FlexRay The Hardware View

Size: px
Start display at page:

Download "FlexRay The Hardware View"

Transcription

1 A White Paper Presented by IPextreme FlexRay The Hardware View Stefan Schmechtig / Jens Kjelsbak February 2006 FlexRay is an upcoming networking standard being established to raise the data rate, reliability, and safety of the automotive applications of today and tomorrow. Synthesizable FlexRay intellectual property (IP) is now available for those who want to integrate it into a new chip.

2 WHITE PAPER FlexRay The Hardware View Page 2 ABSTRACT FlexRay is an upcoming networking standard being established to raise the data rate, reliability, and safety of the automotive applications of today and tomorrow. Synthesizable FlexRay intellectual property (IP) is now available for those who want to integrate it into a new chip. This paper discusses what the FlexRay IP is and how to implement it; highlighting issues, considerations, and solutions for the system designer. TABLE OF CONTENTS INTRODUCTION... 3 FLEXRAY CONCEPTUAL HIERARCHY... 3 CONCEPTUAL PARTITIONING... 4 INTEGRATING THE CORE INTO THE SOC... 5 OPTIMIZING AND CONFIGURING THE CORE... 6 CONFORMANCES AND VERIFICATION... 7 DELIVERABLES... 8 PROTOTYPING AND SOFTWARE DEVELOPMENT... 8 CONCLUSIONS... 8 REFERENCES... 9

3 WHITE PAPER FlexRay The Hardware View Page 3 INTRODUCTION Automotive bus requirements for data throughput, fault tolerance, and deterministic behavior have changed dramatically in the last few years. New applications such as stability control and throttle-by-wire require many more electronic components, each screaming for more data, deterministic behavior, and reliability. The FlexRay communication protocol was developed to fulfill these needs. FlexRay technology can be split into three to main areas: 1) software to configure and manage communication in a FlexRay cluster, 2) digital logic implementing the FlexRay protocol, and 3) analog signal drivers. This paper focuses on the digital hardware elements of the FlexRay IP and considerations when integrating it into an SOC. Fig 1 Conceptual hierarchy of FlexRay system layers FLEXRAY CONCEPTUAL HIERARCHY As shown in Figure 1, the central layer of the FlexRay hierarchy is the protocol execution layer, where outgoing frame data is sent to the physical layer. On one side, the protocol execution layer interfaces to a controller host interface, which contains storage for all interface data and provides the controller host interface services. On the other side, the protocol execution layer interfaces to the coding/decoding layer. The physical layer contains the bus drivers, the optional bus guardians, and the physical interconnections.

4 WHITE PAPER FlexRay The Hardware View Page 4 CONCEPTUAL PARTITIONING In the design of a FlexRay core, the team should focus on communicationrelated fault tolerance, not on application related issues such as message agreement algorithms. This paradigm ensures that the design is suitable for different applications with diverse fault-tolerance needs. Figure 2 shows an example FlexRay core partitioning in which the Protocol Engine (PE) is responsible for all the FlexRay specific protocol handling and the Controller Host Interface (CHI) handles all the tasks of integrating the FlexRay functionality into the rest of the system. The CHI provides host access to the FlexRay core s configuration, control, and status registers as well as to the message buffer configuration, control, and status registers. The message buffers hold the FlexRay frames (received frames and frames to be transmitted), including the frame header and payload data, and frame status information. The message buffer data is stored in the FlexRay memory, while the message buffer control structures are implemented in the CHI. Fig 2 FlexRay block structure Different end user applications have a wide range of requirements. Therefore, the core should be configurable so that the integrator can optimize application performance and tune chip characteristics like area and power. For example, in the Freescale FlexRay controller core from IPextreme, the core can be configured to implement up to 256 message buffers and two receive FIFOs with up to 256 entries each. Some solutions can benefit from a custom, application-specific CHI. This requires a well-defined, specified, and documented PE interface. A general-

5 WHITE PAPER FlexRay The Hardware View Page 5 purpose CHI that fulfills the requirements of many applications is supplied with the IP. It includes all the specified FlexRay functionality, such as the use of individual receive and transmit buffers (single and double buffered transmit), state or event transmission mode, receive FIFO functionality, message buffer filtering, and dual-channel mode. However, a specific application may only need a subset of these features and reducing CHI complexity can be a significant advantage for some applications where area and power is important. This strategy is only feasible when the interface and behavior of the PE module is very well defined and documented. The Clock Domain Crossing (CDC) unit implements the signal crossing from the CHI clock domain to the PE clock domain, and vice versa, to allow for asynchronous PE and CHI clock domains. The CHI frequency depends on the complexity and the number of message buffers that have to be processed. It can be significantly slower or faster than the PE clock. If the CHI can be clocked at the same 40-MHz rate as the PE, then the CDC can be removed to reduce gate count. INTEGRATING THE CORE INTO THE SOC Figures 3 and 4 show two different ways integrate a FlexRay core into the system. Depending on system memory requirements like size, latency, and bandwidth, the FlexRay memory window that holds the message header and payload data can be stored in the system memory or in a standalone memory. Fig 3 FlexRay window in system Memory

6 WHITE PAPER FlexRay The Hardware View Page 6 Fig 4 Dedicated FlexRay Memory The top-level interfaces for integrating the FlexRay controller into the system are: Clock and Reset Interface: Enables clock gating and reset control through hard or soft resets. Host Interface: A simple read/write peripheral interface. Interrupt and Strobes Interface: Selects interrupt and debugging implementations through software. FlexRay Bus Interface (Channels A and B): Used to connect the FlexRay device to the FlexRay bus drivers, specified in the FlexRay Communication System Electrical Physical Layer Specification. System Memory Interface: Connected through the Bus Master Interface (BMIF) to the FlexRay controller. This can be connected directly to a shared memory or connected to an external memory bus subsystem. In either case, certain latency requirements must be met. OPTIMIZING AND CONFIGURING THE CORE Parameters: Hardware parameters let the integrator customize the design to remove unused hardware. For a FlexRay device, there could be several system-dependent parameters like bus and data width, and architectural parameters like the maximum number of message buffers and payload length. The maximum number of message buffers (4 to 256) has a big

7 WHITE PAPER FlexRay The Hardware View Page 7 impact on the area and the clocking requirement of the CHI, whose frequency requirement can range from 20 to 140 MHz. The freedom to implement only the required message buffers eases the way to a design optimized for cost, area, and power. Power Saving: While the TDMA (time division multiple access) scheme assigns dedicated transmit and receive slots in the first portion of each FlexRay packet, there is considerable idle time and power can be saved if the relevant logic can be switched off. Further power saving opportunities are gained through being able to shut down the transmit and receive blocks, memories, channel logic, and so on. Dedicated clock enable signals should be available for clock gating. Figures 3 and 4 show two different ways integrate a FlexRay core into the system. Depending on system memory requirements like size, latency, and bandwidth, the FlexRay memory window that holds the message header and payload data can be stored in the system memory or in a standalone memory. CONFORMANCES AND VERIFICATION Customers who integrate a FlexRay controller into an SOC design expect a fully verified and correct piece of hardware of the highest quality. Protocol conformance testing for FlexRay at the data link layer, with devices like the Freescale MFR4300 to ensure correct behavior and interoperability, are done at test facilities like TÜV Nord in Germany in cooperation with Frauenhofer Gesellschaft. Successful conformance ensures correct FlexRay behavior. However, a customer integrating this tested hardware needs to verify the connectivity to the hardware to ensure correct communication. An integration testbench that offers tests and the possibility to replace the testbench models with real functional hardware models in a step-by-step fashion enables a smooth integration and helps to ensure a right-the-firsttime design. A self-checking integration testbench should include: FlexRay cluster communication Memory simulation models (DPRAM, SRAM, ROM) Simple bus driver simulation models Clock and reset control Host bus functional model

8 WHITE PAPER FlexRay The Hardware View Page 8 DELIVERABLES Bus Master Interface (with interface to DPRAM) Several monitors, checkers, and sniffers FlexRay core deliverables should consist of a package with technologyindependent hardware description language files (Verilog or VHDL), synthesis constraints and timing exceptions, the self-checking integration testbench, and detailed integration and programming guides. The whole package is best controlled by a tool-independent packaging environment to specify and check the hardware parameters and constraints settings, give you the ability run the integration tests on any simulator, let you generate the synthesis scripts, and provide a front-end flow to kick off synthesis for a specific vendor. PROTOTYPING AND SOFTWARE DEVELOPMENT CONCLUSIONS Several companies offer integrated FlexRay controller evaluation systems based on different host processors. Standalone FlexRay controllers with simple memory interfaces that enable connection to any host controller system are also available. The boards are bundled with development software from companies supporting FlexRay, which enables system engineers to build FlexRay clusters with nodes from different vendors to enhance the hardware testing. FlexRay is real, and now is the time to plan how to add it to your automotive designs. After 5 years of work at the FlexRay consortium, the specification is stable, standard components are on the market, and the first cars with FlexRay will be in mass production late this year. The consortium has also been extended to work on future FlexRay applications. Integrating FlexRay as standard connectivity for automotive (and avionic) controllers will be a requirement in many future designs. Future FlexRay applications show an additional market for a light FlexRay solution that strips away the safety critical and synchronization features to enable a very low-cost FlexRay controller, cost competitive with CAN. These single-channel and simplified master controlled synchronization devices will be compatible with available FlexRay solutions.

9 WHITE PAPER FlexRay The Hardware View Page 9 REFERENCES [1] FlexRay Communication System Protocol Specification, Version 2.1 [2] FlexRay Communication System Electrical Physical Layer Specification, Version 2.1 [3] FRCC2100 Integration Guide IPextreme, Inc. [4] FRCC2100Core User Guide IPextreme, Inc. IPextreme, Inc. 307 Orchard City Drive Suite 202 Campbell, CA (toll-free) (fax) THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR IMPLIED WARRANTIES OF ANY KIND. INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. Copyright 2006, IPextrreme. All rights reserved. IPextreme and the IPextreme logo are trademarks of IPextreme, Inc. All other trademarks are the property of their respective owners.

Simulation-Based FlexRay TM Conformance Testing an OVM success story

Simulation-Based FlexRay TM Conformance Testing an OVM success story Simulation-Based FlexRay TM Conformance Testing an OVM success story Mark Litterick, Co-founder & Verification Consultant, Verilab Abstract This article presents a case study on how the Open Verification

More information

FlexRay International Workshop. Protocol Overview

FlexRay International Workshop. Protocol Overview FlexRay International Workshop 4 th March 2003 Detroit Protocol Overview Dr. Christopher Temple - Motorola FlexRay principles Provide a communication infrastructure for future generation highspeed control

More information

An Encapsulated Communication System for Integrated Architectures

An Encapsulated Communication System for Integrated Architectures An Encapsulated Communication System for Integrated Architectures Architectural Support for Temporal Composability Roman Obermaisser Overview Introduction Federated and Integrated Architectures DECOS Architecture

More information

Ten Reasons to Optimize a Processor

Ten Reasons to Optimize a Processor By Neil Robinson SoC designs today require application-specific logic that meets exacting design requirements, yet is flexible enough to adjust to evolving industry standards. Optimizing your processor

More information

Utilizing Vera Functional Coverage in the Verification of a Protocol Engine for the FlexRay TM Automotive Communication System

Utilizing Vera Functional Coverage in the Verification of a Protocol Engine for the FlexRay TM Automotive Communication System Utilizing Vera Functional Coverage in the Verification of a Protocol Engine for the FlexRay TM Automotive Communication System, Verilab Markus Brenner, Freescale Semiconductor 2 Outline Overview of FlexRay

More information

Choosing an Intellectual Property Core

Choosing an Intellectual Property Core Choosing an Intellectual Property Core MIPS Technologies, Inc. June 2002 One of the most important product development decisions facing SOC designers today is choosing an intellectual property (IP) core.

More information

Design For High Performance Flexray Protocol For Fpga Based System

Design For High Performance Flexray Protocol For Fpga Based System IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) e-issn: 2319 4200, p-issn No. : 2319 4197 PP 83-88 www.iosrjournals.org Design For High Performance Flexray Protocol For Fpga Based System E. Singaravelan

More information

Multi-core microcontroller design with Cortex-M processors and CoreSight SoC

Multi-core microcontroller design with Cortex-M processors and CoreSight SoC Multi-core microcontroller design with Cortex-M processors and CoreSight SoC Joseph Yiu, ARM Ian Johnson, ARM January 2013 Abstract: While the majority of Cortex -M processor-based microcontrollers are

More information

HIERARCHICAL DESIGN. RTL Hardware Design by P. Chu. Chapter 13 1

HIERARCHICAL DESIGN. RTL Hardware Design by P. Chu. Chapter 13 1 HIERARCHICAL DESIGN Chapter 13 1 Outline 1. Introduction 2. Components 3. Generics 4. Configuration 5. Other supporting constructs Chapter 13 2 1. Introduction How to deal with 1M gates or more? Hierarchical

More information

Outline HIERARCHICAL DESIGN. 1. Introduction. Benefits of hierarchical design

Outline HIERARCHICAL DESIGN. 1. Introduction. Benefits of hierarchical design Outline HIERARCHICAL DESIGN 1. Introduction 2. Components 3. Generics 4. Configuration 5. Other supporting constructs Chapter 13 1 Chapter 13 2 1. Introduction How to deal with 1M gates or more? Hierarchical

More information

Employing Multi-FPGA Debug Techniques

Employing Multi-FPGA Debug Techniques Employing Multi-FPGA Debug Techniques White Paper Traditional FPGA Debugging Methods Debugging in FPGAs has been difficult since day one. Unlike simulation where designers can see any signal at any time,

More information

EEL 5722C Field-Programmable Gate Array Design

EEL 5722C Field-Programmable Gate Array Design EEL 5722C Field-Programmable Gate Array Design Lecture 17: Describing Synthesizable RTL in SystemC* Prof. Mingjie Lin * 2001 Synopsys, Inc. 1 System-Level Design Specifying the system Verifying its functionality

More information

Mapping Multi-Million Gate SoCs on FPGAs: Industrial Methodology and Experience

Mapping Multi-Million Gate SoCs on FPGAs: Industrial Methodology and Experience Mapping Multi-Million Gate SoCs on FPGAs: Industrial Methodology and Experience H. Krupnova CMG/FMVG, ST Microelectronics Grenoble, France Helena.Krupnova@st.com Abstract Today, having a fast hardware

More information

Digital Blocks Semiconductor IP

Digital Blocks Semiconductor IP Digital Blocks Semiconductor IP TFT Controller General Description The Digital Blocks TFT Controller IP Core interfaces a microprocessor and frame buffer memory via the AMBA 2.0 to a TFT panel. In an FPGA,

More information

Multi MicroBlaze System for Parallel Computing

Multi MicroBlaze System for Parallel Computing Multi MicroBlaze System for Parallel Computing P.HUERTA, J.CASTILLO, J.I.MÁRTINEZ, V.LÓPEZ HW/SW Codesign Group Universidad Rey Juan Carlos 28933 Móstoles, Madrid SPAIN Abstract: - Embedded systems need

More information

ADPCM-LCO Voice Compression Logic Core

ADPCM-LCO Voice Compression Logic Core ADPCM-LCO Voice Compression Logic Core Functional Description The ADPCM-LCO logic core [Adaptive Differential Pulse Code Modulation-Low Channel count Optimized] is a peripheral for digital voice compression/de-compression

More information

Simulation-Based FlexRay TM Conformance Testing using OVM. Mark Litterick Senior Consultant and Co-Founder, Verilab

Simulation-Based FlexRay TM Conformance Testing using OVM. Mark Litterick Senior Consultant and Co-Founder, Verilab Simulation-Based FlexRay TM Conformance Testing using OVM Mark Litterick Senior Consultant and Co-Founder, Verilab Agenda FlexRay overview What we mean by conformance testing What OVM brings to the party

More information

CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP

CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP 133 CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP 6.1 INTRODUCTION As the era of a billion transistors on a one chip approaches, a lot of Processing Elements (PEs) could be located

More information

Simulation-Based FlexRay TM Conformance Testing - An OVM Success Story

Simulation-Based FlexRay TM Conformance Testing - An OVM Success Story Simulation-Based FlexRay TM Conformance Testing - An OVM Success Story Mark Litterick Consultant & Co-Founder Verilab Agenda FlexRay overview What we mean by conformance testing What OVM brings to the

More information

The RM9150 and the Fast Device Bus High Speed Interconnect

The RM9150 and the Fast Device Bus High Speed Interconnect The RM9150 and the Fast Device High Speed Interconnect John R. Kinsel Principal Engineer www.pmc -sierra.com 1 August 2004 Agenda CPU-based SOC Design Challenges Fast Device (FDB) Overview Generic Device

More information

Distributed Embedded Systems and realtime networks

Distributed Embedded Systems and realtime networks STREAM01 / Mastère SE Distributed Embedded Systems and realtime networks Embedded network TTP Marie-Agnès Peraldi-Frati AOSTE Project UNSA- CNRS-INRIA January 2008 1 Abstract Requirements for TT Systems

More information

Chapter 6 Storage and Other I/O Topics

Chapter 6 Storage and Other I/O Topics Department of Electr rical Eng ineering, Chapter 6 Storage and Other I/O Topics 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline 6.1 Introduction 6.2 Dependability,

More information

VME64M VME64 MASTER CONTROLLER. Version 1.1

VME64M VME64 MASTER CONTROLLER. Version 1.1 Datasheet VME64M VME64 MASTER CONTROLLER Version 1.1 INICORE INC. 5600 Mowry School Road Suite 180 Newark, CA 94560 t: 510 445 1529 f: 510 656 0995 e: info@inicore.com www.inicore.com C O P Y R I G H T

More information

PCI to SH-3 AN Hitachi SH3 to PCI bus

PCI to SH-3 AN Hitachi SH3 to PCI bus PCI to SH-3 AN Hitachi SH3 to PCI bus Version 1.0 Application Note FEATURES GENERAL DESCRIPTION Complete Application Note for designing a PCI adapter or embedded system based on the Hitachi SH-3 including:

More information

16 Time Triggered Protocol

16 Time Triggered Protocol 16 Time Triggered Protocol [TTtech04] (TTP) 18-549 Distributed Embedded Systems Philip Koopman October 25, 2004 Significant material drawn from: Prof. H. Kopetz [Kopetz] TTP Specification v 1.1 [TTTech]

More information

Emergence of Segment-Specific DDRn Memory Controller and PHY IP Solution. By Eric Esteve (PhD) Analyst. July IPnest.

Emergence of Segment-Specific DDRn Memory Controller and PHY IP Solution. By Eric Esteve (PhD) Analyst. July IPnest. Emergence of Segment-Specific DDRn Memory Controller and PHY IP Solution By Eric Esteve (PhD) Analyst July 2016 IPnest www.ip-nest.com Emergence of Segment-Specific DDRn Memory Controller IP Solution By

More information

Asynchronous on-chip Communication: Explorations on the Intel PXA27x Peripheral Bus

Asynchronous on-chip Communication: Explorations on the Intel PXA27x Peripheral Bus Asynchronous on-chip Communication: Explorations on the Intel PXA27x Peripheral Bus Andrew M. Scott, Mark E. Schuelein, Marly Roncken, Jin-Jer Hwan John Bainbridge, John R. Mawer, David L. Jackson, Andrew

More information

Intellectual Property Macrocell for. SpaceWire Interface. Compliant with AMBA-APB Bus

Intellectual Property Macrocell for. SpaceWire Interface. Compliant with AMBA-APB Bus Intellectual Property Macrocell for SpaceWire Interface Compliant with AMBA-APB Bus L. Fanucci, A. Renieri, P. Terreni Tel. +39 050 2217 668, Fax. +39 050 2217522 Email: luca.fanucci@iet.unipi.it - 1 -

More information

Microsemi IP Cores Accelerate the Development Cycle and Lower Development Costs

Microsemi IP Cores Accelerate the Development Cycle and Lower Development Costs Microsemi IP Cores Accelerate the Development Cycle and Lower Development Costs October 2014 Introduction Today s FPGAs and System-on-Chip (SoC) FPGAs offer vast amounts of user configurable resources

More information

Embedded Systems. 8. Communication

Embedded Systems. 8. Communication Embedded Systems 8. Communication Lothar Thiele 8-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

A Fault Management Protocol for TTP/C

A Fault Management Protocol for TTP/C A Fault Management Protocol for TTP/C Juan R. Pimentel Teodoro Sacristan Kettering University Dept. Ingenieria y Arquitecturas Telematicas 1700 W. Third Ave. Polytechnic University of Madrid Flint, Michigan

More information

CAN on Integration Technologies

CAN on Integration Technologies CAN on Integration Technologies CAN technology has reached the mature state where the powerful network technology is well covered by standard parts; mainly processors with integrated CAN periphery. Nevertheless

More information

Page 1 SPACEWIRE SEMINAR 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT

Page 1 SPACEWIRE SEMINAR 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT Page 1 SPACEWIRE SEMINAR 4/5 NOVEMBER 2003 JF COLDEFY / C HONVAULT INTRODUCTION The SW IP was developped in the frame of the ESA 13345/#3 contract "Building block for System on a Chip" This presentation

More information

Flexray Protocol in Automotive Network Communications

Flexray Protocol in Automotive Network Communications Flexray Protocol in Automotive Network Communications 1. Anjan Kumar B S, 2. Arpitha Rani R, 3. Keya Priyambada, 4. Arti Kumari 1. Asst.Professor, Department of Instrumentation Technology, Bangalore Institute

More information

High Performance Interconnect and NoC Router Design

High Performance Interconnect and NoC Router Design High Performance Interconnect and NoC Router Design Brinda M M.E Student, Dept. of ECE (VLSI Design) K.Ramakrishnan College of Technology Samayapuram, Trichy 621 112 brinda18th@gmail.com Devipoonguzhali

More information

Design of a System-on-Chip Switched Network and its Design Support Λ

Design of a System-on-Chip Switched Network and its Design Support Λ Design of a System-on-Chip Switched Network and its Design Support Λ Daniel Wiklund y, Dake Liu Dept. of Electrical Engineering Linköping University S-581 83 Linköping, Sweden Abstract As the degree of

More information

Upper Level Protocols (ULP) Mapping. Common Services. Signaling Protocol. Transmission Protocol (Physical Coding) Physical Interface (PI)

Upper Level Protocols (ULP) Mapping. Common Services. Signaling Protocol. Transmission Protocol (Physical Coding) Physical Interface (PI) 1 Introduction The Fibre Channel (FC) is logically a bi-directional point-to-point serial data channel, structured for high performance information transport. Physically, Fibre Channel is an interconnection

More information

Integrated Circuit ORB (ICO) White Paper V1.1

Integrated Circuit ORB (ICO) White Paper V1.1 Integrated Circuit (ICO) White Paper V1.1 F. Humcke and D. Paniscotti PrismTech Corporation SYNOPSIS This white paper presents a detailed overview of PrismTech s Integrated Circuit (ICO) and describes

More information

Configurable UART ver 2.10

Configurable UART ver 2.10 D16450 Configurable UART ver 2.10 OVERVIEW The D16450 is a soft Core of a Universal Asynchronous Receiver/Transmitter (UART) functionally identical to the TL16C450. D16450 performs serial-to-parallel conversion

More information

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University

Chapter 3. Top Level View of Computer Function and Interconnection. Yonsei University Chapter 3 Top Level View of Computer Function and Interconnection Contents Computer Components Computer Function Interconnection Structures Bus Interconnection PCI 3-2 Program Concept Computer components

More information

White Paper AHB to Avalon & Avalon to AHB Bridges

White Paper AHB to Avalon & Avalon to AHB Bridges White Paper AHB to & to AHB s Introduction For years, system designers have been manually connecting IP peripheral functions to embedded processors, taking anywhere from weeks to months to accomplish.

More information

Qsys and IP Core Integration

Qsys and IP Core Integration Qsys and IP Core Integration Stephen A. Edwards (after David Lariviere) Columbia University Spring 2016 IP Cores Altera s IP Core Integration Tools Connecting IP Cores IP Cores Cyclone V SoC: A Mix of

More information

Remote Keyless Entry In a Body Controller Unit Application

Remote Keyless Entry In a Body Controller Unit Application 38 Petr Cholasta Remote Keyless Entry In a Body Controller Unit Application Many of us know this situation. When we leave the car, with a single click of a remote control we lock and secure it until we

More information

08 - Address Generator Unit (AGU)

08 - Address Generator Unit (AGU) October 2, 2014 Todays lecture Memory subsystem Address Generator Unit (AGU) Schedule change A new lecture has been entered into the schedule (to compensate for the lost lecture last week) Memory subsystem

More information

Real-Time Communications. LS 12, TU Dortmund

Real-Time Communications. LS 12, TU Dortmund Real-Time Communications Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 20, Jan., 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 29 Random Access no access control; requires low medium utilization Prof.

More information

Real Time NoC Based Pipelined Architectonics With Efficient TDM Schema

Real Time NoC Based Pipelined Architectonics With Efficient TDM Schema Real Time NoC Based Pipelined Architectonics With Efficient TDM Schema [1] Laila A, [2] Ajeesh R V [1] PG Student [VLSI & ES] [2] Assistant professor, Department of ECE, TKM Institute of Technology, Kollam

More information

Universal Asynchronous Receiver/Transmitter Core

Universal Asynchronous Receiver/Transmitter Core Datasheet iniuart Universal Asynchronous Receiver/Transmitter Core Revision 2.0 INICORE INC. 5600 Mowry School Road Suite 180 Newark, CA 94560 t: 510 445 1529 f: 510 656 0995 e: info@inicore.com www.inicore.com

More information

Insights on the performance and configuration of AVB and TSN in automotive applications

Insights on the performance and configuration of AVB and TSN in automotive applications Insights on the performance and configuration of AVB and TSN in automotive applications Nicolas NAVET, University of Luxembourg Josetxo VILLANUEVA, Groupe Renault Jörn MIGGE, RealTime-at-Work (RTaW) Marc

More information

APEX II The Complete I/O Solution

APEX II The Complete I/O Solution APEX II The Complete I/O Solution July 2002 Altera introduces the APEX II device family: highperformance, high-bandwidth programmable logic devices (PLDs) targeted towards emerging network communications

More information

A Reliable Gateway for In-vehicle Networks

A Reliable Gateway for In-vehicle Networks Proceedings of the 17th World Congress The International Federation of Automatic Control A Reliable Gateway for In-vehicle Networks S. H. Seo*, J. H. Kim*, T. Y. Moon* S. H. Hwang**, K. H. Kwon*, J. W.

More information

Single Channel HDLC Core V1.3. LogiCORE Facts. Features. General Description. Applications

Single Channel HDLC Core V1.3. LogiCORE Facts. Features. General Description. Applications Sept 8, 2000 Product Specification R Powered by Xilinx Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 E-mail: logicore@xilinx.com URL: www.xilinx.com/ipcenter Support:

More information

Computer Systems Organization

Computer Systems Organization The IAS (von Neumann) Machine Computer Systems Organization Input Output Equipment Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions

More information

ADPCM-HCO Voice Compression Logic Core

ADPCM-HCO Voice Compression Logic Core ADPCM-HCO Voice Compression Logic Core Functional Description The ADPCM-HCO logic core [Adaptive Differential Pulse Code Modulation-High Channel count Optimized] is a peripheral for digital voice compression

More information

A unified multicore programming model

A unified multicore programming model A unified multicore programming model Simplifying multicore migration By Sven Brehmer Abstract There are a number of different multicore architectures and programming models available, making it challenging

More information

The CoreConnect Bus Architecture

The CoreConnect Bus Architecture The CoreConnect Bus Architecture Recent advances in silicon densities now allow for the integration of numerous functions onto a single silicon chip. With this increased density, peripherals formerly attached

More information

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC)

FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) FPGA based Design of Low Power Reconfigurable Router for Network on Chip (NoC) D.Udhayasheela, pg student [Communication system],dept.ofece,,as-salam engineering and technology, N.MageshwariAssistant Professor

More information

ISO INTERNATIONAL STANDARD. Road vehicles FlexRay communications system Part 2: Data link layer specification

ISO INTERNATIONAL STANDARD. Road vehicles FlexRay communications system Part 2: Data link layer specification INTERNATIONAL STANDARD ISO 17458-2 First edition 2013-02-01 Road vehicles FlexRay communications system Part 2: Data link layer specification Véhicules routiers Système de communications FlexRay Partie

More information

Chapter 5: ASICs Vs. PLDs

Chapter 5: ASICs Vs. PLDs Chapter 5: ASICs Vs. PLDs 5.1 Introduction A general definition of the term Application Specific Integrated Circuit (ASIC) is virtually every type of chip that is designed to perform a dedicated task.

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 17458-2 First edition 2013-02-01 Road vehicles FlexRay communications system Part 2: Data link layer specification Véhicules routiers Système de communications FlexRay Partie

More information

Turbo Encoder Co-processor Reference Design

Turbo Encoder Co-processor Reference Design Turbo Encoder Co-processor Reference Design AN-317-1.2 Application Note Introduction The turbo encoder co-processor reference design is for implemention in an Stratix DSP development board that is connected

More information

Universal Serial Bus Host Interface on an FPGA

Universal Serial Bus Host Interface on an FPGA Universal Serial Bus Host Interface on an FPGA Application Note For many years, designers have yearned for a general-purpose, high-performance serial communication protocol. The RS-232 and its derivatives

More information

Configurable UART with FIFO ver 2.20

Configurable UART with FIFO ver 2.20 D16550 Configurable UART with FIFO ver 2.20 OVERVIEW The D16550 is a soft Core of a Universal Asynchronous Receiver/Transmitter (UART) functionally identical to the TL16C550A. The D16550 allows serial

More information

APEX Devices APEX 20KC. High-Density Embedded Programmable Logic Devices for System-Level Integration. Featuring. All-Layer Copper.

APEX Devices APEX 20KC. High-Density Embedded Programmable Logic Devices for System-Level Integration. Featuring. All-Layer Copper. APEX Devices High-Density Embedded Programmable Logic Devices for System-Level Integration APEX 0KC Featuring All-Layer Copper Interconnect July 00 APEX programmable logic devices provide the flexibility

More information

Applying the Benefits of Network on a Chip Architecture to FPGA System Design

Applying the Benefits of Network on a Chip Architecture to FPGA System Design white paper Intel FPGA Applying the Benefits of on a Chip Architecture to FPGA System Design Authors Kent Orthner Senior Manager, Software and IP Intel Corporation Table of Contents Abstract...1 Introduction...1

More information

Cadence SystemC Design and Verification. NMI FPGA Network Meeting Jan 21, 2015

Cadence SystemC Design and Verification. NMI FPGA Network Meeting Jan 21, 2015 Cadence SystemC Design and Verification NMI FPGA Network Meeting Jan 21, 2015 The High Level Synthesis Opportunity Raising Abstraction Improves Design & Verification Optimizes Power, Area and Timing for

More information

Analyzing and Debugging Performance Issues with Advanced ARM CoreLink System IP Components

Analyzing and Debugging Performance Issues with Advanced ARM CoreLink System IP Components Analyzing and Debugging Performance Issues with Advanced ARM CoreLink System IP Components By William Orme, Strategic Marketing Manager, ARM Ltd. and Nick Heaton, Senior Solutions Architect, Cadence Finding

More information

Modeling Performance Use Cases with Traffic Profiles Over ARM AMBA Interfaces

Modeling Performance Use Cases with Traffic Profiles Over ARM AMBA Interfaces Modeling Performance Use Cases with Traffic Profiles Over ARM AMBA Interfaces Li Chen, Staff AE Cadence China Agenda Performance Challenges Current Approaches Traffic Profiles Intro Traffic Profiles Implementation

More information

32 Channel HDLC Core V1.2. Applications. LogiCORE Facts. Features. General Description. X.25 Frame Relay B-channel and D-channel

32 Channel HDLC Core V1.2. Applications. LogiCORE Facts. Features. General Description. X.25 Frame Relay B-channel and D-channel May 3, 2000 Xilinx Inc. 2100 Logic Drive San Jose, CA 95124 Phone: +1 408-559-7778 Fax: +1 408-559-7114 E-mail: logicore@xilinx.com URL: www.xilinx.com/ipcenter Support: www.support.xilinx.com Features

More information

An Introduction to FlexRay as an Industrial Network

An Introduction to FlexRay as an Industrial Network An Introduction to FlexRay as an Industrial Network Robert Shaw, Brendan Jackman Automotive Control Group, Waterford Institute of Technology, Waterford, Ireland. E-mail: rshaw@wit.ie, bjackman@wit.ie Website:

More information

DESIGN A APPLICATION OF NETWORK-ON-CHIP USING 8-PORT ROUTER

DESIGN A APPLICATION OF NETWORK-ON-CHIP USING 8-PORT ROUTER G MAHESH BABU, et al, Volume 2, Issue 7, PP:, SEPTEMBER 2014. DESIGN A APPLICATION OF NETWORK-ON-CHIP USING 8-PORT ROUTER G.Mahesh Babu 1*, Prof. Ch.Srinivasa Kumar 2* 1. II. M.Tech (VLSI), Dept of ECE,

More information

ECE 551 System on Chip Design

ECE 551 System on Chip Design ECE 551 System on Chip Design Introducing Bus Communications Garrett S. Rose Fall 2018 Emerging Applications Requirements Data Flow vs. Processing µp µp Mem Bus DRAMC Core 2 Core N Main Bus µp Core 1 SoCs

More information

Ethernet Switch. WAN Gateway. Figure 1: Switched LAN Example

Ethernet Switch. WAN Gateway. Figure 1: Switched LAN Example 1 Introduction An Ethernet switch is used to interconnect a number of Ethernet LANs (Local Area Networks), forming a large Ethernet network. Different ports of the switch are connected to different LAN

More information

SONICS, INC. Sonics SOC Integration Architecture. Drew Wingard. (Systems-ON-ICS)

SONICS, INC. Sonics SOC Integration Architecture. Drew Wingard. (Systems-ON-ICS) Sonics SOC Integration Architecture Drew Wingard 2440 West El Camino Real, Suite 620 Mountain View, California 94040 650-938-2500 Fax 650-938-2577 http://www.sonicsinc.com (Systems-ON-ICS) Overview 10

More information

VERIFICATION OF AHB PROTOCOL USING SYSTEM VERILOG ASSERTIONS

VERIFICATION OF AHB PROTOCOL USING SYSTEM VERILOG ASSERTIONS VERIFICATION OF AHB PROTOCOL USING SYSTEM VERILOG ASSERTIONS Nikhil B. Gaikwad 1, Vijay N. Patil 2 1 P.G. Student, Electronics & Telecommunication Department, Pimpri Chinchwad College of Engineering, Pune,

More information

TECHNOLOGY BRIEF. Double Data Rate SDRAM: Fast Performance at an Economical Price EXECUTIVE SUMMARY C ONTENTS

TECHNOLOGY BRIEF. Double Data Rate SDRAM: Fast Performance at an Economical Price EXECUTIVE SUMMARY C ONTENTS TECHNOLOGY BRIEF June 2002 Compaq Computer Corporation Prepared by ISS Technology Communications C ONTENTS Executive Summary 1 Notice 2 Introduction 3 SDRAM Operation 3 How CAS Latency Affects System Performance

More information

MIPI CSI-2 Receiver Subsystem v2.2

MIPI CSI-2 Receiver Subsystem v2.2 MIPI CSI-2 Receiver Subsystem v2.2 Product Guide Vivado Design Suite Table of Contents IP Facts Chapter 1: Overview Sub-Core Details................................................................... 6

More information

SerialLite III Streaming IP Core Design Example User Guide for Intel Arria 10 Devices

SerialLite III Streaming IP Core Design Example User Guide for Intel Arria 10 Devices IP Core Design Example User Guide for Intel Arria 10 Devices Updated for Intel Quartus Prime Design Suite: 17.1 Subscribe Send Feedback Latest document on the web: PDF HTML Contents Contents 1 Quick Start

More information

ISO INTERNATIONAL STANDARD. Road vehicles FlexRay communications system Part 1: General information and use case definition

ISO INTERNATIONAL STANDARD. Road vehicles FlexRay communications system Part 1: General information and use case definition INTERNATIONAL STANDARD ISO 17458-1 First edition 2013-02-01 Road vehicles FlexRay communications system Part 1: General information and use case definition Véhicules routiers Système de communications

More information

Comparison of CAN Gateway Modules for Automotive and Industrial Control Applications

Comparison of CAN Gateway Modules for Automotive and Industrial Control Applications Comparison of CAN Gateway Modules for Automotive and Industrial Control Applications Jan Taube 1,2, Florian Hartwich 1, Helmut Beikirch 2 1 Robert Bosch GmbH Reutlingen, 2 University of Rostock Bus architectures

More information

AMD HyperTransport Technology-Based System Architecture

AMD HyperTransport Technology-Based System Architecture AMD Technology-Based ADVANCED MICRO DEVICES, INC. One AMD Place Sunnyvale, CA 94088 Page 1 AMD Technology-Based May 2002 Table of Contents Introduction... 3 AMD-8000 Series of Chipset Components Product

More information

Design of DMA Controller Using VHDL

Design of DMA Controller Using VHDL Design of DMA Controller Using VHDL Rashmi mishra 1, Rupal chauhan 2, Garima arora 3 1, 2 Department of Electronics & Communication BE (VII SEM) Takshshila Institute of Engineering & Technology, Jabalpur,

More information

2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS

2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS 2. REAL-TIME CONTROL SYSTEM AND REAL-TIME NETWORKS 2.1 Real-Time and Control Computer based digital controllers typically have the ability to monitor a number of discrete and analog inputs, perform complex

More information

Interconnection Structures. Patrick Happ Raul Queiroz Feitosa

Interconnection Structures. Patrick Happ Raul Queiroz Feitosa Interconnection Structures Patrick Happ Raul Queiroz Feitosa Objective To present key issues that affect interconnection design. Interconnection Structures 2 Outline Introduction Computer Busses Bus Types

More information

SpaceCommRTOS. From a formal RTOS concept to a universal communication mechanism for distributed real-time systems

SpaceCommRTOS. From a formal RTOS concept to a universal communication mechanism for distributed real-time systems SpaceWire Working group 15th Sept 2004 SpaceCommRTOS From a formal RTOS concept to a universal communication mechanism for distributed real-time systems Eric.Verhulst@OpenLicenseSociety.org www.openlicensesociety.org

More information

PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a

PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a PCI-X Protocol Addendum to the PCI Local Bus Specification Revision 2.0a July 22, 2003 REVISION REVISION HISTORY DATE 1.0 Initial release. 9/22/99 1.0a Clarifications and typographical corrections. 7/24/00

More information

Chapter 12: Multiprocessor Architectures

Chapter 12: Multiprocessor Architectures Chapter 12: Multiprocessor Architectures Lesson 03: Multiprocessor System Interconnects Hierarchical Bus and Time Shared bus Systems and multi-port memory Objective To understand multiprocessor system

More information

Computer-System Organization (cont.)

Computer-System Organization (cont.) Computer-System Organization (cont.) Interrupt time line for a single process doing output. Interrupts are an important part of a computer architecture. Each computer design has its own interrupt mechanism,

More information

DEVELOPMENT AND VERIFICATION OF AHB2APB BRIDGE PROTOCOL USING UVM TECHNIQUE

DEVELOPMENT AND VERIFICATION OF AHB2APB BRIDGE PROTOCOL USING UVM TECHNIQUE DEVELOPMENT AND VERIFICATION OF AHB2APB BRIDGE PROTOCOL USING UVM TECHNIQUE N.G.N.PRASAD Assistant Professor K.I.E.T College, Korangi Abstract: The AMBA AHB is for high-performance, high clock frequency

More information

FlexRay TM Conformance Testing using OVM

FlexRay TM Conformance Testing using OVM FlexRay TM Conformance Testing using OVM Mark Litterick Co-founder & Verification Consultant Verilab Copyright Verilab 2011 1 Introduction FlexRay overview What is conformance testing Open Verification

More information

I 2 C Bus Interface - Slave ver 3.08

I 2 C Bus Interface - Slave ver 3.08 DI2CS I 2 C Bus Interface - Slave ver 3.08 OVERVIEW I 2 C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data transmission over a short distance between many devices.

More information

High-Speed SDR SDRAM Controller Core for Actel FPGAs. Introduction. Features. Product Brief Version 1.0 November 2002

High-Speed SDR SDRAM Controller Core for Actel FPGAs. Introduction. Features. Product Brief Version 1.0 November 2002 Introduction Complementing the high-speed communication solutions from MorethanIP, the High- Speed SDRAM Controller offers storage extension for memory critical applications. For example with packet-based

More information

Automotive Safety Manual

Automotive Safety Manual Automotive Safety Manual for Cyclone V FPGAs and Cyclone V SoCs Subscribe MNL-1082 101 Innovation Drive San Jose, CA 95134 www.altera.com TOC-2 Automotive Safety Manual for Cyclone V FPGAs and Cyclone

More information

VERIFICATION ANALYSIS OF AHB-LITE PROTOCOL WITH COVERAGE

VERIFICATION ANALYSIS OF AHB-LITE PROTOCOL WITH COVERAGE VERIFICATION ANALYSIS OF AHB-LITE PROTOCOL WITH COVERAGE Richa Sinha 1, Akhilesh Kumar 2 and Archana Kumari Sinha 3 1&2 Department of E&C Engineering, NIT Jamshedpur, Jharkhand, India 3 Department of Physics,

More information

SerialLite III Streaming IP Core Design Example User Guide for Intel Stratix 10 Devices

SerialLite III Streaming IP Core Design Example User Guide for Intel Stratix 10 Devices SerialLite III Streaming IP Core Design Example User Guide for Intel Stratix 10 Devices Updated for Intel Quartus Prime Design Suite: 17.1 Stratix 10 ES Editions Subscribe Send Feedback Latest document

More information

Philip Andrew Simpson. FPGA Design. Best Practices for Team-based Reuse. Second Edition

Philip Andrew Simpson. FPGA Design. Best Practices for Team-based Reuse. Second Edition FPGA Design Philip Andrew Simpson FPGA Design Best Practices for Team-based Reuse Second Edition Philip Andrew Simpson San Jose, CA, USA ISBN 978-3-319-17923-0 DOI 10.1007/978-3-319-17924-7 ISBN 978-3-319-17924-7

More information

FPGAs: High Assurance through Model Based Design

FPGAs: High Assurance through Model Based Design FPGAs: High Assurance through Based Design AADL Workshop 24 January 2007 9:30 10:00 Yves LaCerte Rockwell Collins Advanced Technology Center 400 Collins Road N.E. Cedar Rapids, IA 52498 ylacerte@rockwellcollins.cm

More information

Content. Deterministic Access Polling(1) Master-Slave principles: Introduction Layer 2: Media Access Control

Content. Deterministic Access Polling(1) Master-Slave principles: Introduction Layer 2: Media Access Control Content Introduction Layer 2: Frames Error Handling Media Access Control General approaches and terms Network Topologies Media Access Principles (Random) Aloha Principles CSMA, CSMA/CD, CSMA / CA Media

More information

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info.

Intelop. *As new IP blocks become available, please contact the factory for the latest updated info. A FPGA based development platform as part of an EDK is available to target intelop provided IPs or other standard IPs. The platform with Virtex-4 FX12 Evaluation Kit provides a complete hardware environment

More information

On-Chip Design Verification with Xilinx FPGAs

On-Chip Design Verification with Xilinx FPGAs On-Chip Design Verification with Xilinx FPGAs Application Note 1456 Xilinx Virtex-II Pro devices have redefined FPGAs. The Virtex-II Pro brings with it not only a denser and faster FPGA, but an IBM PPC

More information

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim

Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim Practical Hardware Debugging: Quick Notes On How to Simulate Altera s Nios II Multiprocessor Systems Using Mentor Graphics ModelSim Ray Duran Staff Design Specialist FAE, Altera Corporation 408-544-7937

More information