Towards a Robust Protocol Stack for Diverse Wireless Networks Arun Venkataramani

Size: px
Start display at page:

Download "Towards a Robust Protocol Stack for Diverse Wireless Networks Arun Venkataramani"

Transcription

1 Towards a Robust Protocol Stack for Diverse Wireless Networks Arun Venkataramani (in collaboration with Ming Li, Devesh Agrawal, Deepak Ganesan, Aruna Balasubramanian, Brian Levine, Xiaozheng Tie at UMass Amherst)

2 Wireless network landscape today! Diverse wireless networks coexist! Adapt TCP/IP stack in different ways WLAN Mesh Cellular MANET DTN Little mobility Some mobility High mobility 2

3 Interconnecting diverse networks?! Vision: A simple robust protocol stack to interconnect diverse wireless networks. WLAN Mesh Cellular MANET DTN Little mobility Some mobility High mobility 3

4 Why does TCP/IP not suffice?! E2E route disruptions cause unavailability WLAN Mesh Cellular MANET DTN Little mobility Some mobility High mobility 4

5 Why does TCP/IP not suffice?! Gap between what you buy vs. get WLAN Mesh Cellular MANET DTN Little mobility Some mobility High mobility Advertised capacity: 11Mbps 5

6 Principle: Design for high uncertainty! Observe what works at an extreme point in the design space--always-partitioned DTNs--for insights into a robust design. 6

7 Outline! Motivation! Block transport! Replication routing! Research challenges 7

8 1. E2E Transport! E2E rate control is error-prone! E2E retransmissions are wasteful Rate Control E2E Feedback Loss Rate RTT Source Congestion? Link loss? Dest 8

9 1. E2E Transport! E2E rate control is error-prone! E2E retransmissions are wasteful E2E Retransmissions P Source Redundant Transmissions Dest 9

10 1. E2E Transport! E2E rate control is error-prone! E2E retransmissions are wasteful! E2E route disruptions cause unavailability Route disruptions due to mobility 10

11 2. Packet as Unit of Control! Channel access! Link layer ARQ Listen Backoff RTS/CTS 11

12 2. Packet as Unit of Control! Channel access! Link layer ARQ Timeout Backoff Timeout Backoff 12

13 3. Complex Cross-Layer Interaction! Link-layer ARQ/backoff hurts TCP rate control Transport Rate Control Highly Variable RTT Link Link ARQ Link ARQ Link ARQ 13

14 Hop: Clean-Slate Transport Protocol! End-To-End! Packets! Complexity Hop-by-Hop Blocks Minimize interaction Block-switched networks: A new paradigm for wireless networks, Li et al. [NSDI 2009] 14

15 Hop Design Multi-hop Per-hop Virtual Retransmission ACK Withholding Backpressure Micro-block Prioritization Reliable Block Transfer 15

16 Reliable Per-Hop Block Transfer! Mechanisms! Burst mode (TXOP)! Block ACK based ARQ! Benefits! Amortizes control overhead B-SYN Request for B-ACK B-ACK Packet bitmap CSMA TXOP 16

17 Hop Design Multi-hop Per-hop Virtual Retransmission ACK Withholding Backpressure Micro-block Prioritization Reliable Block Transfer 17

18 Virtual Retransmission (VTX)! Mechanism! Leverages in-network caching! Re-transmits blocks only when unavailable in cache! Benefits! Fewer transmissions! Low overhead C! Simple A B-SYN B-ACK DATA B D E 18

19 Virtual Retransmission (VTX)! Mechanism! Leverages in-network caching! Re-transmits blocks only when unavailable in cache! Benefits! Fewer transmissions! Low overhead! Simple B-SYN VTX B-SYN with VTX flag set A B D VTX Timer B-SYN VTX B-ACK E 19

20 Hop Design Multi-hop Per-hop Virtual Retransmission ACK Withholding Backpressure Micro-block Prioritization Reliable Block Transfer 20

21 Backpressure! Mechanism! Limits outstanding blocks per-flow at forwarder Slow A B C D E Source B-SYN B-SYN B-SYN Hold B-ACK Limit on outstanding blocks=2 Dest 21

22 Backpressure! Mechanism! Limits outstanding blocks per-flow at forwarder! Benefits! Improves network utilization D A B C Source 20Mbps 10Mbps 20Mbps 20Mbps F 20Mbps 1Mbps E Dest G Dest Aggregate goodput without backpressure: 6Mbps 22

23 Backpressure! Mechanism! Limits #outstanding blocks per-flow at forwarder! Benefits! Improves network utilization D A B C Source 20Mbps 10Mbps 20Mbps 20Mbps F 20Mbps 1Mbps E Dest G Limit of Outstanding Blocks=1 Dest Aggregate goodput with backpressure: 10Mbps 23

24 Hop Design Multi-hop Per-hop Virtual Retransmission ACK Withholding Backpressure Micro-block Prioritization Reliable Block Transfer 24

25 Ack Withholding! Mechanism:! Receiver withholds all but one BACK! Benefit:! Low overhead! Less conservative! Simple A C B B-SYN B-ACK DATA B-SYN Withhold B-ACK B-ACK DATA 25

26 Hop Design Multi-hop Per-hop Virtual Retransmission ACK Withholding Backpressure Micro-block Prioritization Reliable Block Transfer 26

27 Micro-block Prioritization! Mechanisms! Sender piggybacks small blocks to B-SYN! Receiver prioritizes small block s B-ACK! Benefits! Low delay for small blocks SSH 64B Sender Receiver Sender B-SYN B-SYN DATA B-ACK 1MB FTP 27

28 Testbed! 20 nodes on the 2 nd floor of UMass CS building! Apple Mac Mini! 1.8GHz, 2GB RAM, Atheros a/b/g card 28

29 Single-flow Single-hop Performance 1.2x TCP 1.6x Hop 28x Hop achieves significant gains over TCP 29

30 Single-flow Multi-hop Performance 1.9x TCP 2.3x Hop 2.7x Hop achieves significant gains over TCP 30

31 Graceful Degradation with Loss! Emulated link layer losses at the receiver TCP Hop TCP breaks down at moderate loss rates 31

32 Scalability to High Load! 30 concurrent flows 2x 20x Mean goodput TCP 150x Hop-by-hop TCP Hop Hop is much fairer than TCP 32

33 Hop Performance Breakdown 33

34 Hop over WLAN AP Mean (kbps) Median (kbps) Hop TCP TCP+RTS/CTS Hop improves utilization over TCP+RTS/CTS 34

35 Low Delay for Small Transfers! 1 small transfer competing with 4 large AP Small transfer size (KB) Hop lowers delay across all file sizes 35

36 Impact on Concurrent VoIP 36

37 Hop in Partitionable Networks Protocol Goodput (Kbps) Hop (H=1) 320 (±29) Hop (H=100) 457 (±18) DTN (±15) Hop significantly outperforms (TCP-based) DTN2.5 37

38 Network and Link Layer Dynamics! 30 concurrent flows with bit rate control +/ OLSR Hop significantly outperforms TCP under dynamic network conditions 38

39 Hop with g Hop continues to outperform TCP with 11g 39

40 Related Work 40

41 Outline! Motivation! Block transport! Replication routing! Research challenges 41

42 Replication routing! Replication reduces delay under topology uncertainty! Y! P! X! P! P! P! Z! W! 42

43 Routing as resource allocation problem! Problem: Which packets to replicate given limited X! bandwidth to optimize a specified Y! metric?! RAPID Protocol (X,Y):! 1. Control channel: Exchange metadata! 2. Direct Delivery: Deliver packets destined to each other! Change in utility! 3. Replication: Replicate in decreasing order of marginal utility! Packet size! 4. Termination: Until all packets replicated or nodes out of range! DTN routing as a resource allocation problem, Balasubramanian et al. [SIGCOMM 2007] 43

44 Utility computation example! Objective: Minimize average delay! Define U(i) = -(T + D)!! T = time since created, D = expected remaining time to deliver!! Simplistic assumptions!! uniform exponential meeting with mean!! global view! Z! i! X! i! Y! i! W! D =! D = /2! D = /3! 44

45 Utility computation example (cont d) j! j! W! i! X! Y! Deadline of i < T! Z! Deadline of j = T 1 > T Metric: Min average delay! Metric: Maximize #packets delivered within deadline! Replicate i! Replicate j! 45

46 Deployment on DieselNet 46

47 Results based on DieselNet traces 47

48 Outline! Motivation! Block transport! Replication routing! Research challenges 48

49 C1: When to replicate?! Replication useful under! Topology uncertainty! Delay optimization! Light load scenarios relays X 1 X 2 Claim: Delay benefit of replication is unbounded. src X k dst X i = r.v. for delay of path i Forwarding delay = min i (E[X i ]) Replication delay = E[min i (X i )] WLAN Mesh MANET DTN Low uncertainty Forwarding suffices High uncertainty Replication useful 49

50 C2: Bit Rate Control with Blocks + Reduces negative interaction between bit rate control and! Transport! ARQ Find r: max(r(1-p(r))) ARQ => keep p(r) low TCP => keep p(r) low + Simplifies collision vs. channel loss detection + Using small frames + Reducing collisions 50

51 Conclusions! Vision: Simple robust protocol stack for diverse wireless networks! Key building blocks! Block transport (Hop)! Replication routing (RAPID) Source code

Block-switched Networks: A New Paradigm for Wireless Transport

Block-switched Networks: A New Paradigm for Wireless Transport Block-switched Networks: A New Paradigm for Wireless Transport Ming Li, Devesh Agrawal, Deepak Ganesan, and Arun Venkataramani University of Massachusetts Amherst What You Buy vs. What You Get TCP performs

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 25: Wireless Networking Wireless Challenges 15-441: Computer Networking Lecture 25: Wireless Networking Force us to rethink many assumptions Need to share airwaves rather than wire Don t know what hosts are involved Host may

More information

The Effects of Asymmetry on TCP Performance

The Effects of Asymmetry on TCP Performance The Effects of Asymmetry on TCP Performance Hari Balakrishnan Venkata N. Padmanabhan Randy H. Katz University of California at Berkeley Daedalus/BARWAN Retreat June 1997 Outline Overview Bandwidth asymmetry

More information

InteracCve WiFi ConnecCvity from Moving Vehicles

InteracCve WiFi ConnecCvity from Moving Vehicles InteracCve WiFi ConnecCvity from Moving Vehicles Aruna Balasubramanian, Ratul Mahajan Arun Venkataramani, Brian N Levine, John Zahorjan University of Massachuse2s Amherst Microso5 Research University of

More information

Wireless TCP Performance Issues

Wireless TCP Performance Issues Wireless TCP Performance Issues Issues, transport layer protocols Set up and maintain end-to-end connections Reliable end-to-end delivery of data Flow control Congestion control Udp? Assume TCP for the

More information

Transport layer issues

Transport layer issues Transport layer issues Dmitrij Lagutin, dlagutin@cc.hut.fi T-79.5401 Special Course in Mobility Management: Ad hoc networks, 28.3.2007 Contents Issues in designing a transport layer protocol for ad hoc

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 24: Mobile and Wireless

Wireless Challenges : Computer Networking. Overview. Routing to Mobile Nodes. Lecture 24: Mobile and Wireless Wireless Challenges 15-441: Computer Networking Lecture 24: Mobile and Wireless Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 Force us to rethink many assumptions Need to share airwaves rather

More information

Granting Silence to Avoid Wireless Collisions

Granting Silence to Avoid Wireless Collisions Granting Silence to Avoid Wireless Collisions Jung Il Choi, Mayank Jain, Maria A. Kazandjieva, and Philip Levis October 6, 2010 ICNP 2010 Wireless Mesh and CSMA One UDP flow along a static 4-hop route

More information

CHAPTER 7 SIMULATION OBSERVATIONS

CHAPTER 7 SIMULATION OBSERVATIONS CHAPTER 7 CHAPTER 7 SIMULATION OBSERVATIONS Over a randomly distributed wireless network system with the specification is modeled with the suggested algorithms for communication from a selected source

More information

Design of Link and Routing Protocols for Cache-and- Forward Networks. Shweta Jain, Ayesha Saleem, Hongbo Liu, Yanyong Zhang, Dipankar Raychaudhuri

Design of Link and Routing Protocols for Cache-and- Forward Networks. Shweta Jain, Ayesha Saleem, Hongbo Liu, Yanyong Zhang, Dipankar Raychaudhuri Design of Link and Routing Protocols for Cache-and- Forward Networks Shweta Jain, Ayesha Saleem, Hongbo Liu, Yanyong Zhang, Dipankar Raychaudhuri Introduction Future Internet usage is expected to involve

More information

Wireless MACs: MACAW/802.11

Wireless MACs: MACAW/802.11 Wireless MACs: MACAW/802.11 Mark Handley UCL Computer Science CS 3035/GZ01 Fundamentals: Spectrum and Capacity A particular radio transmits over some range of frequencies; its bandwidth, in the physical

More information

Addressing the Challenges of Web Data Transport

Addressing the Challenges of Web Data Transport Addressing the Challenges of Web Data Transport Venkata N. Padmanabhan Microsoft Research UW Whistler Retreat December 1998 Outline Challenges Solutions TCP Session Fast Start Ongoing and Future Work The

More information

Better Never than Late: Meeting Deadlines in Datacenter Networks

Better Never than Late: Meeting Deadlines in Datacenter Networks Better Never than Late: Meeting Deadlines in Datacenter Networks Christo Wilson, Hitesh Ballani, Thomas Karagiannis, Ant Rowstron Microsoft Research, Cambridge User-facing online services Two common underlying

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

TCP over wireless links

TCP over wireless links CSc 450/550 Computer Communications & Networks TCP over wireless links Jianping Pan (stand-in for Dr. Wu) 1/31/06 CSc 450/550 1 TCP over wireless links TCP a quick review on how TCP works Wireless links

More information

Page 1. Goals for Today" Discussion" Example: Reliable File Transfer" CS162 Operating Systems and Systems Programming Lecture 11

Page 1. Goals for Today Discussion Example: Reliable File Transfer CS162 Operating Systems and Systems Programming Lecture 11 Goals for Today" CS162 Operating Systems and Systems Programming Lecture 11 Reliability, Transport Protocols" Finish e2e argument & fate sharing Transport: TCP/UDP Reliability Flow control October 5, 2011

More information

Advanced Computer Networks. Wireless TCP

Advanced Computer Networks. Wireless TCP Advanced Computer Networks 263 3501 00 Wireless TCP Patrick Stuedi Spring Semester 2014 1 Oriana Riva, Department of Computer Science ETH Zürich Outline Last week: Today: Cellular Networks Mobile IP Wireless

More information

Packet-Level Diversity From Theory to Practice: An based Experimental Investigation

Packet-Level Diversity From Theory to Practice: An based Experimental Investigation Packet-Level Diversity From Theory to Practice: An 802.11- based Experimental Investigation E. Vergetis, E. Pierce, M. Blanco and R. Guérin University of Pennsylvania Department of Electrical & Systems

More information

Data Management and Wireless Transport for Large Scale Sensor Networks

Data Management and Wireless Transport for Large Scale Sensor Networks University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 9-2010 Data Management and Wireless Transport for Large Scale Sensor Networks Ming Li University of Massachusetts

More information

Telematics. 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments

Telematics. 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments 19531 - Telematics 5th Tutorial - LLC vs. MAC, HDLC, Flow Control, E2E-Arguments Bastian Blywis Department of Mathematics and Computer Science Institute of Computer Science 18. November, 2010 Institute

More information

Announcements. IP Forwarding & Transport Protocols. Goals of Today s Lecture. Are 32-bit Addresses Enough? Summary of IP Addressing.

Announcements. IP Forwarding & Transport Protocols. Goals of Today s Lecture. Are 32-bit Addresses Enough? Summary of IP Addressing. IP Forwarding & Transport Protocols EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information

Interference avoidance in wireless multi-hop networks 1

Interference avoidance in wireless multi-hop networks 1 Interference avoidance in wireless multi-hop networks 1 Youwei Zhang EE228A Project Report, Spring 2006 1 Motivation Wireless networks share the same unlicensed parts of the radio spectrum with devices

More information

B. Bellalta Mobile Communication Networks

B. Bellalta Mobile Communication Networks IEEE 802.11e : EDCA B. Bellalta Mobile Communication Networks Scenario STA AP STA Server Server Fixed Network STA Server Upwnlink TCP flows Downlink TCP flows STA AP STA What is the WLAN cell performance

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

Routing for Diverse Wireless Networks

Routing for Diverse Wireless Networks Routing for Diverse Wireless Networks Paper ID: 59337 Number of pages: Xiaozheng Tie, Aruna Balasubramanian, Manikandan Somasundaram, Arun Venkataramani University of Massachusetts Amherst {xztie, arunab,

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

MobilityFirst GSTAR: Generalized Storage Aware Routing

MobilityFirst GSTAR: Generalized Storage Aware Routing MobilityFirst GSTAR: Generalized Storage Aware Routing Samuel Nelson MobilityFirst Design Goals Design a future internet architecture that supports: Host and network mobility Diverse communication devices/entities/paradigms

More information

ECE697AA Lecture 3. Today s lecture

ECE697AA Lecture 3. Today s lecture ECE697AA Lecture 3 Transport Layer: TCP and UDP Tilman Wolf Department of Electrical and Computer Engineering 09/09/08 Today s lecture Transport layer User datagram protocol (UDP) Reliable data transfer

More information

ECS-087: Mobile Computing

ECS-087: Mobile Computing ECS-087: Mobile Computing TCP over wireless TCP and mobility Most of the Slides borrowed from Prof. Sridhar Iyer s lecture IIT Bombay Diwakar Yagyasen 1 Effect of Mobility on Protocol Stack Application:

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 5 CMPE 257 Winter'11 1 Announcements Project proposals. Student presentations. 10 students so

More information

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2. Goals for Todayʼs Lecture. Role of Transport Layer

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2. Goals for Todayʼs Lecture. Role of Transport Layer Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 CS 375: Computer Networks Thomas C. Bressoud 1 Goals for Todayʼs Lecture Principles underlying transport-layer services (De)multiplexing Detecting

More information

The Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) The Transmission Control Protocol (TCP) Application Services (Telnet, FTP, e-mail, WWW) Reliable Stream Transport (TCP) Unreliable Transport Service (UDP) Connectionless Packet Delivery Service (IP) Goals

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse

Good Ideas So Far Computer Networking. Outline. Sequence Numbers (reminder) TCP flow control. Congestion sources and collapse Good Ideas So Far 15-441 Computer Networking Lecture 17 TCP & Congestion Control Flow control Stop & wait Parallel stop & wait Sliding window Loss recovery Timeouts Acknowledgement-driven recovery (selective

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.1 Kaan Bür, Jens Andersson Transport Layer Protocols Process-to-process delivery [ed.4 ch.23.1] [ed.5 ch.24.1] Transmission Control

More information

Transport Layer Protocols TCP

Transport Layer Protocols TCP Transport Layer Protocols TCP Gail Hopkins Introduction Features of TCP Packet loss and retransmission Adaptive retransmission Flow control Three way handshake Congestion control 1 Common Networking Issues

More information

B. Bellalta Mobile Communication Networks

B. Bellalta Mobile Communication Networks IEEE 802.11e : EDCA B. Bellalta Mobile Communication Networks Scenario STA AP STA Server Server Fixed Network STA Server Upwnlink TCP flows Downlink TCP flows STA AP STA What is the WLAN cell performance

More information

15-441: Computer Networking. Wireless Networking

15-441: Computer Networking. Wireless Networking 15-441: Computer Networking Wireless Networking Outline Wireless Challenges 802.11 Overview Link Layer Ad-hoc Networks 2 Assumptions made in Internet Host are (mostly) stationary Address assignment, routing

More information

Reading. Read 3 MPLS links on the class website

Reading. Read 3 MPLS links on the class website Reading Read 3 MPLS links on the class website Read the following Wikipedia entries: Advanced Mobile Phone System, GSM, 1xEVDO, Cell site, Cellular network, 802.11ac Beyond IP Routing Traffic engineering

More information

TCP. CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli)

TCP. CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli) TCP CSU CS557, Spring 2018 Instructor: Lorenzo De Carli (Slides by Christos Papadopoulos, remixed by Lorenzo De Carli) 1 Sources Fall and Stevens, TCP/IP Illustrated Vol. 1, 2nd edition Congestion Avoidance

More information

SIMPLE MODEL FOR TRANSMISSION CONTROL PROTOCOL (TCP) Irma Aslanishvili, Tariel Khvedelidze

SIMPLE MODEL FOR TRANSMISSION CONTROL PROTOCOL (TCP) Irma Aslanishvili, Tariel Khvedelidze 80 SIMPLE MODEL FOR TRANSMISSION CONTROL PROTOCOL (TCP) Irma Aslanishvili, Tariel Khvedelidze Abstract: Ad hoc Networks are complex distributed systems that consist of wireless mobile or static nodes that

More information

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 CE443 - Fall 1390 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 10 CMPE 257 Spring'15 1 Student Presentations Schedule May 21: Sam and Anuj May 26: Larissa

More information

Multiple unconnected networks

Multiple unconnected networks TCP/IP Life in the Early 1970s Multiple unconnected networks ARPAnet Data-over-cable Packet satellite (Aloha) Packet radio ARPAnet satellite net Differences Across Packet-Switched Networks Addressing Maximum

More information

Fast, Efficient, and Robust Multicast in Wireless Mesh Networks

Fast, Efficient, and Robust Multicast in Wireless Mesh Networks fast efficient and robust networking FERN Fast, Efficient, and Robust Multicast in Wireless Mesh Networks Ian Chakeres Chivukula Koundinya Pankaj Aggarwal Outline IEEE 802.11s mesh multicast FERM algorithms

More information

DeTail Reducing the Tail of Flow Completion Times in Datacenter Networks. David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz

DeTail Reducing the Tail of Flow Completion Times in Datacenter Networks. David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz DeTail Reducing the Tail of Flow Completion Times in Datacenter Networks David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz 1 A Typical Facebook Page Modern pages have many components

More information

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols

Medium Access Control. MAC protocols: design goals, challenges, contention-based and contention-free protocols Medium Access Control MAC protocols: design goals, challenges, contention-based and contention-free protocols 1 Why do we need MAC protocols? Wireless medium is shared Many nodes may need to access the

More information

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print,

OSI Layer OSI Name Units Implementation Description 7 Application Data PCs Network services such as file, print, ANNEX B - Communications Protocol Overheads The OSI Model is a conceptual model that standardizes the functions of a telecommunication or computing system without regard of their underlying internal structure

More information

Direct Link Communication I: Basic Techniques. Data Transmission. ignore carrier frequency, coding etc.

Direct Link Communication I: Basic Techniques. Data Transmission. ignore carrier frequency, coding etc. Direct Link Communication I: Basic Techniques Link speed unit: bps abstraction Data Transmission ignore carrier frequency, coding etc. Point-to-point link: wired or wireless includes broadcast case Interested

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5

Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Wireless and Mobile Networks Reading: Sections 2.8 and 4.2.5 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

Link Layer: Retransmissions

Link Layer: Retransmissions Link Layer: Retransmissions Context on Reliability Where in the stack should we place reliability functions? Application Transport Network Link Physical CSE 461 University of Washington 2 Context on Reliability

More information

CONGA: Distributed Congestion-Aware Load Balancing for Datacenters

CONGA: Distributed Congestion-Aware Load Balancing for Datacenters CONGA: Distributed Congestion-Aware Load Balancing for Datacenters By Alizadeh,M et al. Motivation Distributed datacenter applications require large bisection bandwidth Spine Presented by Andrew and Jack

More information

Lecture 11. Transport Layer (cont d) Transport Layer 1

Lecture 11. Transport Layer (cont d) Transport Layer 1 Lecture 11 Transport Layer (cont d) Transport Layer 1 Agenda The Transport Layer (continue) Connection-oriented Transport (TCP) Flow Control Connection Management Congestion Control Introduction to the

More information

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 3 MAC Layer Andreas Terzis Outline MAC Protocols MAC Protocol Examples Channel Partitioning TDMA/FDMA Token Ring Random Access Protocols Aloha and Slotted

More information

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD Review Error Detection: CRC Multiple access protocols Slotted ALOHA CSMA/CD LAN addresses and ARP Ethernet Some slides are in courtesy of J. Kurose and K. Ross Overview Ethernet Hubs, bridges, and switches

More information

Ad Hoc Networks: Introduction

Ad Hoc Networks: Introduction Ad Hoc Networks: Introduction Module A.int.1 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Ad Hoc networks: introduction A.int.1-2

More information

Multiple Network Coded TCP Sessions in Disruptive Wireless Scenarios

Multiple Network Coded TCP Sessions in Disruptive Wireless Scenarios Multiple Network Coded TCP Sessions in Disruptive Wireless Scenarios Chien-Chia Chen Cliff Chen Joon-Sang Park Soon Oh Mario Gerla M.Y. Sanadidi Network Research Lab, 1 Problem Statement Communication

More information

CE693: Adv. Computer Networking

CE693: Adv. Computer Networking CE693: Adv. Computer Networking L-9 Wireless Fall 1389 Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained

More information

Networks. Distributed Systems. Philipp Kupferschmied. Universität Karlsruhe, System Architecture Group. May 6th, 2009

Networks. Distributed Systems. Philipp Kupferschmied. Universität Karlsruhe, System Architecture Group. May 6th, 2009 Networks Distributed Systems Philipp Kupferschmied Universität Karlsruhe, System Architecture Group May 6th, 2009 Philipp Kupferschmied Networks 1/ 41 1 Communication Basics Introduction Layered Communication

More information

Advanced Network Design

Advanced Network Design Advanced Network Design Organization Whoami, Book, Wikipedia www.cs.uchicago.edu/~nugent/cspp54015 Grading Homework/project: 60% Midterm: 15% Final: 20% Class participation: 5% Interdisciplinary Course

More information

EE 122: Transport Protocols: UDP and TCP

EE 122: Transport Protocols: UDP and TCP EE 122: Transport Protocols: and provides a weak, but efficient service model (best-effort) - Packets can be delayed, dropped, reordered, duplicated - Packets have limited size (why?) packets are addressed

More information

Mohamed Khedr.

Mohamed Khedr. Mohamed Khedr http://webmail.aast.edu/~khedr Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Overview Packet Switching IP addressing

More information

DTN Routing as a Resource Allocation Problem

DTN Routing as a Resource Allocation Problem University of Massachusetts Amherst ScholarWorks@UMass Amherst Computer Science Department Faculty Publication Series Computer Science 27 DTN Routing as a Resource Allocation Problem Aruna Balasubramanian

More information

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections Application / Transport Interface Application requests service from transport layer Transport Layer Application Layer Prepare Transport service requirements Data for transport Local endpoint node address

More information

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks

Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks Qos-Aware Routing Based on Bandwidth Estimation for Mobile Ad Hoc Networks 1 Ravindra.E, 2 Pooja Agraharkar Asst Prof, Dept. of Electronics & Communication Engg, Mtech Student, Dept. of Electronics & Communication

More information

Chapter - 1 INTRODUCTION

Chapter - 1 INTRODUCTION Chapter - 1 INTRODUCTION Worldwide Interoperability for Microwave Access (WiMAX) is based on IEEE 802.16 standard. This standard specifies the air interface of fixed Broadband Wireless Access (BWA) system

More information

Principles behind data link layer services

Principles behind data link layer services Data link layer Goals: Principles behind data link layer services Error detection, correction Sharing a broadcast channel: Multiple access Link layer addressing Reliable data transfer, flow control: Done!

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

Flow and Congestion Control

Flow and Congestion Control CE443 Computer Networks Flow and Congestion Control Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought

More information

A closer look at network structure:

A closer look at network structure: T1: Introduction 1.1 What is computer network? Examples of computer network The Internet Network structure: edge and core 1.2 Why computer networks 1.3 The way networks work 1.4 Performance metrics: Delay,

More information

CMPE 257: Wireless and Mobile Networking

CMPE 257: Wireless and Mobile Networking CMPE 257: Wireless and Mobile Networking Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 4 1 Announcements Project proposals. Due April 17 th. Submit by e-mail to katia@soe.ucsc.edu.

More information

DTN Interworking for Future Internet Presented by Chang, Dukhyun

DTN Interworking for Future Internet Presented by Chang, Dukhyun DTN Interworking for Future Internet 2008.02.20 Presented by Chang, Dukhyun Contents 1 2 3 4 Introduction Project Progress Future DTN Architecture Summary 2/29 DTN Introduction Delay and Disruption Tolerant

More information

Qos support and adaptive video

Qos support and adaptive video Qos support and adaptive video QoS support in ad hoc networks MAC layer techniques: 802.11 e - alternation of contention based and contention free periods; differentiated (per class) Interframe Spacing

More information

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu

Chapter 5 Ad Hoc Wireless Network. Jang Ping Sheu Chapter 5 Ad Hoc Wireless Network Jang Ping Sheu Introduction Ad Hoc Network is a multi-hop relaying network ALOHAnet developed in 1970 Ethernet developed in 1980 In 1994, Bluetooth proposed by Ericsson

More information

Delay Controlled Elephant Flow Rerouting in Software Defined Network

Delay Controlled Elephant Flow Rerouting in Software Defined Network 1st International Conference on Advanced Information Technologies (ICAIT), Nov. 1-2, 2017, Yangon, Myanmar Delay Controlled Elephant Flow Rerouting in Software Defined Network Hnin Thiri Zaw, Aung Htein

More information

Link Layer II: MACA and MACAW

Link Layer II: MACA and MACAW Link Layer II: MACA and MACAW COS 463: Wireless Networks Lecture 5 Kyle Jamieson [Parts adapted from J. Kurose, K. Ross, D. Holmar] Medium access: Timeline Packet radio Wireless LAN Wired LAN ALOHAnet

More information

EE 122: IP Forwarding and Transport Protocols

EE 122: IP Forwarding and Transport Protocols EE 1: IP Forwarding and Transport Protocols Ion Stoica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee1/ (Materials with thanks to Vern

More information

DTN Routing as a Resource Allocation Problem

DTN Routing as a Resource Allocation Problem DTN Routing as a Resource Allocation Problem Aruna Balasubramanian, Brian Neil Levine and Arun Venkataramani Dept. of Computer Science, University of Massachusetts Amherst Amherst, MA, USA arunab@cs.umass.edu,

More information

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering

IEEE ah. sub 1GHz WLAN for IoT. What lies beneath Wi-Fi HaLow. Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering by wilgengebroed IEEE 802.11ah sub 1GHz WLAN for IoT What lies beneath Wi-Fi HaLow Eduard Garcia-Villegas, Elena López-Aguilera Dept. of Network Engineering eduardg@entel.upc.edu elopez@entel.upc.edu Contents

More information

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP Outline Connecting to the access network: DHCP and mobile IP, LTE Transport layer: UDP and TCP IETF TCP/IP protocol suite User application, e.g., http with Mozilla Communication for each process on computer

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application. Ling Wang

Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application. Ling Wang Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application Ling Wang ling.wang2@wayne.edu Outline Introduction Parameterization Differentiation Evaluation

More information

Evaluation of End-to-End TCP Performance over WCDMA

Evaluation of End-to-End TCP Performance over WCDMA Evaluation of End-to-End TCP Performance over WCDMA Liang Hu Network Group, COM Centre Technical University of Denmark Outline Recall background knowledge Why study TCP over WCDMA Performance Evaluation

More information

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall

IEEE , Token Rings. 10/11/06 CS/ECE UIUC, Fall IEEE 802.11, Token Rings 10/11/06 CS/ECE 438 - UIUC, Fall 2006 1 Medium Access Control Wireless channel is a shared medium Need access control mechanism to avoid interference Why not CSMA/CD? 10/11/06

More information

CS268: Beyond TCP Congestion Control

CS268: Beyond TCP Congestion Control TCP Problems CS68: Beyond TCP Congestion Control Ion Stoica February 9, 004 When TCP congestion control was originally designed in 1988: - Key applications: FTP, E-mail - Maximum link bandwidth: 10Mb/s

More information

Augmented Split-TCP over Wireless LANs

Augmented Split-TCP over Wireless LANs Augmented Split- over Wireless LANs Hakyung Jung, Nakjung Choi, Yongho Seok, Taekyoung Kwon and Yanghee Choi School of Computer Science and Engineering Seoul National University, Seoul, Korea Email: {hkjung,

More information

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2

Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 Transport Protocols Reading: Sections 2.5, 5.1, and 5.2 COS 461: Computer Networks Spring 2006 (MW 1:30-2:50 in Friend 109) Jennifer Rexford Teaching Assistant: Mike Wawrzoniak http://www.cs.princeton.edu/courses/archive/spring06/cos461/

More information

Enhancement of CoAP Packet Delivery Performance for Internet of Things. Hang Liu

Enhancement of CoAP Packet Delivery Performance for Internet of Things. Hang Liu Enhancement of CoAP Packet Delivery Performance for Internet of Things Hang Liu Outline Motivation and Industrial Relevance Project Objectives Approach and Previous Results Future Work Outcome and Impact

More information

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018 WiFi Networks: IEEE 802.11b Wireless LANs Carey Williamson Department of Computer Science University of Calgary Winter 2018 Background (1 of 2) In many respects, the IEEE 802.11b wireless LAN (WLAN) standard

More information

EE 122: Transport Protocols. Kevin Lai October 16, 2002

EE 122: Transport Protocols. Kevin Lai October 16, 2002 EE 122: Transport Protocols Kevin Lai October 16, 2002 Motivation IP provides a weak, but efficient service model (best-effort) - packets can be delayed, dropped, reordered, duplicated - packets have limited

More information

15-744: Computer Networking TCP

15-744: Computer Networking TCP 15-744: Computer Networking TCP Congestion Control Congestion Control Assigned Reading [Jacobson and Karels] Congestion Avoidance and Control [TFRC] Equation-Based Congestion Control for Unicast Applications

More information

Performance anomaly of b

Performance anomaly of b Laboratoire LSR Logiciels Systèmes Réseaux Software, Systems, Networks Performance anomaly of 802.11b Andrzej Duda LSR-IMAG Andrzej.Duda@imag.fr Joint work with Martin Heusse, Franck Rousseau, Gilles Berger-Sabbatel

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Brad Karp UCL Computer Science CS 3035/GZ01 29 th October 2013 Part I: Transport Concepts Layering context Transport goals Transport mechanisms 2 Context:

More information

The War Between Mice and Elephants

The War Between Mice and Elephants The War Between Mice and Elephants (by Liang Guo and Ibrahim Matta) Treating Short Connections fairly against Long Connections when they compete for Bandwidth. Advanced Computer Networks CS577 Fall 2013

More information

Link Characteristics Information conveyance

Link Characteristics Information conveyance Link Characteristics Information conveyance MOBOPTS IETF #65 J. Zhang, S. Park, J. Korhonen, P. Sarolahti Introduction Prelimenary results from two different sets of simulations utilizing explicit LCI

More information