Scaling Distributed Machine Learning

Size: px
Start display at page:

Download "Scaling Distributed Machine Learning"

Transcription

1 Scaling Distributed Machine Learning with System and Algorithm Co-design Mu Li Thesis Defense CSD, CMU Feb 2nd, 2017

2 nx min w f i (w) Distributed systems i=1 Large scale optimization methods Large-scale problems 2

3 Large Scale Machine Learning More complex models Machine learning learns from data More data better accuracy can use more complex models Accuracy Data size 3

4 Ads Click Prediction Predict if an ad will be clicked Each ad impression is an example Logistic regression Single machine processes 1 million examples per second 4

5 Ads Click Prediction Predict if an ad will be clicked 700 Each ad impression is an example Logistic regression Single machine processes 1 million examples per second A typical industrial size problem has 100 billion examples Training data size (TB) billion unique features Year 5

6 Image Recognition Recognize the object in an image Convolutional neural network A state-of-the-art network Hundreds of layers Billions of floating-point operation for processing a single image 6

7 Distributed Computing for Large Scale Problems Distribute workload among many machines Widely available thanks to cloud providers (AWS, GCP, Azure) switch switch machine machine switch switch machine machine 7

8 Distributed Computing for Large Scale Problems Distribute workload among many switch switch machines switch switch Widely available thanks to cloud providers (AWS, GCP, Azure) machine machine Challenges machine machine Limited communication bandwidth (10x less than memory bandwidth) Large synchronization cost (1ms latency) Job failures Failure rate (%) Machine time (hour)

9 Distributed Optimization for Large Scale ML nx m[ min w i=1 f i (w) i=1 I i = {1, 2,...,n} X i2i i (w t ) X w + w t t+1 i2i i (w t ) Challenges Massive communication traffic Expensive global synchronization X i2i i (w t ) 9

10 Scaling Distributed Machine Learning Distributed Systems Distributed Systems Distributed Systems Large Scale Optimization Large data size, complex models Fault tolerant Communication efficient Convergence guarantee Easy to use 10

11 Scaling Distributed Machine Learning Distributed Systems Distributed Systems Distributed Systems Large Scale Optimization Parameter Server DBPG for non-convex non-smooth f i MXNet for deep learning EMSO for efficient minibatch SGD 11

12 Scaling Distributed Machine Learning Distributed Systems Distributed Systems Distributed Systems Large Scale Optimization Parameter Server DBPG for non-convex non-smooth f i MXNet for deep learning EMSO for efficient minibatch SGD 12

13 Existing Open Source Systems in 2012 MPI (message passing interface) Hard to use for sparse problems No fault tolerance Key-value store, e.g. redis Expensive individual key-value pair communication Difficult to program on the server side Hadoop/Spark BSP data consistency makes efficient implementation challenging 13

14 Parameter Server Architecture Model [Smola 10, Dean 12] update Server machines push pull Worker machines Training data 14

15 Keys Features of our Implementation [Li et al, OSDI 14] Trade off data consistency for speed X Flexible consistency models User-defined filters Fault tolerance with chain replication X 15

16 Flexible Consistency Model iter 0 gradient push & pull execute after finished dependency iter 1 gradient push & pull Sequential / BSP iter 0 gradient push & pull iter 1 gradient push & pull Eventual / Total asynchronous [Smola 10] no dependency Flexible models via task dependency graph Bounded delay / SSP [Langford 09, Cipar 13]

17 User-defined Filters machine Data User defined encoder/decoder for efficient communication Encoder Lossless compression General data compression: LZ, LZR,.. efficient communication Lossy compression Decoder Random skip Fixed-point encoding Data machine 17

18 Fault Tolerance with Chain Replication Model is partitioned by consistent hashing Chain replication ack ack worker 0 server 0 server 1 push push Option: aggregation reduces backup traffic worker 0 ack push ack worker 1 ack push server 0 server 1 push 18

19 Scaling Distributed Machine Learning Distributed Systems Distributed Systems Distributed Systems Large Scale Optimization Parameter Server DBPG for non-convex non-smooth f i MXNet for deep learning EMSO for efficient minibatch SGD 19

20 Proximal Gradient Method [Combettes 09] min w2 nx i=1 f i (w)+h(w) f i : continuously differentiable but not necessarily convex h: convex but possibly non-smooth w t+1 =Prox t " w t t n X f i (w t ) # Iterative update i=1 where Prox (x) := argmin y2 h(y)+ 1 2 kx yk2 20

21 Delayed Block Proximal Gradient [Li et al, NIPS 14] Algorithm design tailored for parameter model server implementation Update a block of coordinates each time Allow delay among blocks Use filters during communication data Only 300 lines of codes 21

22 Convergence Analysis Assumptions: Block Lipschitz continuity: within block Delay is bounded by τ L var, cross blocks L cor Lossy compressions such as random skip filter and significantly-modified filter DBPG converges to a stationary point if the learning rate is chosen as t < 1 L var + L cor 22

23 Experiments on Ads Click Prediction Real dataset used in production Time to achieve the same objective value 170 billion examples, 65 billion unique features, 636 TB in total sequential 2 computing waiting 1000 machines Sparse logistic regression time (hour) x best trade-off min w nx log(1 + exp( y i hx i,wi)) + kwk 1 i= Maximal delay τ 23

24 Filters to Reduce Communication Traffic 100 Server Key caching Traffic (%) x 40x 40x Cache feature IDs on both sender and receiver Data compression 0 Baseline Key Caching Compre- ssing KKT Filter KKT filter 100 Worker Shrink gradient to 0 based on the KKT condition Traffic (%) x 2.5x 12x 24 0 Baseline Key Caching Compre- ssing KKT Filter

25 Scaling Distributed Machine Learning Distributed Systems Distributed Systems Distributed Systems Large Scale Optimization Parameter Server DBPG for non-convex non-smooth f i MXNet for deep learning EMSO for efficient minibatch SGD 25

26 Deep Learning is Unique Complex workloads Heterogeneous computing Easy to use programming interface deep learning trend in the past 5 years 26

27 Key Features of MXNet [Chen et al, NIPS 15 workshop] (corresponding author) Easy-to-use front-end Mixed programming Scalable and efficient back-end Computation and memory optimization Auto-parallelization Scaling to multiple GPU/machines 27

28 Mixed Programming Declarative programs are easy to optimize Imperative programming is flexible e.g. Numpy, Matlab, Torch, e.g. TensorFlow, Theano, Caffe, import mxnet as mx net = mx.symbol.variable('data') net = mx.symbol.fullyconnected( data=net, num_hidden=128) net = mx.symbol.softmaxoutput(data=net) model = mx.module.module(net) model.forward(data=c) model.backward() Good for defining the neural network import mxnet as mx a = mx.nd.zeros((100, 50)) b = mx.nd.ones((100, 50)) c = a * b print(c) c += 1 Good for updating and interacting with the neural network 28

29 Back-end System Front-end import mxnet as mx a = mx.nd.zeros((100, 50)) b = mx.nd.ones((100, 50)) c = a * b c += 1 import mxnet as mx net = mx.symbol.variable('data') net = mx.symbol.fullyconnected( data=net, num_hidden=128) net = mx.symbol.softmaxoutput(data=net) texec = mx.module.module(net) texec.forward(data=c) texec.backward() Back-end a b c weight Optimization Memory optimization + 1 fullc softmax bias Operator fusion and runtime compilation Scheduling Auto-parallelization 29

30 Scale to Multiple GPU Machines Hierarchical parameter server Network Switch 1.25 GB/s 10 Gbit Ethernet CPU CPUs Level-2 Servers GB/s PCIe x PCIe Switch Level-1 Servers 63 GB/s 4 PCIe x GPUs Workers GPU GPU GPU GPU 1000 lines of codes 30

31 Experiment Setup Minibatch SGD 1.2 million images with 1000 classes Draw a random set of examples I t at Resnet 152-layer model iteration t EC2 P2.8 xlarge Update 8 K80 GPUs per machine CPU w t+1 = w t t I t X i2i i (w t ) PCIe switches Synchronized updating GPU

32 Communication Cost Fix #GPUs per machine GPU/machine 2 GPU/machine 4 GPU/machine time (sec) GPU/machine # of GPUs 32

33 Scalability 115x speedup 1 Communication cost batch size/gpu= batch size/gpu=8 time (sec) 0.5 batch size/gpu= # of GPUs 33

34 Convergence 0.8 Increase learning rate by 5x Increase learning rate by 10x, decrease it at epoch 50, 80 Top-1 validation accuracy batch size=256 batch size=2,560 batch size=5, # of epochs 34

35 Scaling Distributed Machine Learning Distributed Systems Distributed Systems Distributed Systems Large Scale Optimization Parameter Server DBPG for non-convex non-smooth f i MXNet for deep learning EMSO for efficient minibatch SGD 35

36 Minibatch SGD Large batch size b in SGD Better parallelization within a batch Less switching/communication cost Better system performance Small batch size b Faster convergence convergence O(1/ p N + b/n) Worse rate Batch size (b) N: number of examples processed 36

37 Motivation [Li et al, KDD 14] Better system Improve converge rate for large batch size performance Example variance decreases with batch size Solve a more accurate optimization subproblem over each batch convergence Worse rate Batch size (b) 37

38 Efficient Minibatch SGD Define f It (w) := X i2i t f i (w). Minibatch SGD solves w t = argmin w2 apple first-order approximation conservative penalty f (w It t 1 )+h@f (w It t 1 ),w w t 1 i + 1 kw w t 1 k t EMSO solves the subproblem at each iteration w t = argmin w2 apple f It (w)+ 1 2 t kw w t 1 k 2 2 exact objective p For convex f i, choose t = O(b/ N). EMSO has convergence rate O(1/ p N) (compared to p O(1/ N + b/n) ) 38

39 Experiment Ads click prediction with fixed run time Single machine 10 machines SGD 0.22 SGD EMSO EMSO Objective Objective e3 1e4 1e e3 1e4 1e5 Batch size Batch size Extended to deep learning in [Keskar et al, arxiv 16] 39

40 Large-scale problems min w nx i=1 f i (w) Reduce communication cost Distributed systems Large scale optimization Co-design Communicate less With appropriate computational frameworks and algorithm Message compression design, distributed machine learning can be made simple, Relaxed data consistency fast, and scalable, both in theory and in practice. 40

41 Acknowledgement Committee members QQ & Alex Advisors with other 13 collaborators 41

42 Backup slides 42

43 Scaling to 16 GPUs in a Single Machine x Comm Cost bs/gpu=2 bs/gpu=4 time (sec) bs/gpu=8 bs/gpu=16 Communication dominates # of GPUs 43

44 Compare to a L-BFGS Based System computing waiting Objective System A Parameter Server Time (hour) System A Parameter Time (hour) Server 44

45 Sections not Covered AdaDelay: model the actual delay for asynchronized SGD Parsa: data placement to reduce communication cost Difacto: large scale factorization machine 45

Scaling Distributed Machine Learning with the Parameter Server

Scaling Distributed Machine Learning with the Parameter Server Scaling Distributed Machine Learning with the Parameter Server Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su Presented

More information

Optimizing Network Performance in Distributed Machine Learning. Luo Mai Chuntao Hong Paolo Costa

Optimizing Network Performance in Distributed Machine Learning. Luo Mai Chuntao Hong Paolo Costa Optimizing Network Performance in Distributed Machine Learning Luo Mai Chuntao Hong Paolo Costa Machine Learning Successful in many fields Online advertisement Spam filtering Fraud detection Image recognition

More information

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters Hao Zhang Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jianliang Wei, Pengtao Xie,

More information

CS 6453: Parameter Server. Soumya Basu March 7, 2017

CS 6453: Parameter Server. Soumya Basu March 7, 2017 CS 6453: Parameter Server Soumya Basu March 7, 2017 What is a Parameter Server? Server for large scale machine learning problems Machine learning tasks in a nutshell: Feature Extraction (1, 1, 1) (2, -1,

More information

TensorFlow: A System for Learning-Scale Machine Learning. Google Brain

TensorFlow: A System for Learning-Scale Machine Learning. Google Brain TensorFlow: A System for Learning-Scale Machine Learning Google Brain The Problem Machine learning is everywhere This is in large part due to: 1. Invention of more sophisticated machine learning models

More information

CafeGPI. Single-Sided Communication for Scalable Deep Learning

CafeGPI. Single-Sided Communication for Scalable Deep Learning CafeGPI Single-Sided Communication for Scalable Deep Learning Janis Keuper itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Deep Neural Networks

More information

Toward Scalable Deep Learning

Toward Scalable Deep Learning 한국정보과학회 인공지능소사이어티 머신러닝연구회 두번째딥러닝워크샵 2015.10.16 Toward Scalable Deep Learning 윤성로 Electrical and Computer Engineering Seoul National University http://data.snu.ac.kr Breakthrough: Big Data + Machine Learning

More information

Cuckoo Linear Algebra

Cuckoo Linear Algebra Cuckoo Linear Algebra Li Zhou, CMU Dave Andersen, CMU and Mu Li, CMU and Alexander Smola, CMU and select advertisement p(click user, query) = logist (hw, (user, query)i) select advertisement find weight

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Lecture 22 : Distributed Systems for ML

Lecture 22 : Distributed Systems for ML 10-708: Probabilistic Graphical Models, Spring 2017 Lecture 22 : Distributed Systems for ML Lecturer: Qirong Ho Scribes: Zihang Dai, Fan Yang 1 Introduction Big data has been very popular in recent years.

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 4, 2016 Outline Multi-core v.s. multi-processor Parallel Gradient Descent Parallel Stochastic Gradient Parallel Coordinate Descent Parallel

More information

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture

Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture The 51st Annual IEEE/ACM International Symposium on Microarchitecture Multi-dimensional Parallel Training of Winograd Layer on Memory-Centric Architecture Byungchul Hong Yeonju Ro John Kim FuriosaAI Samsung

More information

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability

Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability Distributed Training of Deep Neural Networks: Theoretical and Practical Limits of Parallel Scalability Janis Keuper Itwm.fraunhofer.de/ml Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern,

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Efficient Communication Library for Large-Scale Deep Learning

Efficient Communication Library for Large-Scale Deep Learning IBM Research AI Efficient Communication Library for Large-Scale Deep Learning Mar 26, 2018 Minsik Cho (minsikcho@us.ibm.com) Deep Learning changing Our Life Automotive/transportation Security/public safety

More information

Asynchronous Stochastic Gradient Descent on GPU: Is It Really Better than CPU?

Asynchronous Stochastic Gradient Descent on GPU: Is It Really Better than CPU? Asynchronous Stochastic Gradient Descent on GPU: Is It Really Better than CPU? Florin Rusu Yujing Ma, Martin Torres (Ph.D. students) University of California Merced Machine Learning (ML) Boom Two SIGMOD

More information

CNN optimization. Rassadin A

CNN optimization. Rassadin A CNN optimization Rassadin A. 01.2017-02.2017 What to optimize? Training stage time consumption (CPU / GPU) Inference stage time consumption (CPU / GPU) Training stage memory consumption Inference stage

More information

Linear Regression Optimization

Linear Regression Optimization Gradient Descent Linear Regression Optimization Goal: Find w that minimizes f(w) f(w) = Xw y 2 2 Closed form solution exists Gradient Descent is iterative (Intuition: go downhill!) n w * w Scalar objective:

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Parallel Methods for Convex Optimization. A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney

Parallel Methods for Convex Optimization. A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney Parallel Methods for Convex Optimization A. Devarakonda, J. Demmel, K. Fountoulakis, M. Mahoney Problems minimize g(x)+f(x; A, b) Sparse regression g(x) =kxk 1 f(x) =kax bk 2 2 mx Sparse SVM g(x) =kxk

More information

Deep Learning Frameworks with Spark and GPUs

Deep Learning Frameworks with Spark and GPUs Deep Learning Frameworks with Spark and GPUs Abstract Spark is a powerful, scalable, real-time data analytics engine that is fast becoming the de facto hub for data science and big data. However, in parallel,

More information

Optimization for Machine Learning

Optimization for Machine Learning with a focus on proximal gradient descent algorithm Department of Computer Science and Engineering Outline 1 History & Trends 2 Proximal Gradient Descent 3 Three Applications A Brief History A. Convex

More information

Decentralized and Distributed Machine Learning Model Training with Actors

Decentralized and Distributed Machine Learning Model Training with Actors Decentralized and Distributed Machine Learning Model Training with Actors Travis Addair Stanford University taddair@stanford.edu Abstract Training a machine learning model with terabytes to petabytes of

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

Device Placement Optimization with Reinforcement Learning

Device Placement Optimization with Reinforcement Learning Device Placement Optimization with Reinforcement Learning Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Mohammad Norouzi, Naveen Kumar, Rasmus Larsen, Yuefeng Zhou, Quoc Le, Samy Bengio, and

More information

Distributed Machine Learning: An Intro. Chen Huang

Distributed Machine Learning: An Intro. Chen Huang : An Intro. Chen Huang Feature Engineering Group, Data Mining Lab, Big Data Research Center, UESTC Contents Background Some Examples Model Parallelism & Data Parallelism Parallelization Mechanisms Synchronous

More information

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs

Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Accelerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs Ritchie Zhao 1, Weinan Song 2, Wentao Zhang 2, Tianwei Xing 3, Jeng-Hau Lin 4, Mani Srivastava 3, Rajesh Gupta 4, Zhiru

More information

Scaled Machine Learning at Matroid

Scaled Machine Learning at Matroid Scaled Machine Learning at Matroid Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Machine Learning Pipeline Learning Algorithm Replicate model Data Trained Model Serve Model Repeat entire pipeline Scaling

More information

Lecture 11: Distributed Training and Communication Protocols. CSE599W: Spring 2018

Lecture 11: Distributed Training and Communication Protocols. CSE599W: Spring 2018 Lecture 11: Distributed Training and Communication Protocols CSE599W: Spring 2018 Where are we High level Packages User API Programming API Gradient Calculation (Differentiation API) System Components

More information

The Future of High Performance Computing

The Future of High Performance Computing The Future of High Performance Computing Randal E. Bryant Carnegie Mellon University http://www.cs.cmu.edu/~bryant Comparing Two Large-Scale Systems Oakridge Titan Google Data Center 2 Monolithic supercomputer

More information

Training Deep Neural Networks (in parallel)

Training Deep Neural Networks (in parallel) Lecture 9: Training Deep Neural Networks (in parallel) Visual Computing Systems How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors as

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server

More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server Q. Ho, J. Cipar, H. Cui, J.K. Kim, S. Lee, *P.B. Gibbons, G.A. Gibson, G.R. Ganger, E.P. Xing Carnegie Mellon University

More information

Sparse Training Data Tutorial of Parameter Server

Sparse Training Data Tutorial of Parameter Server Carnegie Mellon University Sparse Training Data Tutorial of Parameter Server Mu Li! CSD@CMU & IDL@Baidu! muli@cs.cmu.edu High-dimensional data are sparse Why high dimension?! make the classifier s job

More information

Beyond Training The next steps of Machine Learning. Chris /in/chrisparsonsdev

Beyond Training The next steps of Machine Learning. Chris /in/chrisparsonsdev Beyond Training The next steps of Machine Learning Chris Parsons chrisparsons@uk.ibm.com @chrisparsonsdev /in/chrisparsonsdev What is this talk? Part 1 What is Machine Learning? AI Infrastructure PowerAI

More information

Scalable Distributed Training with Parameter Hub: a whirlwind tour

Scalable Distributed Training with Parameter Hub: a whirlwind tour Scalable Distributed Training with Parameter Hub: a whirlwind tour TVM Stack Optimization High-Level Differentiable IR Tensor Expression IR AutoTVM LLVM, CUDA, Metal VTA AutoVTA Edge FPGA Cloud FPGA ASIC

More information

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Abstract: This project aims at creating a benchmark for Deep Learning (DL) algorithms

More information

Deep Learning Training System: Adam & Google Cloud ML. CSE 5194: Introduction to High- Performance Deep Learning Qinghua Zhou

Deep Learning Training System: Adam & Google Cloud ML. CSE 5194: Introduction to High- Performance Deep Learning Qinghua Zhou Deep Learning Training System: Adam & Google Cloud ML CSE 5194: Introduction to High- Performance Deep Learning Qinghua Zhou Outline Project Adam: Building an Efficient and Scalable Deep Learning Training

More information

ChainerMN: Scalable Distributed Deep Learning Framework

ChainerMN: Scalable Distributed Deep Learning Framework ChainerMN: Scalable Distributed Deep Learning Framework Takuya Akiba Preferred Networks, Inc. akiba@preferred.jp Keisuke Fukuda Preferred Networks, Inc. kfukuda@preferred.jp Shuji Suzuki Preferred Networks,

More information

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI

Parallel Stochastic Gradient Descent: The case for native GPU-side GPI Parallel Stochastic Gradient Descent: The case for native GPU-side GPI J. Keuper Competence Center High Performance Computing Fraunhofer ITWM, Kaiserslautern, Germany Mark Silberstein Accelerated Computer

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Motivation And Intro Programming Model Spark Data Transformation Model Construction Model Training Model Inference Execution Model Data Parallel Training

More information

FastText. Jon Koss, Abhishek Jindal

FastText. Jon Koss, Abhishek Jindal FastText Jon Koss, Abhishek Jindal FastText FastText is on par with state-of-the-art deep learning classifiers in terms of accuracy But it is way faster: FastText can train on more than one billion words

More information

Programming Systems for Big Data

Programming Systems for Big Data Programming Systems for Big Data CS315B Lecture 17 Including material from Kunle Olukotun Prof. Aiken CS 315B Lecture 17 1 Big Data We ve focused on parallel programming for computational science There

More information

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina

Residual Networks And Attention Models. cs273b Recitation 11/11/2016. Anna Shcherbina Residual Networks And Attention Models cs273b Recitation 11/11/2016 Anna Shcherbina Introduction to ResNets Introduced in 2015 by Microsoft Research Deep Residual Learning for Image Recognition (He, Zhang,

More information

Analyzing Stochastic Gradient Descent for Some Non- Convex Problems

Analyzing Stochastic Gradient Descent for Some Non- Convex Problems Analyzing Stochastic Gradient Descent for Some Non- Convex Problems Christopher De Sa Soon at Cornell University cdesa@stanford.edu stanford.edu/~cdesa Kunle Olukotun Christopher Ré Stanford University

More information

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA

Inference Optimization Using TensorRT with Use Cases. Jack Han / 한재근 Solutions Architect NVIDIA Inference Optimization Using TensorRT with Use Cases Jack Han / 한재근 Solutions Architect NVIDIA Search Image NLP Maps TensorRT 4 Adoption Use Cases Speech Video AI Inference is exploding 1 Billion Videos

More information

MALT: Distributed Data-Parallelism for Existing ML Applications

MALT: Distributed Data-Parallelism for Existing ML Applications MALT: Distributed -Parallelism for Existing ML Applications Hao Li, Asim Kadav, Erik Kruus NEC Laboratories America {asim, kruus@nec-labs.com} Abstract We introduce MALT, a machine learning library that

More information

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs

In-Place Activated BatchNorm for Memory- Optimized Training of DNNs In-Place Activated BatchNorm for Memory- Optimized Training of DNNs Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder Mapillary Research Paper: https://arxiv.org/abs/1712.02616 Code: https://github.com/mapillary/inplace_abn

More information

Profiling DNN Workloads on a Volta-based DGX-1 System

Profiling DNN Workloads on a Volta-based DGX-1 System Profiling DNN Workloads on a Volta-based DGX-1 System Saiful A. Mojumder 1, Marcia S Louis 1, Yifan Sun 2, Amir Kavyan Ziabari 3, José L. Abellán 4, John Kim 5, David Kaeli 2, Ajay Joshi 1 1 ECE Department,

More information

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT

Mocha.jl. Deep Learning in Julia. Chiyuan Zhang CSAIL, MIT Mocha.jl Deep Learning in Julia Chiyuan Zhang (@pluskid) CSAIL, MIT Deep Learning Learning with multi-layer (3~30) neural networks, on a huge training set. State-of-the-art on many AI tasks Computer Vision:

More information

Democratizing Machine Learning on Kubernetes

Democratizing Machine Learning on Kubernetes Democratizing Machine Learning on Kubernetes Joy Qiao, Senior Solution Architect - AI and Research Group, Microsoft Lachlan Evenson - Principal Program Manager AKS/ACS, Microsoft Who are we? The Data Scientist

More information

LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning

LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning Tianyi Chen Georgios Giannakis Tao Sun Wotao Yin UMN, ECE UCLA, Math NeurIPS 208 Overview M := {,...,M} aaacaxicbvdlssnafj3uv62vqbvbzwarxjssseerhiibn4uk9gfnkjpjpb06mqkze6geuvfx3lhqxk/4c6/cdpmoa0hlhzouzd77wksrpv2ng+rslk6tr5r3cxtbe/s7tn7b20luoljcwsmzddaijdksuttzug3kqtfasodyhqz9tsprcoq+l0ej8sp0ydtigkkjds3jzipiwybk6trl3mrhgufvpwgn+nbzafqzacxizutmsjr7ntfxihwghoumunk9vwn0x6gpkaykunjsxvjeb6haekzylfmlj/nppjau6oemblsfndwpv6eyfcsdgotgem9fatelpxp6+x6ujszyhpuk04ni+kugagnm4yeglwzqndufyunmrxemkedymtjijwv8ezm0z6uuu3xvauv6ly+jci7bctgdlrgadxalmqafmhgez+avvflpovbn3mwwtwpnmi/sd6/aeiejx9

More information

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks

Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural Networks Naveen Suda, Vikas Chandra *, Ganesh Dasika *, Abinash Mohanty, Yufei Ma, Sarma Vrudhula, Jae-sun Seo, Yu

More information

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures

Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Characterizing and Benchmarking Deep Learning Systems on Modern Data Center Architectures Talk at Bench 2018 by Xiaoyi Lu The Ohio State University E-mail: luxi@cse.ohio-state.edu http://www.cse.ohio-state.edu/~luxi

More information

COMP6237 Data Mining Data Mining & Machine Learning with Big Data. Jonathon Hare

COMP6237 Data Mining Data Mining & Machine Learning with Big Data. Jonathon Hare COMP6237 Data Mining Data Mining & Machine Learning with Big Data Jonathon Hare jsh2@ecs.soton.ac.uk Contents Going to look at two case-studies looking at how we can make machine-learning algorithms work

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 19: Parallel Deep Network Training Parallel Computer Architecture and Programming How would you describe this professor? Easy? Mean? Boring? Nerdy? Professor classification task Classifies professors

More information

Maximizing Server Efficiency from μarch to ML accelerators. Michael Ferdman

Maximizing Server Efficiency from μarch to ML accelerators. Michael Ferdman Maximizing Server Efficiency from μarch to ML accelerators Michael Ferdman Maximizing Server Efficiency from μarch to ML accelerators Michael Ferdman Maximizing Server Efficiency with ML accelerators Michael

More information

Deep Learning Accelerators

Deep Learning Accelerators Deep Learning Accelerators Abhishek Srivastava (as29) Samarth Kulshreshtha (samarth5) University of Illinois, Urbana-Champaign Submitted as a requirement for CS 433 graduate student project Outline Introduction

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder

EFFICIENT INFERENCE WITH TENSORRT. Han Vanholder EFFICIENT INFERENCE WITH TENSORRT Han Vanholder AI INFERENCING IS EXPLODING 2 Trillion Messages Per Day On LinkedIn 500M Daily active users of iflytek 140 Billion Words Per Day Translated by Google 60

More information

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features

Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Asynchronous Parallel Learning for Neural Networks and Structured Models with Dense Features Xu SUN ( 孙栩 ) Peking University xusun@pku.edu.cn Motivation Neural networks -> Good Performance CNN, RNN, LSTM

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Usable while performant: the challenges building. Soumith Chintala

Usable while performant: the challenges building. Soumith Chintala Usable while performant: the challenges building Soumith Chintala Problem Statement Deep Learning Workloads Problem Statement Deep Learning Workloads for epoch in range(max_epochs): for data, target in

More information

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG

NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG NVIDIA DLI HANDS-ON TRAINING COURSE CATALOG Valid Through July 31, 2018 INTRODUCTION The NVIDIA Deep Learning Institute (DLI) trains developers, data scientists, and researchers on how to use artificial

More information

S8765 Performance Optimization for Deep- Learning on the Latest POWER Systems

S8765 Performance Optimization for Deep- Learning on the Latest POWER Systems S8765 Performance Optimization for Deep- Learning on the Latest POWER Systems Khoa Huynh Senior Technical Staff Member (STSM), IBM Jonathan Samn Software Engineer, IBM Evolving from compute systems to

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

DL4J Components. Open Source DeepLearning Library CPU & GPU support Hadoop-Yarn & Spark integration Futre additions

DL4J Components. Open Source DeepLearning Library CPU & GPU support Hadoop-Yarn & Spark integration Futre additions DeepLearning4j DL4J Components Open Source DeepLearning Library CPU & GPU support Hadoop-Yarn & Spark integration Futre additions DL4J Components Open Source Deep Learning Library What is DeepLearning

More information

MapReduce ML & Clustering Algorithms

MapReduce ML & Clustering Algorithms MapReduce ML & Clustering Algorithms Reminder MapReduce: A trade-off between ease of use & possible parallelism Graph Algorithms Approaches: Reduce input size (filtering) Graph specific optimizations (Pregel

More information

Scalable deep learning on distributed GPUs with a GPU-specialized parameter server

Scalable deep learning on distributed GPUs with a GPU-specialized parameter server Scalable deep learning on distributed GPUs with a GPU-specialized parameter server Henggang Cui, Gregory R. Ganger, and Phillip B. Gibbons Carnegie Mellon University CMU-PDL-15-107 October 2015 Parallel

More information

Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds

Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds Kevin Hsieh Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R. Ganger, Phillip B. Gibbons, Onur Mutlu Machine Learning and Big

More information

CERN openlab & IBM Research Workshop Trip Report

CERN openlab & IBM Research Workshop Trip Report CERN openlab & IBM Research Workshop Trip Report Jakob Blomer, Javier Cervantes, Pere Mato, Radu Popescu 2018-12-03 Workshop Organization 1 full day at IBM Research Zürich ~25 participants from CERN ~10

More information

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. by Google Research. presented by Weichen Wang

TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS. by Google Research. presented by Weichen Wang TENSORFLOW: LARGE-SCALE MACHINE LEARNING ON HETEROGENEOUS DISTRIBUTED SYSTEMS by Google Research presented by Weichen Wang 2016.11.28 OUTLINE Introduction The Programming Model The Implementation Single

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross

Track Join. Distributed Joins with Minimal Network Traffic. Orestis Polychroniou! Rajkumar Sen! Kenneth A. Ross Track Join Distributed Joins with Minimal Network Traffic Orestis Polychroniou Rajkumar Sen Kenneth A. Ross Local Joins Algorithms Hash Join Sort Merge Join Index Join Nested Loop Join Spilling to disk

More information

Data Processing at the Speed of 100 Gbps using Apache Crail. Patrick Stuedi IBM Research

Data Processing at the Speed of 100 Gbps using Apache Crail. Patrick Stuedi IBM Research Data Processing at the Speed of 100 Gbps using Apache Crail Patrick Stuedi IBM Research The CRAIL Project: Overview Data Processing Framework (e.g., Spark, TensorFlow, λ Compute) Spark-IO Albis Pocket

More information

Frameworks in Python for Numeric Computation / ML

Frameworks in Python for Numeric Computation / ML Frameworks in Python for Numeric Computation / ML Why use a framework? Why not use the built-in data structures? Why not write our own matrix multiplication function? Frameworks are needed not only because

More information

Machine Learning Basics. Sargur N. Srihari

Machine Learning Basics. Sargur N. Srihari Machine Learning Basics Sargur N. srihari@cedar.buffalo.edu 1 Overview Deep learning is a specific type of ML Necessary to have a solid understanding of the basic principles of ML 2 Topics Stochastic Gradient

More information

High Performance Computing

High Performance Computing High Performance Computing 9th Lecture 2016/10/28 YUKI ITO 1 Selected Paper: vdnn: Virtualized Deep Neural Networks for Scalable, MemoryEfficient Neural Network Design Minsoo Rhu, Natalia Gimelshein, Jason

More information

Distributed Delayed Proximal Gradient Methods

Distributed Delayed Proximal Gradient Methods Distributed Delayed Proximal Gradient Methods Mu Li, David G. Andersen and Alexander Smola, Carnegie Mellon University Google Strategic Technologies Abstract We analyze distributed optimization algorithms

More information

A Hierarchical Synchronous Parallel Model for Wide-Area Graph Analytics

A Hierarchical Synchronous Parallel Model for Wide-Area Graph Analytics A Hierarchical Synchronous Parallel Model for Wide-Area Graph Analytics Shuhao Liu*, Li Chen, Baochun Li, Aiden Carnegie University of Toronto April 17, 2018 Graph Analytics What is Graph Analytics? 2

More information

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Yaguang Li Joint work with Rose Yu, Cyrus Shahabi, Yan Liu Page 1 Introduction Traffic congesting is wasteful of time,

More information

Index. Springer Nature Switzerland AG 2019 B. Moons et al., Embedded Deep Learning,

Index. Springer Nature Switzerland AG 2019 B. Moons et al., Embedded Deep Learning, Index A Algorithmic noise tolerance (ANT), 93 94 Application specific instruction set processors (ASIPs), 115 116 Approximate computing application level, 95 circuits-levels, 93 94 DAS and DVAS, 107 110

More information

Distributed Optimization for Machine Learning

Distributed Optimization for Machine Learning Distributed Optimization for Machine Learning Martin Jaggi EPFL Machine Learning and Optimization Laboratory mlo.epfl.ch AI Summer School - MSR Cambridge - July 5 th Machine Learning Methods to Analyze

More information

Parallel Deep Network Training

Parallel Deep Network Training Lecture 26: Parallel Deep Network Training Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2016 Tunes Speech Debelle Finish This Album (Speech Therapy) Eat your veggies and study

More information

Logistic Regression. Abstract

Logistic Regression. Abstract Logistic Regression Tsung-Yi Lin, Chen-Yu Lee Department of Electrical and Computer Engineering University of California, San Diego {tsl008, chl60}@ucsd.edu January 4, 013 Abstract Logistic regression

More information

CS-541 Wireless Sensor Networks

CS-541 Wireless Sensor Networks CS-541 Wireless Sensor Networks Lecture 14: Big Sensor Data Prof Panagiotis Tsakalides, Dr Athanasia Panousopoulou, Dr Gregory Tsagkatakis 1 Overview Big Data Big Sensor Data Material adapted from: Recent

More information

732A54/TDDE31 Big Data Analytics

732A54/TDDE31 Big Data Analytics 732A54/TDDE31 Big Data Analytics Lecture 10: Machine Learning with MapReduce Jose M. Peña IDA, Linköping University, Sweden 1/27 Contents MapReduce Framework Machine Learning with MapReduce Neural Networks

More information

1 Overview Definitions (read this section carefully) 2

1 Overview Definitions (read this section carefully) 2 MLPerf User Guide Version 0.5 May 2nd, 2018 1 Overview 2 1.1 Definitions (read this section carefully) 2 2 General rules 3 2.1 Strive to be fair 3 2.2 System and framework must be consistent 4 2.3 System

More information

XPU A Programmable FPGA Accelerator for Diverse Workloads

XPU A Programmable FPGA Accelerator for Diverse Workloads XPU A Programmable FPGA Accelerator for Diverse Workloads Jian Ouyang, 1 (ouyangjian@baidu.com) Ephrem Wu, 2 Jing Wang, 1 Yupeng Li, 1 Hanlin Xie 1 1 Baidu, Inc. 2 Xilinx Outlines Background - FPGA for

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Why DNN Works for Speech and How to Make it More Efficient?

Why DNN Works for Speech and How to Make it More Efficient? Why DNN Works for Speech and How to Make it More Efficient? Hui Jiang Department of Electrical Engineering and Computer Science Lassonde School of Engineering, York University, CANADA Joint work with Y.

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

arxiv: v1 [cs.dc] 8 Jun 2018

arxiv: v1 [cs.dc] 8 Jun 2018 PipeDream: Fast and Efficient Pipeline Parallel DNN Training Aaron Harlap Deepak Narayanan Amar Phanishayee Vivek Seshadri Nikhil Devanur Greg Ganger Phil Gibbons Microsoft Research Carnegie Mellon University

More information

10. Replication. Motivation

10. Replication. Motivation 10. Replication Page 1 10. Replication Motivation Reliable and high-performance computation on a single instance of a data object is prone to failure. Replicate data to overcome single points of failure

More information

Guarding user Privacy with Federated Learning and Differential Privacy

Guarding user Privacy with Federated Learning and Differential Privacy Guarding user Privacy with Federated Learning and Differential Privacy Brendan McMahan mcmahan@google.com DIMACS/Northeast Big Data Hub Workshop on Overcoming Barriers to Data Sharing including Privacy

More information

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Google, Inc. SIGMOD 2010 Presented by Ke Hong (some figures borrowed from

More information

Carnegie Mellon University Implementation Tutorial of Parameter Server

Carnegie Mellon University Implementation Tutorial of Parameter Server Carnegie Mellon University Implementation Tutorial of Parameter Server Mu Li! CSD@CMU & IDL@Baidu! muli@cs.cmu.edu Model/Data partition Learn w from training data X W X Worker/Server Architecture Servers

More information

Machine Learning at the Limit

Machine Learning at the Limit Machine Learning at the Limit John Canny*^ * Computer Science Division University of California, Berkeley ^ Yahoo Research Labs @GTC, March, 2015 My Other Job(s) Yahoo [Chen, Pavlov, Canny, KDD 2009]*

More information