PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science & Engineering

Size: px
Start display at page:

Download "PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Computer Science & Engineering"

Transcription

1 INTERNAL ASSESSMENT TEST 2 Date : 01/04/2015 Max Marks : 50 Subject & Code : Computer Networks-II/10CS64 Section : VI- A & VI-C Name of faculty : Ravi Dixit Time : 8:30-10:00am Note: Answer ALL Questions (SOLUTIONS) 1. a Define Secrete key and public key encryption method? An encryption system in which the sender and receiver of a message share a single, common key that is used to encrypt and decrypt the message. 4 Symmetric-key systems are simpler and faster, but their main drawback is that the two parties must somehow exchange the key in a secure way. Public-key encryption avoids this problem because the public key can be distributed in a non-secure way, and the private key is never transmitted. The disadvantage of symmetric cryptography is that it presumes two parties have agreed on a key and been able to exchange that key in a secure manner prior to communication. A cryptographic system that uses two keys -- a public key known to everyone and a private or secret key known only to the recipient of the message. An important element to the public key system is that the public and private keys are related in such a way that only the public key can be used to encrypt messages and only the corresponding private key can be used to decrypt them. Moreover, it is virtually impossible to deduce the private key if you know the public key. It is also called asymmetric encryption because it uses two keys instead of one key (symmetric encryption).

2 b For RSA encryption of 4 bit message of 1001 and given that a=3, b=11 and x=3. Find the Public Key, Private Key and the Cipher text. Message, m = 1001 or m=9; a=3, b=11 and x=3 Let n= a.b = = 33 Public Key: Find y such that x.y mod (a-1).(b-1) = 1 ; 3.y mod (3-1)(11-1) = 1; 3.y mod 20 = 1 ; y=7 Public Key = { n, y} = {33, 7} Private Key: Private Key = { n, x} = {33, 3} Cipher Text: c = m x mod n ; = 9 3 mod 33 Cipher text = a What is the purpose of network management? Explain Management Information Base (MIB) significance in network management. 5

3 Network management refers to the activities, methods, procedures, and tools that pertain to the operation, administration, maintenance, and provisioning of networked systems. The functions performed by a network management system can be categorized into the following five areas: Fault management, Configuration management, Accounting management, Performance management and Security management Management Information Base (MIB) MIBs are a collection of information organized hierarchically which define the properties of the managed object within the device to be managed (such as a router, switch, etc.) Each managed device keeps a database of values for each of the definitions written in the MIB. As such, it is not actually database but implementation dependent. Each vendor of SNMP equipment has an exclusive section of the MIB tree structure under their control and these are accessed using a protocol such as SNMP. There are two types of MIBs: scalar and tabular. Scalar objects define a single object instance whereas tabular objects define multiple related object instances grouped in MIB tables. The following keywords are used to define a MIB object: Syntax: - Defines the abstract data structure corresponding to the object type. The SMI purposely restricts the ASN.1 constructs that can be used to promote simplicity. Access: - Defines whether the object value may only be retrieved but not modified (read only) or whether it may also be modified (read-write). Description: Contains a textual definition of the object type. The definition provides all semantic definitions necessary for interpretation; it typically contains information of the sort that would be communicated in any ASN.1 commentary annotations associated with the object. MIB Object Identifiers Each object in the MIB has an object identifier (OID), which the management station uses to request the object's value from the agent. An OID is a sequence of integers that uniquely identifies a managed object by defining a path to that object through a tree-like structure called the OID tree or registration tree. When an SNMP agent needs to access a specific managed object, it traverses the OID tree to find the object. The MIB object identifier hierarchy and format is shown in the above figure.

4 b Give an overview of Domain Name System (DNS) Domain Name Service (DNS): DNS is a host name to IP address translation service DNS is a distributed database implemented in a hierarchy of name servers, an application level protocol for message exchange between clients and servers A lookup mechanism for translating objects into other objects A globally distributed, loosely coherent, scalable, reliable, dynamic database Comprised of three components: A name space: Servers making that name space available Resolvers (clients) which query the servers about the name space: It is easier to remember a host name than it is to remember an IP address. A name has more meaning to a user than a 4 byte number. Applications such as FTP, HTTP, , etc., all require the user to input a destination. The user generally enters a host name. The application takes the host name supplied by the user and forwards it to DNS for translation to an IP address. DNS works by exchanging messages between client and server machines. A client application will pass the destination host name to the DNS process to get the IP address. The application then sits and waits for the response to return. How DNS Works 5

5 Client wants IP for 1st approx: client queries a root server to find com DNS server client queries com DNS server to get amazon.com DNS server client queries amazon.com DNS server to get IP address for 3. a What is QoS? Give an overview of Integrated QoS method with block diagram 10 Quality of service (QoS) refers to resource reservation control mechanisms rather than the achieved service quality. Quality of service is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow. For example, a required bit rate, delay, jitter, packet dropping probability and/or bit error rate may be guaranteed. Quality of service guarantees are important if the network capacity is insufficient, especially for real-time streaming multimedia applications such as voice over IP, online games and IP-TV, since these often require fixed bit rate and are delay sensitive, and in networks where the capacity is a limited resource, for example in cellular data communication. In the absence of network congestion, QoS mechanisms are not required. A network or protocol that supports QoS may agree on a traffic contract with the application software and reserve capacity in the network nodes, for example during a session establishment phase.

6 During the session it may monitor the achieved level of performance, for example the data rate and delay, and dynamically control scheduling priorities in the network nodes. It may release the reserved capacity during a tear down phase. Integrated services (IntServ): IntServ or integrated services is an architecture that specifies the elements to guarantee quality of service (QoS) on networks. IntServ specifies a fine-grained QoS system, which is often contrasted with DiffServ's coarse-grained control system. The idea of IntServ is that every router in the system implements IntServ, and every application that requires some kind of guarantees has to make an individual reservation. Integrated services approach consists of two service classes 1. Guaranteed service class: - defined for applications that cannot tolerate a delay beyond particular value. Real time applications like voice or video communications use this type of service 2. Controlled-load service class:- defined for applications that can tolerate some delay and loss. The below figure shows four processes providing quality of service

7 Traffic shaping Traffic shaping provides a means to control the volume of traffic being sent into a network in a specified period or the maximum rate at which the traffic is sent (rate limiting). This control can be accomplished in many ways and for many reasons; however traffic shaping is always achieved by delaying packets. Traffic shaping is commonly applied at the network edges to control traffic entering the network, but can also be applied by the traffic source (for example, computer or network card) or by an element in the network. A traffic shaper works by delaying metered traffic such that each packet complies with the relevant traffic contract. Metering may be implemented with for example the leaky bucket or token bucket algorithms Admission Control It is a network function that computes the resource(bandwidth and buffers) requirements of new flow and determines whether the resources along the path to be followed are available. Before sending packet the source must obtain permission from admission control. Admission control decides whether to accept the flow or not. Flow is accepted if the QoS of new flow does not violate QoS of existing flows QoS can be expressed in terms of maximum delay, loss probability, delay variance, or other performance measures. QoS requirements: Peak, Average., Minimum Bit rate, Maximum burst size, Delay, Loss requirement Network computes resources needed like Effective bandwidth QoS & Resource Allocation, VPN, MPLS If flow accepted, network allocates resources to ensure QoS delivered as long as source conforms to contract

8 3. Resource reservation protocol The Resource ReSerVation Protocol (RSVP) is a Transport layer protocol designed to reserve resources across a network for an integrated services Internet. RSVP does not transport application data but is rather an Internet control protocol, like ICMP, IGMP, or routing protocols. RSVP provides receiver-initiated setup of resource reservations for multicast or unicast data flows with scaling and robustness. RSVP can be used by either hosts or routers to request or deliver specific levels of quality of service (QoS) for application data streams or flows. RSVP defines how applications place reservations and how they can relinquish the reserved resources once the need for them has ended. RSVP operation will generally result in resources being reserved in each node along a path. RSVP is not itself a routing protocol and was designed to interoperate with current and future routing protocols. RSVP by itself is rarely deployed in telecommunications networks today, but the traffic engineering extension of RSVP, or RSVP-TE, is becoming more widely accepted nowadays in many QoS-oriented networks. 4. Packet scheduling Packet scheduling refers to the decision process used to choose which packets should be serviced or dropped. Buffer management refers to any particular discipline used to regulate the occupancy of a particular queue. At present, support is included for drop-tail (FIFO) queueing, RED buffer management, CBQ (including a priority and round-robin scheduler), and variants of Fair Queueing including, Fair Queueing (FQ) and Deficit Round-Robin (DRR).

9 4 a. Give an overview of Leaky Bucket approach for traffic shaping 5 Leaky Bucket Traffic Shaping The algorithm is used to control the rate at which data is injected into a network, smoothing out "burstiness" in the data rate. A leaky bucket provides a mechanism by which bursty traffic can be shaped to present a steady stream of traffic to the network, as opposed to traffic with erratic bursts of lowvolume and high-volume flows. A leaky bucket interface is connected between a packet transmitter and the Network No matter at which rate the packets enter the traffic shaper, the outflow is regulated as a constant rate. When a packet arrives, the interface decides whether that packet should be queued or discarded, depending on the capacity of the buffer. Incoming packets are discarded once the bucket becomes full. This method directly restricts the maximum size of burst coming into the system. Packets are transmitted as either fixed-size packets or variable-size packets. Leaky bucket scheme is modeled by two main buffers, one buffer forms a queue of incoming packets and other one receives authorizations. Leaky-bucket traffic-shaper algorithm is summarized as follows. Begin leaky-bucket Algorithm 1. define for the algorithm = rate at which packets with irregular rate arrive at the main buffer g = rate at which authorization grants at the grant buffer w = size of the grant buffer and can be dynamically adjusted 2. Every 1/g seconds, a grant arrives. 3. Over each period of 1/g seconds, i grants can be assigned to the first i incoming packets, where i< = w, and packets exit from the queue one at a time every 1/g seconds, totaling i/g seconds. 4. If more than w packets are in the main buffer, only the first w packets are assigned

10 grants at each window time of 1/g, and the rest remain in the main queue to be examined in the next 1/g interval. 5. If no grant is in the grant buffer, packets start to be queued b. Explain Weighted Fair Queueing method applied in traffic scheduling 5 Weighted fair queuing (WFQ) is a data packet scheduling technique allowing different scheduling priorities to statistically multiplexed data flows.

11 WFQ is a generalization of fair queuing (FQ). Both in WFQ and FQ, each data flow has a separate FIFO queue. WFQ addresses the situation in which different users have different requirements. Each user flow has its own buffer and each user flow also has weight. Here weight determines its relative bandwidth share. The WFQ is depicted in the Figure below. If buffer 1 has weight 1 and buffer 2 has weight 3, then when both buffers are nonempty, buffer 1 will receive 1/(1+3)=1/4 of the bandwidth and buffer 2 will receive ¾ of the bandwidth. For an n-queue system, queue i ϵ {1... n} is assigned a weight ω i. The outgoing link capacity s is shared among the flows with respect to their allocated weights. Each flow i is guaranteed to have a service rate of at least

12 Given a certain available bandwidth, if a queue is empty at a given time, the unused portion of its bandwidth is shared among the other active queues according to their respective weights. 5 Write Short notes on: a. VPN 10 A virtual private network (VPN) is a network that uses a public telecommunication infrastructure, such as the Internet, to provide remote offices or individual users with secure access to their organization's network. A virtual private network can be contrasted with an expensive system of owned or leased lines that can only be used by one organization. The goal of a VPN is to provide the organization with the same capabilities, but at a much lower cost. A VPN works by using the shared public infrastructure while maintaining privacy through security procedures and tunneling protocols such as the Layer Two Tunneling Protocol (L2TP). In effect, the protocols, by encrypting data at the sending end and decrypting it at the receiving end, send the data through a "tunnel" that cannot be "entered" by data that is not properly encrypted. An additional level of security involves encrypting not only the data, but also the originating and receiving network addresses. VPNs provides privacy by using tunneling protocols and security procedures VPN provides the following capabilities Extended geographical communication Reduced operational cost

13 Enhanced organizational management Enhanced network management There are two types of VPNs Remote Access VPN Site-to-Site VPN b. MPLS Remote Access VPN Remote access tunneling is a user to LAN connection. Organization users are connected to a private network from various remote locations by using remote access VPN. Remote access VPNs use encrypted connections between the organizations private network and remote users through a third party that provider service. Tunneling uses mainly the point to point protocol in remote access VPN. To communicate over internet PPP helps by carrying other internet protocols as IPsec, L2F, PPTP and L2TP. Site-to-Site VPN Site to site tunneling is used to connect multiple fixed sites of an organization over a public network. It can be classified as either intranet or extranet 1. Internet : it is used to connect various remote site LANS of an organization into a private network

14 2. Extranet: it allows two organizations to work in a shared environment through a tunnel built to connect them. b. MPLS Multiprotocol Label Switching (MPLS) refers to a mechanism which directs and transfers data between Wide Area Networks (WANs) nodes with high performance, regardless of the content of the data. MPLS makes it easy to create "virtual links" between nodes on the network, regardless of the protocol of their encapsulated data. It is a highly scalable, data-carrying mechanism. In an MPLS network, data packets are assigned labels. Packet-forwarding decisions are made solely on the contents of this label, without the need to examine the packet itself. This allows one to create end-to-end circuits across any type of transport medium, using any protocol. The primary benefit is to eliminate dependence on a particular Data Link Layer technology, such as ATM, frame relay, SONET or Ethernet, and eliminate the need for multiple Layer 2 networks to satisfy different types of traffic. MPLS belongs to the family of packet-switched networks. MPLS operates at an OSI Model layer that is generally considered to lie between traditional definitions of Layer 2 (Data Link Layer) and Layer 3 (Network Layer), and thus is often referred to as a "Layer 2.5" protocol. It was designed to provide a unified data-carrying service for both circuit-based clients and packet-switching clients which provide a datagram service model.

15 1) Ingress LSR: This performs initial packet processing and applies the first label to create a new label. 2) Core LSR: This swaps the incoming label with the corresponding next hop label given by a forwarding table. 3) Egress LSR: This pops the label from the packet. When an IP packet enters into an MPLS domain an ingress LSR processes its information and matches it to a Forward Equivalence Class (FEC). The QoS parameters also define which queueing and discarding policy are to be used. Two protocols are used to exchange information among routers, and they are, Intra domain Routing Protocol (OSPF): This is used to exchange routing information. Label Distribution Protocol: This assigns labels to each packet.

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Quality of Service in the Internet

Quality of Service in the Internet Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) What you will learn Techniques for QoS Integrated Service (IntServ) Differentiated Services (DiffServ) MPLS QoS Design Principles 1/49 QoS in the Internet Paradigm IP over everything

More information

Real-Time Protocol (RTP)

Real-Time Protocol (RTP) Real-Time Protocol (RTP) Provides standard packet format for real-time application Typically runs over UDP Specifies header fields below Payload Type: 7 bits, providing 128 possible different types of

More information

Quality of Service II

Quality of Service II Quality of Service II Patrick J. Stockreisser p.j.stockreisser@cs.cardiff.ac.uk Lecture Outline Common QoS Approaches Best Effort Integrated Services Differentiated Services Integrated Services Integrated

More information

Improving QOS in IP Networks. Principles for QOS Guarantees

Improving QOS in IP Networks. Principles for QOS Guarantees Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential

More information

Multicast and Quality of Service. Internet Technologies and Applications

Multicast and Quality of Service. Internet Technologies and Applications Multicast and Quality of Service Internet Technologies and Applications Aims and Contents Aims Introduce the multicast and the benefits it offers Explain quality of service and basic techniques for delivering

More information

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module

Presentation Outline. Evolution of QoS Architectures. Quality of Service Monitoring and Delivery Part 01. ICT Technical Update Module Quality of Service Monitoring and Delivery Part 01 ICT Technical Update Module Presentation Outline Introduction to IP-QoS IntServ Architecture DiffServ Architecture Post Graduate Certificate in Professional

More information

Lecture 13. Quality of Service II CM0256

Lecture 13. Quality of Service II CM0256 Lecture 13 Quality of Service II CM0256 Types of QoS Best Effort Services Integrated Services -- resource reservation network resources are assigned according to the application QoS request and subject

More information

Lecture Outline. Bag of Tricks

Lecture Outline. Bag of Tricks Lecture Outline TELE302 Network Design Lecture 3 - Quality of Service Design 1 Jeremiah Deng Information Science / Telecommunications Programme University of Otago July 15, 2013 2 Jeremiah Deng (Information

More information

Mohammad Hossein Manshaei 1393

Mohammad Hossein Manshaei 1393 Mohammad Hossein Manshaei manshaei@gmail.com 1393 Voice and Video over IP Slides derived from those available on the Web site of the book Computer Networking, by Kurose and Ross, PEARSON 2 Multimedia networking:

More information

Basics (cont.) Characteristics of data communication technologies OSI-Model

Basics (cont.) Characteristics of data communication technologies OSI-Model 48 Basics (cont.) Characteristics of data communication technologies OSI-Model Topologies Packet switching / Circuit switching Medium Access Control (MAC) mechanisms Coding Quality of Service (QoS) 49

More information

Internet Services & Protocols. Quality of Service Architecture

Internet Services & Protocols. Quality of Service Architecture Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Quality of Service Architecture Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail:

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) The Internet was originally designed for best-effort service without guarantee of predictable performance. Best-effort service is often sufficient for a traffic that is not sensitive

More information

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model

Principles. IP QoS DiffServ. Agenda. Principles. L74 - IP QoS Differentiated Services Model. L74 - IP QoS Differentiated Services Model Principles IP QoS DiffServ Differentiated Services Architecture DSCP, CAR Integrated Services Model does not scale well flow based traffic overhead (RSVP messages) routers must maintain state information

More information

Unit 2 Packet Switching Networks - II

Unit 2 Packet Switching Networks - II Unit 2 Packet Switching Networks - II Dijkstra Algorithm: Finding shortest path Algorithm for finding shortest paths N: set of nodes for which shortest path already found Initialization: (Start with source

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS Computer Network Architectures and Multimedia Guy Leduc Chapter 2 MPLS networks Chapter based on Section 5.5 of Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks QoS in IP networks Prof. Andrzej Duda duda@imag.fr Contents QoS principles Traffic shaping leaky bucket token bucket Scheduling FIFO Fair queueing RED IntServ DiffServ http://duda.imag.fr

More information

Part1: Lecture 4 QoS

Part1: Lecture 4 QoS Part1: Lecture 4 QoS Last time Multi stream TCP: SCTP Multi path TCP RTP and RTCP SIP H.323 VoIP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP)

More information

Last time! Overview! 14/04/15. Part1: Lecture 4! QoS! Router architectures! How to improve TCP? SYN attacks SCTP. SIP and H.

Last time! Overview! 14/04/15. Part1: Lecture 4! QoS! Router architectures! How to improve TCP? SYN attacks SCTP. SIP and H. Last time Part1: Lecture 4 QoS How to improve TCP? SYN attacks SCTP SIP and H.323 RTP and RTCP Router architectures Overview two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding

More information

Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services

Quality of Service (QoS) Computer network and QoS ATM. QoS parameters. QoS ATM QoS implementations Integrated Services Differentiated Services 1 Computer network and QoS QoS ATM QoS implementations Integrated Services Differentiated Services Quality of Service (QoS) The data transfer requirements are defined with different QoS parameters + e.g.,

More information

Advanced Lab in Computer Communications Meeting 6 QoS. Instructor: Tom Mahler

Advanced Lab in Computer Communications Meeting 6 QoS. Instructor: Tom Mahler Advanced Lab in Computer Communications Meeting 6 QoS Instructor: Tom Mahler Motivation Internet provides only single class of best-effort service. Some applications can be elastic. Tolerate delays and

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

QUALITY of SERVICE. Introduction

QUALITY of SERVICE. Introduction QUALITY of SERVICE Introduction There are applications (and customers) that demand stronger performance guarantees from the network than the best that could be done under the circumstances. Multimedia

More information

RSVP 1. Resource Control and Reservation

RSVP 1. Resource Control and Reservation RSVP 1 Resource Control and Reservation RSVP 2 Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows

More information

Resource Control and Reservation

Resource Control and Reservation 1 Resource Control and Reservation Resource Control and Reservation policing: hold sources to committed resources scheduling: isolate flows, guarantees resource reservation: establish flows 2 Usage parameter

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

CSE398: Network Systems Design

CSE398: Network Systems Design CSE398: Network Systems Design Instructor: Dr. Liang Cheng Department of Computer Science and Engineering P.C. Rossin College of Engineering & Applied Science Lehigh University February 21, 2005 Outline

More information

Trafffic Engineering 2015/16 1

Trafffic Engineering 2015/16 1 Traffic Engineering 2015/2016 Traffic Engineering: from ATM to MPLS fernando.silva@tecnico.ulisboa.pt Instituto Superior Técnico Trafffic Engineering 2015/16 1 Outline Traffic Engineering revisited Traffic

More information

of-service Support on the Internet

of-service Support on the Internet Quality-of of-service Support on the Internet Dept. of Computer Science, University of Rochester 2008-11-24 CSC 257/457 - Fall 2008 1 Quality of Service Support Some Internet applications (i.e. multimedia)

More information

Converged Networks. Objectives. References

Converged Networks. Objectives. References Converged Networks Professor Richard Harris Objectives You will be able to: Discuss what is meant by convergence in the context of current telecommunications terminology Provide a network architecture

More information

Improve the QoS by Applying Differentiated Service over MPLS Network

Improve the QoS by Applying Differentiated Service over MPLS Network Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 4, Issue. 9, September 2015,

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.2 Kaan Bür, Jens Andersson Transport Layer Protocols Special Topic: Quality of Service (QoS) [ed.4 ch.24.1+5-6] [ed.5 ch.30.1-2]

More information

Multimedia Applications over Packet Networks

Multimedia Applications over Packet Networks Multimedia Networking and Quality of Service Mario Baldi Technical Univeristy of Torino Computer Engineering Department mario.baldi@polito.it +39 011 564 7067 staff.polito.it/mario.baldi Nota di Copyright

More information

MPLS Multi-Protocol Label Switching

MPLS Multi-Protocol Label Switching MPLS Multi-Protocol Label Switching Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Computer Networks Design and Management - 1 MPLS: introduction

More information

CSCD 433/533 Advanced Networks Spring Lecture 22 Quality of Service

CSCD 433/533 Advanced Networks Spring Lecture 22 Quality of Service CSCD 433/533 Advanced Networks Spring 2016 Lecture 22 Quality of Service 1 Topics Quality of Service (QOS) Defined Properties Integrated Service Differentiated Service 2 Introduction Problem Overview Have

More information

IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094

IP QOS Theory and Practice. eng. Nikolay Milovanov CCIE SP# 20094 IP QOS Theory and Practice eng. Nikolay Milovanov CCIE SP# 20094 QoS Architectures QoS Architecture Models Best Effort Service Integrated Service Differentiated Service 3 Best Effort Service What exactly

More information

VoIP Protocols and QoS

VoIP Protocols and QoS Announcements I. Times have been posted for demo slots VoIP Protocols and QoS II. HW5 and HW6 solutions have been posted HW6 being graded Internet Protocols CSC / ECE 573 Fall, 2005 N. C. State University

More information

Institute of Computer Technology - Vienna University of Technology. L73 - IP QoS Integrated Services Model. Integrated Services Model

Institute of Computer Technology - Vienna University of Technology. L73 - IP QoS Integrated Services Model. Integrated Services Model Integrated Services Model IP QoS IntServ Integrated Services Model Resource Reservation Protocol (RSVP) Agenda Integrated Services Principles Resource Reservation Protocol RSVP Message Formats RSVP in

More information

Design Intentions. IP QoS IntServ. Agenda. Design Intentions. L73 - IP QoS Integrated Services Model. L73 - IP QoS Integrated Services Model

Design Intentions. IP QoS IntServ. Agenda. Design Intentions. L73 - IP QoS Integrated Services Model. L73 - IP QoS Integrated Services Model Design Intentions Integrated Services Model IP QoS IntServ Integrated Services Model Resource Reservation Protocol (RSVP) The Internet was based on a best effort packet delivery service, but nowadays the

More information

Network Support for Multimedia

Network Support for Multimedia Network Support for Multimedia Daniel Zappala CS 460 Computer Networking Brigham Young University Network Support for Multimedia 2/33 make the best of best effort use application-level techniques use CDNs

More information

Multimedia Networking and Quality of Service

Multimedia Networking and Quality of Service Multimedia Networking and Quality of Service Mario Baldi Politecnico di Torino (Technical Univeristy of Torino) Department of Computer Engineering mario.baldi [at] polito.it +39 011 564 7067 staff.polito.it/mario.baldi

More information

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach

Topic 4b: QoS Principles. Chapter 9 Multimedia Networking. Computer Networking: A Top Down Approach Topic 4b: QoS Principles Chapter 9 Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 9-1 Providing multiple classes of service thus far: making

More information

Multimedia Networking

Multimedia Networking CMPT765/408 08-1 Multimedia Networking 1 Overview Multimedia Networking The note is mainly based on Chapter 7, Computer Networking, A Top-Down Approach Featuring the Internet (4th edition), by J.F. Kurose

More information

Multi Protocol Label Switching

Multi Protocol Label Switching MPLS Multi-Protocol Label Switching Andrea Bianco Telecommunication Network Group firstname.lastname@polito.it http://www.telematica.polito.it/ Network Management and QoS Provisioning - 1 MPLS: introduction

More information

Index. 2G mobile networks G mobile networks GPP network, see LTE networks

Index. 2G mobile networks G mobile networks GPP network, see LTE networks Index 2G mobile networks 194 6 3G mobile networks 196 201 3GPP network, see LTE networks ACK, TCP 56, 58 9, 61 acknowledgement, see ACK, TCP AUC (Authentication Center) 194 bandwidth limit definition 16

More information

Configuring QoS CHAPTER

Configuring QoS CHAPTER CHAPTER 34 This chapter describes how to use different methods to configure quality of service (QoS) on the Catalyst 3750 Metro switch. With QoS, you can provide preferential treatment to certain types

More information

10CS64-Computer Networks-II Question Bank PART A

10CS64-Computer Networks-II Question Bank PART A 10CS64-Computer Networks-II Question Bank PART A Unit -1 PACKET SWITCHING NETWORKS-I:In this chapter we learn what is packet switching networks, general issues regarding packet switching networks. We examine

More information

Before configuring standard QoS, you must have a thorough understanding of these items:

Before configuring standard QoS, you must have a thorough understanding of these items: Finding Feature Information, page 1 Prerequisites for QoS, page 1 QoS Components, page 2 QoS Terminology, page 3 Information About QoS, page 3 Restrictions for QoS on Wired Targets, page 41 Restrictions

More information

Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control

Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control Internet QoS 1. Integrated Service 2. Differentiated Service 3. Linux Traffic Control weafon 2001/9/27 Concept of IntServ Network A flow is the basic management unit Supporting accurate quality control.

More information

QoS Configuration. Overview. Introduction to QoS. QoS Policy. Class. Traffic behavior

QoS Configuration. Overview. Introduction to QoS. QoS Policy. Class. Traffic behavior Table of Contents QoS Configuration 1 Overview 1 Introduction to QoS 1 QoS Policy 1 Traffic Policing 2 Congestion Management 3 Line Rate 9 Configuring a QoS Policy 9 Configuration Task List 9 Configuring

More information

Quality of Service and Bandwidth Management

Quality of Service and Bandwidth Management CHAPTER 5 Cisco Unified Border Element (SP Edition) distributed model for the Cisco ASR 1000 Series Routers provides Quality of Service (QoS) and bandwidth management features to assure quality end-to-end

More information

Queuing. Congestion Control and Resource Allocation. Resource Allocation Evaluation Criteria. Resource allocation Drop disciplines Queuing disciplines

Queuing. Congestion Control and Resource Allocation. Resource Allocation Evaluation Criteria. Resource allocation Drop disciplines Queuing disciplines Resource allocation Drop disciplines Queuing disciplines Queuing 1 Congestion Control and Resource Allocation Handle congestion if and when it happens TCP Congestion Control Allocate resources to avoid

More information

CSE 461 Quality of Service. David Wetherall

CSE 461 Quality of Service. David Wetherall CSE 461 Quality of Service David Wetherall djw@cs.washington.edu QOS Focus: How to provide better than best effort Fair queueing Application Application needs Transport Traffic shaping Guarantees IntServ

More information

Resource allocation in networks. Resource Allocation in Networks. Resource allocation

Resource allocation in networks. Resource Allocation in Networks. Resource allocation Resource allocation in networks Resource Allocation in Networks Very much like a resource allocation problem in operating systems How is it different? Resources and jobs are different Resources are buffers

More information

Quality of Service (QoS)

Quality of Service (QoS) CEN445 Network Protocols and Algorithms Chapter 5 Network Layer 5.4 Quality of Service Dr. Mostafa Hassan Dahshan Department of Computer Engineering College of Computer and Information Sciences King Saud

More information

QoS: Per-Session Shaping and Queuing on LNS

QoS: Per-Session Shaping and Queuing on LNS QoS: Per-Session Shaping and Queuing on LNS First Published: February 28, 2006 The QoS: Per-Session Shaping and Queuing on LNS feature provides the ability to shape (for example, transmit or drop) or queue

More information

IP Premium Agenda. - Services specification and implementation discussion. - Qos Parameters. M. Campanella - TF-TNG - Münster 7 feb 2001

IP Premium Agenda. - Services specification and implementation discussion. - Qos Parameters. M. Campanella - TF-TNG - Münster 7 feb 2001 IP Premium Agenda - Services specification and implementation discussion - Qos Parameters 1 Géant QoS Services Specifications Mauro Campanella Tiziana Ferrari Mauro.Campanella@mi.infn.it Tiziana.Ferrari@cnaf.infn.it

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

QoS Guarantees. Motivation. . link-level level scheduling. Certain applications require minimum level of network performance: Ch 6 in Ross/Kurose

QoS Guarantees. Motivation. . link-level level scheduling. Certain applications require minimum level of network performance: Ch 6 in Ross/Kurose QoS Guarantees. introduction. call admission. traffic specification. link-level level scheduling. call setup protocol. reading: Tannenbaum,, 393-395, 395, 458-471 471 Ch 6 in Ross/Kurose Motivation Certain

More information

Lesson 14: QoS in IP Networks: IntServ and DiffServ

Lesson 14: QoS in IP Networks: IntServ and DiffServ Slide supporting material Lesson 14: QoS in IP Networks: IntServ and DiffServ Giovanni Giambene Queuing Theory and Telecommunications: Networks and Applications 2nd edition, Springer All rights reserved

More information

H3C S9500 QoS Technology White Paper

H3C S9500 QoS Technology White Paper H3C Key words: QoS, quality of service Abstract: The Ethernet technology is widely applied currently. At present, Ethernet is the leading technology in various independent local area networks (LANs), and

More information

"Charting the Course... Implementing Cisco Quality of Service (QOS) Course Summary

Charting the Course... Implementing Cisco Quality of Service (QOS) Course Summary Course Summary Description v2.5 provides learners with in-depth knowledge of QoS requirements, conceptual models such as best effort, IntServ, and DiffServ, and the implementation of QoS on Cisco platforms.

More information

Cisco ASR 1000 Series Aggregation Services Routers: QoS Architecture and Solutions

Cisco ASR 1000 Series Aggregation Services Routers: QoS Architecture and Solutions Cisco ASR 1000 Series Aggregation Services Routers: QoS Architecture and Solutions Introduction Much more bandwidth is available now than during the times of 300-bps modems, but the same business principles

More information

Tutorial 9 : TCP and congestion control part I

Tutorial 9 : TCP and congestion control part I Lund University ETSN01 Advanced Telecommunication Tutorial 9 : TCP and congestion control part I Author: Antonio Franco Course Teacher: Emma Fitzgerald January 27, 2015 Contents I Before you start 3 II

More information

MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino)

MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino) MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino) http://staff.polito.it/mario.baldi MPLS - 1 From MPLS Forum Documents MPLS is the enabling technology

More information

Week 7: Traffic Models and QoS

Week 7: Traffic Models and QoS Week 7: Traffic Models and QoS Acknowledgement: Some slides are adapted from Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition, J.F Kurose and K.W. Ross All Rights Reserved,

More information

Configuring MPLS and EoMPLS

Configuring MPLS and EoMPLS 37 CHAPTER This chapter describes how to configure multiprotocol label switching (MPLS) and Ethernet over MPLS (EoMPLS) on the Catalyst 3750 Metro switch. MPLS is a packet-switching technology that integrates

More information

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects Internet 1) Internet basic technology (overview) 2) Mobility aspects 3) Quality of Service (QoS) aspects Relevant information: these slides (overview) course textbook (Part H) www.ietf.org (details) IP

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

Table of Contents. Computer Networks and the Internet

Table of Contents. Computer Networks and the Internet Table of Contents Chapter 1 Computer Networks and the Internet 1.1 What Is the Internet? 1.1.1 A Nuts-and-Bolts Description 1.1.2 A Services Description 1.1.3 What Is a Protocol? 1.2 The Network Edge 1.2.1

More information

Differentiated Services

Differentiated Services Diff-Serv 1 Differentiated Services QoS Problem Diffserv Architecture Per hop behaviors Diff-Serv 2 Problem: QoS Need a mechanism for QoS in the Internet Issues to be resolved: Indication of desired service

More information

Common network/protocol functions

Common network/protocol functions Common network/protocol functions Goals: Identify, study common architectural components, protocol mechanisms Synthesis: big picture Depth: important topics not covered in introductory courses Overview:

More information

Network Layer Enhancements

Network Layer Enhancements Network Layer Enhancements EECS 122: Lecture 14 Department of Electrical Engineering and Computer Sciences University of California Berkeley Today We have studied the network layer mechanisms that enable

More information

Prof. Dr. Abdulmotaleb El Saddik. site.uottawa.ca mcrlab.uottawa.ca. Quality of Media vs. Quality of Service

Prof. Dr. Abdulmotaleb El Saddik. site.uottawa.ca mcrlab.uottawa.ca. Quality of Media vs. Quality of Service Multimedia Communications Multimedia Technologies & Applications Prof. Dr. Abdulmotaleb El Saddik Multimedia Communications Research Laboratory School of Information Technology and Engineering University

More information

QoS Technology White Paper

QoS Technology White Paper QoS Technology White Paper Keywords: Traffic classification, congestion management, congestion avoidance, precedence, differentiated services Abstract: This document describes the QoS features and related

More information

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control

What Is Congestion? Effects of Congestion. Interaction of Queues. Chapter 12 Congestion in Data Networks. Effect of Congestion Control Chapter 12 Congestion in Data Networks Effect of Congestion Control Ideal Performance Practical Performance Congestion Control Mechanisms Backpressure Choke Packet Implicit Congestion Signaling Explicit

More information

QUESTION BANK UNIT-I

QUESTION BANK UNIT-I DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Subject Code: CS1302 Subject Name: Computer Networks Year/ Sem: III / V UNIT-I 1. What is multicast? What is the difference between unicast and multicast?

More information

Networking Issues in LAN Telephony. Brian Yang

Networking Issues in LAN Telephony. Brian Yang Networking Issues in LAN Telephony Brian Yang 5-3-00 Topics Some background Flow Based QoS Class Based QoS and popular algorithms Strict Priority (SP) Round-Robin (RR), Weighted Round Robin (WRR) and Weighted

More information

Telematics 2. Chapter 3 Quality of Service in the Internet. (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources)

Telematics 2. Chapter 3 Quality of Service in the Internet. (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources) Telematics 2 Chapter 3 Quality of Service in the Internet (Acknowledgement: These slides have been compiled from Kurose & Ross, and other sources) Telematics 2 (WS 14/15): 03 Internet QoS 1 Improving QOS

More information

Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Software

Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Software Configuring Modular Quality of Service Congestion Management on Cisco IOS XR Software Congestion management controls congestion after it has occurred on a network. Congestion can be managed on Cisco IOS

More information

Lecture 14: Performance Architecture

Lecture 14: Performance Architecture Lecture 14: Performance Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 14-1 Background Performance: levels for capacity, delay, and RMA. Performance

More information

UNIT 2 TRANSPORT LAYER

UNIT 2 TRANSPORT LAYER Network, Transport and Application UNIT 2 TRANSPORT LAYER Structure Page No. 2.0 Introduction 34 2.1 Objective 34 2.2 Addressing 35 2.3 Reliable delivery 35 2.4 Flow control 38 2.5 Connection Management

More information

Differentiated Services

Differentiated Services 1 Differentiated Services QoS Problem Diffserv Architecture Per hop behaviors 2 Problem: QoS Need a mechanism for QoS in the Internet Issues to be resolved: Indication of desired service Definition of

More information

MPLS, THE BASICS CSE 6067, UIU. Multiprotocol Label Switching

MPLS, THE BASICS CSE 6067, UIU. Multiprotocol Label Switching MPLS, THE BASICS CSE 6067, UIU Multiprotocol Label Switching Basic Concepts of MPLS 2 Contents Drawbacks of Traditional IP Forwarding Basic MPLS Concepts MPLS versus IP over ATM Traffic Engineering with

More information

QOS IN PACKET NETWORKS

QOS IN PACKET NETWORKS QOS IN PACKET NETWORKS THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE QOS IN PACKET NETWORKS by Kun I. Park, Ph.D. The MITRE Corporation USA Springer ebook ISBN: 0-387-23390-3 Print

More information

Kommunikationssysteme [KS]

Kommunikationssysteme [KS] Kommunikationssysteme [KS] Dr.-Ing. Falko Dressler Computer Networks and Communication Systems Department of Computer Sciences University of Erlangen-Nürnberg http://www7.informatik.uni-erlangen.de/~dressler/

More information

Configuring QoS. Understanding QoS CHAPTER

Configuring QoS. Understanding QoS CHAPTER 29 CHAPTER This chapter describes how to configure quality of service (QoS) by using automatic QoS (auto-qos) commands or by using standard QoS commands on the Catalyst 3750 switch. With QoS, you can provide

More information

QoS Technology White Paper

QoS Technology White Paper QoS Technology White Paper Keywords: QoS, service model, IntServ, DiffServ, congestion management, congestion avoidance, queuing technology, traffic policing, traffic shaping, link efficiency mechanism.

More information

AlcatelLucent.Selftestengine.4A0-107.v by.Ele.56q. Exam Code: 4A Exam Name: Alcatel-Lucent Quality of Service

AlcatelLucent.Selftestengine.4A0-107.v by.Ele.56q. Exam Code: 4A Exam Name: Alcatel-Lucent Quality of Service AlcatelLucent.Selftestengine.4A0-107.v2013-12-14.by.Ele.56q Number: 4a0-107 Passing Score: 800 Time Limit: 120 min File Version: 16.5 http://www.gratisexam.com/ Exam Code: 4A0-107 Exam Name: Alcatel-Lucent

More information

CSCI Spring Final Exam Solution

CSCI Spring Final Exam Solution CSCI 4211 16Spring Final Exam Solution 1. When an IP packet arrives a router, how the router decides what is the next router (output link) this packet to be forwarded to? What are the routing table and

More information

Chapter 6. The Network Layer

Chapter 6. The Network Layer Chapter 6 The Network Layer 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

A MPLS Simulation for Use in Design Networking for Multi Site Businesses

A MPLS Simulation for Use in Design Networking for Multi Site Businesses A MPLS Simulation for Use in Design Networking for Multi Site Businesses Petac Eugen Ovidius University of Constanța, Faculty of Mathematics and Computer Science epetac@univ-ovidius.ro Abstract The ease

More information

MultiProtocol Label Switching - MPLS ( RFC 3031 )

MultiProtocol Label Switching - MPLS ( RFC 3031 ) Outline MultiProtocol Label Switching - MPLS ( RFC 3031 ) 1. What is MPLS and how does it work? 2. What MPLS is used for? 3. Label Distribution Protocols 1 1. What is MPLS and how does it work? MPLS is

More information

Ahmed Benallegue RMDCN workshop on the migration to IP/VPN 1/54

Ahmed Benallegue RMDCN workshop on the migration to IP/VPN 1/54 MPLS Technology Overview Ahmed Benallegue A.Benallegue@ecmwf.int RMDCN workshop on the migration to IP/VPN 1/54 Plan 1. MPLS basics 2. The MPLS approach 3. Label distribution RSVP-TE 4. Traffic Engineering

More information

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information