government Affairs and Public Policy EMEA Qualcomm Technologies Inc. @WassimChourbaji Pioneering 5G bands for Europe A unifying connectivity fabric Always-available,

More information

Innovative Wireless Technologies for Mobile Broadband

Innovative Wireless Technologies for Mobile Broadband Innovative Wireless Technologies for Mobile Broadband RRS-17-Africa Forum - WRC 19 Agenda : Challenges and Opportunities for Africa Emerging Innovative Technologies Dakar, Senegal, 31 March, 2017 Qualcomm

More information

Spectrum for 4G and 5G. Qualcomm Technologies, Inc. October, 2016

Spectrum for 4G and 5G. Qualcomm Technologies, Inc. October, 2016 Spectrum for 4G and 5G Qualcomm Technologies, Inc. October, 2016 New spectrum sharing paradigms opportunity to innovate Using all spectrum: low-band, mid-band, & high-band for mobile broadband Licensed

More information

5g for connected industries

5g for connected industries 5g for connected industries Johan Torsner Research Manager Ericsson Finland Page 1 5G Use Cases P??? Broadband experience everywhere anytime Mass market personalized media and gaming Meters and sensors,

More information

Minimum Technical Performance Requirements for IMT-2020 radio interface(s)

Minimum Technical Performance Requirements for IMT-2020 radio interface(s) Minimum Technical Performance Requirements for IMT-2020 radio interface(s) Eiman Mohyeldin ITU-R Workshop on IMT-2020 terrestrial radio interfaces 1 Nokia 2016 Introduction The capabilities of IMT-2020

More information

Wireless access. Dr. Christian Hoymann Principal Researcher, Ericsson Research

Wireless access. Dr. Christian Hoymann Principal Researcher, Ericsson Research 5G Wireless access Dr. Christian Hoymann Principal Researcher, Ericsson Research outline When does it happen? What can it do? How is it working? Commercial in confidence 2014-05-06 Page 2 Proposed 3GPP

More information

May 2015 Qualcomm Technologies, Inc Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

May 2015 Qualcomm Technologies, Inc Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved. May 2015 Qualcomm Technologies, Inc. 2013-2015 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved. 1 The evolution of wireless Redefined Computing By mobilizing the Internet

More information

Connectivity for 2020 and beyond

Connectivity for 2020 and beyond 5G Connectivity for 2020 and beyond Wireless-Access Generations The foundation of mobile telephony Mobile telephony for everyone The foundation of mobile broadband Further enhanced mobile broadband? 1G

More information

Wireless access beyond Erik Dahlman Ericsson Research

Wireless access beyond Erik Dahlman Ericsson Research 5G Wireless access beyond 2020 Erik Dahlman Ericsson Research Yesterday Mobile Telephony Today Mobile Broadband Tomorrow The Networked Society Access to information and sharing of data anywhere andanytime

More information

Mobile WiMAX EPL 657. Panayiotis Kolios

Mobile WiMAX EPL 657. Panayiotis Kolios Mobile WiMAX EPL 657 Panayiotis Kolios 1 WiMAX Based on the 802.16 suite of protocols Air interface OFDMA defined under 802.16-2004 Mobility enhancements made under 802.16e include multi-path performance

More information

Real 5G should be 4.9G. Kazuhiko Goukon Senior Scientist, Technology Office Softbank Corporation

Real 5G should be 4.9G. Kazuhiko Goukon Senior Scientist, Technology Office Softbank Corporation Real 5G should be 4.9G Kazuhiko Goukon Senior Scientist, Technology Office Softbank Corporation 0 Everyone s 5G is Chitty-Chitty Race >10Gbps /user (LOS) mmwave (LOS) Ultra Dense Small Cell (No Interference)

More information

Designing 5G NR The 3GPP Release-15 global standard for a unified, more capable 5G air interface

Designing 5G NR The 3GPP Release-15 global standard for a unified, more capable 5G air interface Designing 5G NR The 3GPP Release-15 global standard for a unified, more capable 5G air interface April 2018 @qualcomm_tech NR Designing a unified, more capable 5G air interface Enhanced mobile broadband

More information

Next-generation Mobile Communications System: 5G

Next-generation Mobile Communications System: 5G Next-generation Mobile Communications System: 5G Evolution of Mobile Technology Steady evolution toward higher capacity and data rates 1G Analog 2G Digital 3G IMT-2000 LTE 4G IMT-Advanced IMT-Advanced

More information

Big steps in wireless: Applications, spectrum, and technology. Ed Tiedemann Senior Vice-President, Engineering Qualcomm Technologies, Inc.

Big steps in wireless: Applications, spectrum, and technology. Ed Tiedemann Senior Vice-President, Engineering Qualcomm Technologies, Inc. Big steps in wireless: Applications, spectrum, and technology Ed Tiedemann Senior Vice-President, Engineering Qualcomm Technologies, Inc. Key Wireless Technology Standardization Roadmaps With considerable

More information

HSPA+ Advanced Smart Networks: Multipoint Transmission

HSPA+ Advanced Smart Networks: Multipoint Transmission Qualcomm Incorporated February 2011 Table of Contents 1. Introduction... 1 2. Multipoint HSPA Description... 2 Single Frequency Multipoint HSPA... 2 Dual Frequency Multipoint HSPA... 3 3. Advantages...

More information

Making 5G NR a reality

Making 5G NR a reality Making 5G NR a reality Leading the technology innovations for a unified, more capable 5G air interface Qualcomm Technologies, Inc. September, 2016 Transforming our world through intelligent connected platforms

More information

Bringing 5G into Reality

Bringing 5G into Reality Bringing 5G into Reality Dr. Wen Tong Huawei Fellow, CTO Huawei Wireless March 22 nd, 2016 www.huawei.com HUAWEI TECHNOLOGIES CO., LTD. Page 1 A Tip of Iceberg Paradigm for Connected People embb 3D Video,

More information

How will 5G transform Industrial IoT?

How will 5G transform Industrial IoT? June 6, 2018 @qualcomm Webinar How will 5G transform Industrial IoT? Mehmet Yavuz VP, Engineering Qualcomm Technologies, Inc. Leading mobile innovation for over 30 years Digitized mobile communications

More information

METIS Concepts for 5G. Hugo Tullberg, Ph.D. METIS Technical Manager

METIS Concepts for 5G. Hugo Tullberg, Ph.D. METIS Technical Manager METIS Concepts for 5G Hugo Tullberg, Ph.D. METIS Technical Manager 2014-04-28 METIS Scenarios Amazingly fast (Very high data rate) Super real-time and reliable connections (Very low latency) Best experience

More information

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802. 4.3 IEEE 802.11 Physical Layer 4.3.1 IEEE 802.11 4.3.2 IEEE 802.11b 4.3.3 IEEE 802.11a 4.3.4 IEEE 802.11g 4.3.5 IEEE 802.11n 4.3.6 IEEE 802.11ac,ad Andreas Könsgen Summer Term 2012 4.3.3 IEEE 802.11a Data

More information

Towards 5G RAN Virtualization Enabled by Intel and ASTRI*

Towards 5G RAN Virtualization Enabled by Intel and ASTRI* white paper Communications Service Providers C-RAN Towards 5G RAN Virtualization Enabled by Intel and ASTRI* ASTRI* has developed a flexible, scalable, and high-performance virtualized C-RAN solution to

More information

5G Vision. Ali Khayrallah Ericsson Research San Jose, CA

5G Vision. Ali Khayrallah Ericsson Research San Jose, CA 5G Vision Ali Khayrallah Ericsson Research San Jose, CA Industry transformation Traditional Industries Digitalize & Mobilize Transformed Industries Operators & Network Devices Applications Ericsson 2015

More information

Leading the world to 5G

Leading the world to 5G June 28, 2018 @5GwirelessEDGE Shanghai, China Leading the world to 5G Serge Willenegger SVP & GM, 5G & Industrial IoT Qualcomm Wireless GmbH A unifying connectivity platform to drive growth and innovation

More information

Smart Energy for Smart Cities Webinar 28 March Andy Wood, Director, Business Development, Smart Energy & Home Security and Automation, Qualcomm

Smart Energy for Smart Cities Webinar 28 March Andy Wood, Director, Business Development, Smart Energy & Home Security and Automation, Qualcomm Smart Energy for Smart Cities Webinar 28 March 2012 Andy Wood, Director, Business Development, Smart Energy & Home Security and Automation, Qualcomm GSM Association 2011 3G Cellular Technology for Smart

More information

5G in Cable. The Future of Broadband Access. Mar 29, Nokia 2017

5G in Cable. The Future of Broadband Access. Mar 29, Nokia 2017 5G in Cable The Future of Broadband Access Mar 29, 2017 1 Nokia 2017 Agenda Cable Wi-Fi / wireless initiatives 5G introduction - Motivation - Key enablers - Key use cases - Standards and product timelines

More information

Future Wireless access. Erik Dahlman Ericsson Research

Future Wireless access. Erik Dahlman Ericsson Research Future Wireless access 5G Erik Dahlman Ericsson Research Future wireless access 5G A Heterogeneous Network Use cases Technology High-quality mobile broadband for everyone Billions of sensors Critical communication

More information

Enabling Technologies for Next Generation Wireless Systems

Enabling Technologies for Next Generation Wireless Systems Enabling Technologies for Next Generation Wireless Systems Dr. Amitava Ghosh Nokia Fellow Nokia Bell Labs 10 th March, 2016 1 Nokia 2015 Heterogeneous use cases diverse requirements >10 Gbps peak data

More information

Combining D2D and content caching for mobile network offload

Combining D2D and content caching for mobile network offload Combining and content caching for mobile network offload Salah Eddine Elayoubi Orange Labs & IRT SystemX Joint work with Antonia Masucci and Berna Sayrac 07/09/2015 Key 5G technologies Ultra-dense networks

More information

Massive IoT in the city EXTRACT FROM THE ERICSSON MOBILITY REPORT

Massive IoT in the city EXTRACT FROM THE ERICSSON MOBILITY REPORT Massive IoT in the city EXTRACT FROM THE ERICSSON MOBILITY REPORT NOVEMBER 2016 Massive IoT in the city Cost-effective connectivity is a prime driver for IoT services uptake. Cellular networks are well-suited

More information

Alternate PHYs

Alternate PHYs A whitepaper by Ayman Mukaddam 2018, LLC Page 1 of 12 Contents Modern 802.11 Amendments... 3 Traditional PHYs Review (2.4 GHz and 5 GHz PHYs)... 3 802.11ad Directional Multi-Gigabit - DMG PHY... 4 Frequency

More information

Overview of WiMAX (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai

Overview of WiMAX (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai (Chapter 2) ENE 490 MON 13:30-16:30 Asst. Prof. Suwat Pattaramalai Background on IEEE 802.16 and WiMAX (Table 2.1 and Table 2.2) Salient Features of WiMAX OFDM-based physical layer: good resistance to

More information

Neville Meijers VP, Business Development Qualcomm Technologies, Inc. Extending the Benefits of LTE to Unlicensed Spectrum

Neville Meijers VP, Business Development Qualcomm Technologies, Inc. Extending the Benefits of LTE to Unlicensed Spectrum Neville Meijers VP, Business Development Qualcomm Technologies, Inc. Extending the Benefits of LTE to Unlicensed Spectrum 1 Making the best use of licensed and unlicensed spectrum More spectrum More licensed

More information

BII - Broadband for Industrial Internet

BII - Broadband for Industrial Internet BII - Broadband for Industrial Internet Technology Overview BII (/Bee/, Broadband for Industrial Internet) is an innovative long range wireless broadband networking technology developed by Doodle Labs.

More information

802.11n in the Outdoor Environment

802.11n in the Outdoor Environment POSITION PAPER 802.11n in the Outdoor Environment How Motorola is transforming outdoor mesh networks to leverage full n advantages Municipalities and large enterprise customers are deploying mesh networks

More information

HSPA+ R8. February 2009

HSPA+ R8. February 2009 HSPA+ R8 February 2009 Disclaimer Nothing in this presentation is an offer to sell any of the parts referenced herein. This presentation may reference and/or show images of parts and/or devices utilizing

More information

5G systems. meeting the expectations of the Networked Society. Dr Magnus Frodigh Director Wireless Access Networks GSM. Wi-Fi. New technologies 5G

5G systems. meeting the expectations of the Networked Society. Dr Magnus Frodigh Director Wireless Access Networks GSM. Wi-Fi. New technologies 5G 5G systems meeting the expectations of the Networked Society 2020 GSM Wi-Fi 3G Dr Magnus Frodigh Director Wireless Access Networks 4G New technologies 5G Ericsson Research Technology leadership the main

More information

5G a Network Operator s Point of View. Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs

5G a Network Operator s Point of View. Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs 5G a Network Operator s Point of View Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs 11 July 2017 5G? Is 5G a solution to all our problems? or 5G is a solution waiting for the problem? From a different

More information

On the roads to 5G: theory and practice

On the roads to 5G: theory and practice On the roads to 5G: theory and practice Alexander Serbin Kiev, 14 May 2018 MWC Huawei 5G 5G Portfolios 1st 5G CPE 5G Live Network in Korea 2 3GPP accelerates to match commercial progress 2016 2017 2018

More information

5G the next major wireless standard

5G the next major wireless standard 5G the next major wireless standard Klaus Doppler Director, Radio Communications Nokia Technologies, LABS DREAMS Seminar, Jan. 13, 2015 1 Nokia 2015 International activities on 5G Strong academic & government

More information

Spectrum for 4G and 5G. Qualcomm Technologies, Inc. July, 2017

Spectrum for 4G and 5G. Qualcomm Technologies, Inc. July, 2017 Spectrum for 4G and 5G Qualcomm Technologies, Inc. July, 2017 Using all available spectrum types and spectrum bands Licensed spectrum Exclusive use Over 40 bands globally for LTE Shared spectrum New shared

More information

Wireless Networking: An Introduction. Hongwei Zhang

Wireless Networking: An Introduction. Hongwei Zhang Wireless Networking: An Introduction Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Networking as resource allocation A taxonomy of current practice Technical elements Outline Networking as resource

More information

Next Generation and Standards August Intel 5G Next Generation and Standards

Next Generation and Standards August Intel 5G Next Generation and Standards Next Generation and Standards August 2018 Intel technologies features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending

More information

Welcome to the 5G age

Welcome to the 5G age Welcome to the 5G age Cristiano Amon Executive Vice President, Qualcomm Technologies, Inc. and President, Qualcomm CDMA Technologies October 2017 @cristianoamon Mobile technology is powering the global

More information

High Capacity Outdoor LTE-Advanced Pico Base Station with Integrated Wireless Backhaul and Carrier Wi-Fi

High Capacity Outdoor LTE-Advanced Pico Base Station with Integrated Wireless Backhaul and Carrier Wi-Fi AirSynergy 3000 High Capacity Outdoor LTE-Advanced Pico Base Station with Integrated Wireless Backhaul and Carrier Wi-Fi Multi-Function, Compact and Versatile Redefining the economics of LTE-Advanced HetNet

More information

Abstract of the Book

Abstract of the Book Book Keywords IEEE 802.16, IEEE 802.16m, mobile WiMAX, 4G, IMT-Advanced, 3GPP LTE, 3GPP LTE-Advanced, Broadband Wireless, Wireless Communications, Cellular Systems, Network Architecture Abstract of the

More information

Small cells Contents. Overview & market drivers. Small cell and HetNet architecture. Deployment considerations. Introduction. Deployment scenarios

Small cells Contents. Overview & market drivers. Small cell and HetNet architecture. Deployment considerations. Introduction. Deployment scenarios Small cells Contents Introduction Overview & market drivers Small cell and HetNet architecture Deployment considerations Deployment scenarios Small cell site approach Macro scalability 20 UNIK4230 Mobile

More information

5G and Automotive Cellular Vehicle-to-Everything (C-V2X) March 2017

5G and Automotive Cellular Vehicle-to-Everything (C-V2X) March 2017 5G and Automotive Cellular Vehicle-to-Everything (C-V2X) March 2017 Our vision for the autonomous vehicle of the future Intelligently connected Efficiently shared Increasingly electric Increasingly autonomous

More information

4G Broadband Services for Differentiated Market Segments

4G Broadband Services for Differentiated Market Segments 4G Broadband Services for Differentiated Market Segments Dr. Mo Shakouri Corporate VP Copyright Alvarion Ltd. Wireless Broadband Market Trends 2 Increasing network usage Increasing penetration worldwide

More information

Day 1: Wi-Fi Technology Overview

Day 1: Wi-Fi Technology Overview Duration: 5days Hands on: Wireshark based real-life Wi-Fi packet trace analysis Demos : Alethea Wicheck multi-sta emulator for understanding performance of Wi-Fi APs and to study impact of multiple clients

More information

Dr. Evaldas Stankevičius, Regulatory and Security Expert.

Dr. Evaldas Stankevičius, Regulatory and Security Expert. 2018-08-23 Dr. Evaldas Stankevičius, Regulatory and Security Expert Email: evaldas.stankevicius@tele2.com 1G: purely analog system. 2G: voice and SMS. 3G: packet switching communication. 4G: enhanced mobile

More information

Cross polarization High speed Long-range coverage LTE CPE SOLUTION

Cross polarization High speed Long-range coverage LTE CPE SOLUTION Cross polarization High speed Long-range coverage LTE CPE SOLUTION Compact, agile, durable all-in-one solution A complete solution for wireless system enhancement to maximize outdoor-to-indoor connectivity

More information

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon

Transport Requirements for a 5G Broadband Use Case. Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Transport Requirements for a 5G Broadband Use Case Vishwanath Ramamurthi Thomas Tan Shankar Venkatraman Verizon Compliance with IEEE Standards Policies and Procedures Subclause 5.2.1 of the IEEE-SA Standards

More information

4G Mobil-szélessáv: Hogyan jutunk 4-ről az 5-re. Novák Csaba Ericsson Magyarország. LTE Subscriptions

4G Mobil-szélessáv: Hogyan jutunk 4-ről az 5-re. Novák Csaba Ericsson Magyarország. LTE Subscriptions 4G Mobil-szélessáv: Hogyan jutunk 4-ről az 5-re Novák Csaba Ericsson Magyarország LTE Subscriptions 1H 2014 298 012 134 Wireless-access generations 1980 1990 2000 2010 2020 The foundation of mobile telephony

More information

Indoor LTE-Advanced Enterprise Femto Base Station with optional Wireless Backhaul

Indoor LTE-Advanced Enterprise Femto Base Station with optional Wireless Backhaul AirSynergy 1000 Indoor LTE-Advanced Enterprise Femto Base Station with optional Wireless Backhaul Multi-Function, High Performance and Economic Extending LTE-Advanced Public Access to the Enterprise AirSynergy

More information

Towards 5G Commercial Deployment. Janne Peisa, Ericsson Research

Towards 5G Commercial Deployment. Janne Peisa, Ericsson Research 5g Towards 5G Commercial Deployment Janne Peisa, Ericsson Research 2017-09-18 Outline What is 5G Where are we now? What comes next Summary STAR project meeting #3 Ericsson Confidential 2017-06-09 Page

More information

Original Circular Letter

Original Circular Letter LTE-Advanced Original Circular Letter LTE-Advanced will be an evolution of LTE. Therefore LTE- Advanced must be backward compatible with LTE Release 8. LTE-Advanced requirements will meet or even exceed

More information

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator Introduction- What is WiMAX WiMAX -Worldwide Interoperability

More information

Roadmap for 5G Enhancements to Communication Technology

Roadmap for 5G Enhancements to Communication Technology Roadmap for 5G Enhancements to Communication Technology FIIF Future Avenues - Aalto University October 25 th, 2016 Harri Holma, Fellow Nokia Bell Labs Finland #1 in Mobile Data Usage Great Starting Point

More information

LTE evolution and road to 5G

LTE evolution and road to 5G LTE evolution and road to 5G Dino Flore Chairman of 3GPP RAN (Qualcomm Technologies Inc.) 3GPP 2015 1 Introduction 3GPP continues to expand the LTE platform to new services, while improving its efficiency

More information

Brainstorming Workshop on 5G Standardization: WISDOM. by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L.

Brainstorming Workshop on 5G Standardization: WISDOM. by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L. Brainstorming Workshop on 5G Standardization: WISDOM by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L. Bhawan, Delhi 1 st September, 2014 Index 3G and Beyond ITU Work on Future

More information

Massive MIMO WHITE PAPER V 0.1

Massive MIMO WHITE PAPER V 0.1 Massive MIMO WHITE PAPER V 0.1 Massive MIMO WHITE PAPER V 0.1 Version V0.1 Deliverable Type Confidential Level Working Group Procedural Document Working Document Open to GTI Operator Members Open to GTI

More information

Outdoor LTE-Advanced Pico Base Station optimized for street-level deployments, hot-spots and coverage in-fill

Outdoor LTE-Advanced Pico Base Station optimized for street-level deployments, hot-spots and coverage in-fill AirSynergy 2000 Outdoor LTE-Advanced Pico Base Station optimized for street-level deployments, hot-spots and coverage in-fill Multi-Function, Compact and Versatile Redefining the economics of LTE-Advanced

More information

Airmux Family Market and Product Portfolio

Airmux Family Market and Product Portfolio Airmux Family Market and Product Portfolio Airmux Family Sept 2013 Slide1 Agenda 1 2 3 4 5 Airmux Market Airmux Overview Airmux-400 : Point To Point Airmux-5000 : Point To Multipoint Summary Airmux Family

More information

5G in the Automotive Industry A Telecoms Manufacture's view Preben Mogensen, Nokia Networks Fellow & Professor at Aalborg University

5G in the Automotive Industry A Telecoms Manufacture's view Preben Mogensen, Nokia Networks Fellow & Professor at Aalborg University 5G for people and things Key to the programmable world i 5G in the Automotive Industry A Telecoms Manufacture's view Preben Mogensen, Nokia Networks Fellow & Professor at Aalborg University 1 Nokia Solutions

More information

RAN slicing as enabler for low latency services

RAN slicing as enabler for low latency services RAN slicing as enabler for low latency services Presented by A. Maeder, NOKIA Bell Labs Contributions by Z. Li, P. Rost, C. Sartori, A. Prasad, C. Mannweiler ITG 5.2.4 Fachgruppentreffen Dresden, June

More information

LTE: MIMO Techniques in 3GPP-LTE

LTE: MIMO Techniques in 3GPP-LTE Nov 5, 2008 LTE: MIMO Techniques in 3GPP-LTE PM101 Dr Jayesh Kotecha R&D, Cellular Products Group Freescale Semiconductor Proprietary Information Freescale and the Freescale logo are trademarks of Freescale

More information

IoT with 5G Technology

IoT with 5G Technology July 25 th, 2018 Innofest ID 2018 Jakarta, Indonesia IoT with 5G Technology Transformation for Industrial 4.0 Shannedy Ong Country Director Indonesia Leading mobile innovation for over 30 years Digitized

More information

Intercell Interference Mitigation in LTE-Advanced Heterogeneous Network

Intercell Interference Mitigation in LTE-Advanced Heterogeneous Network Proceedings of IOE Graduate Conference, 2016 pp. 85 92 Intercell Interference Mitigation in LTE-Advanced Heterogeneous Network Prem Bahadur Chhetri 1, Sharad Kumar Ghimire 2 1, 2 Department of Electronics

More information

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering by wilgengebroed IEEE 802.11ah sub 1GHz WLAN for IoT What lies beneath Wi-Fi HaLow Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering eduardg@entel.upc.edu elopez@entel.upc.edu Contents

More information

The Transition from Unsynchronized to GPS Synchronized Networks Finally Explained

The Transition from Unsynchronized to GPS Synchronized Networks Finally Explained The Transition from Unsynchronized to GPS Synchronized Networks Finally Explained TABLE OF CONTENTS Abstract....................... 3 Single Sector Solution.................. 3 Multi-Sector Solution 3

More information

ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, Feb. 2017

ITU Arab Forum on Future Networks: Broadband Networks in the Era of App Economy, Tunis - Tunisia, Feb. 2017 On the ROAD to 5G Ines Jedidi Network Products, Ericsson Maghreb ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, 21-22 Feb. 2017 agenda Why 5G? What

More information

Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks

Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks 1 Nokia Siemens Networks 2012 Key requirements towards 2020 Support up to 1000 times more traffic Manage up to 10 times

More information

Imagining Tomorrow's Wireless Landscape

Imagining Tomorrow's Wireless Landscape Imagining Tomorrow's Wireless Landscape Wireless Broadband Evolution Rasmus Hellberg, PhD Director, Technical Marketing Qualcomm Wireless Broadband Evolution 3G offers excellent mobile broadband today

More information